Diving Guide of the This Archipelago for Its Innumerous Diving Spots Azores, That Can Be Visited by All Lovers of This Activity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ciguatera Food Poisoning in Europe”
“RISK CHARACTERIZATION OF CIGUATERA FOOD POISONING IN EUROPE” 71st Advisory Forum Meeting 03-04 April 2019 Bucharest, Rumania FRAMEWORK PARTNERSHIP AGREEMENT GP/EFSA/AFSCO/2015/03 RISK CHARACTERIZATION OF CIGUATERA FOOD POISONING IN EUROPE [email protected] What is the Ciguatera? • Ciguatoxin is produced by micro algae, or dinoflagellates, called Gambierdiscus spp. The toxins climb up the food chain until the contaminated fish are caught and served to people. • These toxins cause Ciguatera food poisoning (CFP) which is a complex syndrome: gastrointestinal, neurological and cardiovascular effects. CFP is primarily associated with the consumption of large predator fish that have accumulated the toxins by feeding on smaller contaminated coral reef fish. • At present, CFP is the most common type of marine biotoxins food poisoning worldwide with an estimated number of 10.000 to 50.000 people suffering from the disease annually. FRAMEWORK PARTNERSHIP AGREEMENT GP/EFSA/AFSCO/2015/03 RISK CHARACTERIZATION OF CIGUATERA FOOD POISONING IN EUROPE [email protected] Worldwide distribution of ciguatera Caribbean Ciguatoxin Pacific Ciguatoxin Red dots: ciguatera cases of poisoning. Yellow dots: presence of Gambierdiscus spp. FRAMEWORK PARTNERSHIP AGREEMENT GP/EFSA/AFSCO/2015/03 RISK CHARACTERIZATION OF CIGUATERA FOOD POISONING IN EUROPE [email protected] Background Ciguatera 2004 Gambierdiscus spp., responsible for ciguatera in the waters of the Canary Islands and Madeira microalgae, was detected. 2008 autochthonous ciguatera outbreaks in Spain (Canary Islands) and in Portugal (Madeira). Between 2008 and 2018 18 outbreaks (115 cases) recorded in Canary Islands Fish genus Seriola was involved in many of the outbreaks. These new findings suggest the microorganism is becoming an increasing risk for European countries. -
Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain). -
Manta Or Mobula
IOTC-2010-WPEB-inf01 Draft identification guide IOTC Working Party on Ecosystems and Bycatch (WPEB) Victoria, Seychelles 27-30 October, 2010 Mobulidae of the Indian Ocean: an identification hints for field sampling Draft, version 2.1, August 2010 by Romanov Evgeny(1)* (1) IRD, UMR 212 EME, Centre de Recherche Halieutique Mediterraneenne et Tropicale Avenue Jean Monnet – BP 171, 34203 Sete Cedex, France ([email protected]) * Present address: Project Leader. Project “PROSpection et habitat des grands PElagiques de la ZEE de La Réunion” (PROSPER), CAP RUN, ARDA, Magasin n°10, Port Ouest, 97420, Le Port, La Réunion, France. ABSTRACT Draft identification guide for species of Mobulidae family, which is commonly observed as by-catch in tuna associated fishery in the region is presented. INTRODUCTION Species of Mobulidae family are a common bycatch occurs in the pelagic tuna fisheries of the Indian Ocean both in the industrial (purse seine and longline) and artisanal (gillnets) sector (Romanov 2002; White et al., 2006; Romanov et al., 2008). Apparently these species also subject of overexploitation: most of Indian Ocean species marked as vulnerable or near threatened at the global level, however local assessment are often not exist (Table). Status of the species of the family Mobulidae in the Indian Ocean (IUCN, 2007) IUCN Status1 Species Common name Global status WIO EIO Manta birostris (Walbaum 1792) Giant manta NT - VU Manta alfredi (Krefft, 1868) Alfred manta - - - Mobula eregoodootenkee Longhorned - - - (Bleeker, 1859) mobula Mobula japanica (Müller & Henle, Spinetail mobula NT - - 1841) Mobula kuhlii (Müller & Henle, Shortfin devil ray NE - - 1841) Mobula tarapacana (Philippi, Chilean devil ray DD - VU 1892) Mobula thurstoni (Lloyd, 1908) Smoothtail NT - - mobula Lack of the data on the distribution, fisheries and biology of mobulids is often originated from the problem with specific identification of these species in the field. -
Fish Assemblages of Cais Do Carva˜O Bay (Madeira Island) Determined by the Visual Census Technique
Journal of Fish Biology (2005) 67, 1568–1584 doi:10.1111/j.1095-8649.2005.00861.x,availableonlineathttp://www.blackwell-synergy.com Fish assemblages of Cais do Carva˜o Bay (Madeira Island) determined by the visual census technique C. RIBEIRO*†, A. J. A LMEIDA‡, R. ARAU´JO*, M. BISCOITO* AND M. FREITAS* *Estac¸a˜o de Biologia Marinha do Funchal, Promenade da Orla Marı´tima do Funchal, Gorgulho, 9000-107 Funchal, Madeira, Portugal and ‡IMAR, Laborato´rio Marı´timo da Guia, DBA, Faculdade de Cieˆncias da Universidade de Lisboa, Estrada do Guincho, 2750-642 Cascais, Portugal (Received 19 October 2004, Accepted 23 May 2005) Fish assemblages in Cais do Carva˜o Bay, Madeira Island, a proposed marine protected area (MPA), were determined from a diver visual census. A total of 32 transect counts were per- formed. Habitats sampled included sandy bottom, rocky boulders, vertical walls and rocky outcrops. Species richness, diversity, density, trophic structure, size and spatial organization were documented for the fish assemblages. Forty-four species from 23 families were encountered; 32% belonged to Sparidae (10) and Labridae (four). The greatest species richness (25) was observed in rocky boulder habitat at 10–15 m depth, while the lowest (five) occurred over a deeper sand habitat. The greatest density (760Á5 individuals per 100 m2) was recorded over rocky outcropping (20–25 m deep), and the lowest of 11Á6 individuals per 100 m2 was over a sand bottom at 10–15 m depth. Thalassoma pavo, Abudefduf luridus and Chromis limbata had higher densities on hard bottoms, while Heteroconger longissimus was the most abundant species in sand bottom habitats. -
Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ -
229 Index of Scientific and Vernacular Names
previous page 229 INDEX OF SCIENTIFIC AND VERNACULAR NAMES EXPLANATION OF THE SYSTEM Type faces used: Italics : Valid scientific names (genera and species) Italics : Synonyms * Italics : Misidentifications (preceded by an asterisk) ROMAN (saps) : Family names Roman : International (FAO) names of species 230 Page Page A African red snapper ................................................. 79 Abalistes stellatus ............................................... 42 African sawtail catshark ......................................... 144 Abámbolo ............................................................... 81 African sicklefìsh ...................................................... 62 Abámbolo de bajura ................................................ 81 African solenette .................................................... 111 Ablennes hians ..................................................... 44 African spadefish ..................................................... 63 Abuete cajeta ........................................................ 184 African spider shrimp ............................................. 175 Abuete de Angola ................................................. 184 African spoon-nose eel ............................................ 88 Abuete negro ........................................................ 184 African squid .......................................................... 199 Abuete real ........................................................... 183 African striped grunt ................................................ -
Assessing Transportation Patterns in the Azores Archipelago
infrastructures Article Assessing Transportation Patterns in the Azores Archipelago Rui Alexandre Castanho 1,2,3,4,5,* , José Manuel Naranjo Gómez 3,4,6 , Ana Vulevic 3,7, Arian Behradfar 8 and Gualter Couto 1 1 School of Business and Economics and CEEAplA, University of Azores, 9500 Ponta Delgada, Portugal; [email protected] 2 Faculty of Applied Sciences, WSB University, 41-300 Dabrowa Górnicza, Poland 3 VALORIZA-Research Centre for Endogenous Resource Valorization, 7300 Portalegre, Portugal; [email protected] (J.M.N.G.); [email protected] (A.V.) 4 CITUR-Madeira-Centre for Tourism Research, Development and Innovation, 9000-082 Madeira, Portugal 5 CNPQ Research Group Aquageo Ambiente Legal, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil 6 Agricultural School, University of Extremadura, 06007 Badajoz, Spain 7 Department of Urban Planning and Architecture, Institute of Transportation—CIP, 11000 Belgrade, Serbia 8 Department of Geomatics and Spatial Information Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +351-912-494-673 Abstract: It is well-known that the ultra-peripheral territories as Islands present several limitations such as the lack of resources, restricted land, mass tourism, and barriers to movement, and connec- tivity between urban centers. These obstacles make ultra-peripheral regions suitable case studies considering their territorial governance and consequently, sustainable development and growth. Thus, transportation and infrastructure sustainability in these regions are not an exception. Con- sidering all the obstacles present in these regions, the accessibility and connectivity patterns that the local population has in these territories should be assessed and monitored. -
ARQUIPELAGO Life and Marine Sciences
ARQUIPELAGO Life and Marine Sciences OPEN ACCESS ISSN 0870-4704 / e-ISSN 2182-9799 SCOPE ARQUIPELAGO - Life and Marine Sciences, publishes annually original scientific articles, short communications and reviews on the terrestrial and marine environment of Atlantic oceanic islands and seamounts. PUBLISHER University of the Azores Rua da Mãe de Deus, 58 PT – 9500-321 Ponta Delgada, Azores, Portugal. EDITOR IN CHIEF Helen Rost Martins Department of Oceanography and Fisheries / Faculty of Science and Technology University of the Azores Phone: + 351 292 200 400 / 428 E-mail: [email protected] TECHNICAL EDITOR Paula C.M. Lourinho Phone: + 351 292 200 400 / 454 E-mail: [email protected] INTERNET RESOURCES http://www.okeanos.pt/arquipelago FINANCIAL SUPPORT Okeanos-UAc – Apoio Func. e Gest. de centros I&D: 2019-DRCT-medida 1.1.a; SRMCT/GRA EDITORIAL BOARD José M.N. Azevedo, Faculty of Science and Technology, University of the Azores, Ponta Delgada, Azores; Paulo A.V. Borges, Azorean Biodiversity Group, University of the Azores, Angra do Heroísmo, Azores; João M.A. Gonçalves, Faculty of Science and Technology, University of the Azores, Horta, Azores; Louise Allcock, National University of Ireland, Galway, Ireland; Joël Bried, Cabinet vétérinaire, Biarritz, France; João Canning Clode, MARE - Marine and Environmental Sciences Centre, ARDITI, Madeira; Martin A. Collins, British Antarctic Survey, Cambridge, UK; Charles H.J.M. Fransen, Naturalis Biodiversity Center, Leiden, Netherlands, Suzanne Fredericq, Louisiana University at Lafayette, Louisiana, USA; Tony Pitcher, University of British Colombia Fisheries Center, Vancouver, Canada; Hanno Schaefer, Munich Technical University, Munich, Germany. Indexed in: Web of Science Master Journal List Cover design: Emmanuel Arand Arquipelago - Life and Marine Sciences ISSN: 0873-4704 Bryophytes of Azorean parks and gardens (I): “Reserva Florestal de Recreio do Pinhal da Paz” - São Miguel Island CLARA POLAINO-MARTIN, ROSALINA GABRIEL, PAULO A.V. -
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Research in Maritime Archaeology in Portugal 451
450Research in maritimeSHIPWRECKS AROUND archaeology THE WORLD: REVELATIONS in OF THE PAST Portugal: A view of the Past and Present 20 Tiago Miguel Fraga, Cristóvão Fonseca, Inês Pinto Coelho, Jorge Freire, Patrícia Carvalho and André Teixeira, Centro de História de Além-Mar, Universidade Nova de Lisboa and Universidade dos Açores, Lisboa, Portugal Portugal is a country with a secular strategy in overseas expansion, a cultural identity linked to the sea and of a cultural heritage spawning four continents. Thus maritime archaeology has become an essential field to understand the country. Presented here is an overview of the current state of maritime archaeology in Portugal in regard to several projects presently underway in Portugal and their contribution towards Portuguese history and maritime history in general. These occur in diverse fields as coastal knowledge, maritime cultural landscape, coastal archaeology, port studies associated with river and estuary research, ship’s studies and history of shipbuilding. Portugal’s ties to the sea have a secular origin. The geographic shoreline configuration (800 km of shoreline in a border of 1800 km) and abundant waterways and ports, led to an intense riverside settlement, to the development of maritime related economic activities, to a secular navigation knowledge and, of course, the cognitive construction of an entire magico-religious maritime tradition in the territory of present day Portugal. A country with very early defined borders in the late 13th century, Portugal secularly adopted overseas expansion as a main strategy. Its interventions in Africa, America and Asia tried to balance a lack of European expression, enabling a fragile political, economic and even cultural independence. -
Anexo Inglês.Indd
Annex 2: Additional Copy of Section B “Geological Heritage” of the Application Section B “Geological Heritage” GEOLOGICAL SUMMARY The Azores Archipelago is located in the North Atlantic, on the triple junction between the North American, Eurasian and African-Nubian plates. Volcanic and tectonic activities are well displayed in the geomorphology of the islands; the former includes 26 eruptions since the settlement, in early 15th century. The Azores Islands are formed by 16 major polygenetic volcanoes, most of them silicic and with summit subsidence calderas: nine of them are still active. Moreover, there are about 1750 monogenetic volcanoes in the archipelago, either dispersed along the flanks and inside the summit depression of the polygenetic volcanoes, either belonging to the 11 basaltic fissural volcanic systems located in different islands. These monogenetic centres include domes and coulées, tuff rings, tuff cones, maars, scoria and spatter cones, and eruptive fissures that together with other volcanic, tectonic, sedimentary, littoral and deep sea features may be considered as geosites and can embrace outstanding landscapes. B – Geological Heritage B1. Location of the proposed Geopark The Azores archipelago is located in the Atlantic Ocean, between the latitudes 36º56’ e 39º44’ North and the longitudes 24º47’ and 31º16’ West (Figure 5), and at the distance of 1815 km from the Mainland Portugal. ´ Figure 6 – General geodynamic framework of the Azores archipelago. From a geological point of view, all the Azores islands are of volcanic origin and are oceanic islands that emerged from the surrounding seafloor due to the progressively piled up of submarine volcanic products, a process that should have started about 36 million years (M.y.). -
SHELTER USE by CALCINUS V E W L I , BERMUDA's EX?)Elflc
SHELTER USE BY CALCINUS VEWLI, BERMUDA'S EX?)ELflC HELMIT CL4B Lisa Jacqueline Rodrigues A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Zoology University of Toronto 0 Copyright by Lisa Jacqueline Rodrigues 2000 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your irrS Votre mféretut? Our üb Notre rdfénme The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts bom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Shelter use by Calcinus vemlli, Bermuda's endemic hennit crab. Master of Science, 2000 Lisa Jacqueline Rodngues Department of Zoology University of Toronto Calcinus vemlli, a hennit crab endemic to Bermuda, is unusual in that it inbabits both gastropod shells (Centhium Iitteratum) and gastropod tubes (Dendropoma irremlare and Dendropoma annulatus; Vermicularia knomi and Vermicularia spirata).