Linda Seppanen Garvin Heights Vineyards 2255 Garvin Heights Road Winona, MN

Total Page:16

File Type:pdf, Size:1020Kb

Linda Seppanen Garvin Heights Vineyards 2255 Garvin Heights Road Winona, MN Linda Seppanen Garvin Heights Vineyards 2255 Garvin Heights Road Winona, MN Overview of winemaking Quality fruit Grapes are fermented by yeast and converted into wine. Winemaking procedure(s) differs at winemaker, winery, region, and country level. Many different techniques, recipes, outcomes. Desired wine style dictates much of winemaking techniques employed. Money, time and workers also important. Why we bother! Evaluating Wine –Objective Qualities Varietal character How well a wine presents the aromas and flavors inherent to the grapes from which it was made Integration How well all the components of wine are balanced and complementary to each other Expressiveness Well‐defined and clearly projected aromas and flavors Complexity That indescribable something that makes wine more art than beverage Connectedness The cultural connection a wine has to the place it was grown Components of Wine Alcohol Comes from fermentation; affects body, texture, aroma, & flavor May be sensed as a “hot” smell or burning sensation in the nose Acidity Comes from natural acid in the grape; may be sensed as tartness Wines lacking acidity taste dull, flat or flabby and do not age well Tannin Comes from seeds, skins and stems; adds “backbone” and “character” to the wine; is a natural preservative In overabundance, wine tastes harsh or bitter Fruitiness Propensity of wine to display fruity aromas and flavors Sugar (sweetness/dryness) Depends on how much of the grape’s original sugar content was converted to alcohol Not the same as fruitiness! Evaluating Wine Smell Taste Sight Evaluating Wine ‐ Smell Much of taste is smell, so getting a good whiff is important Aerate the wine by swirling it in the glass Stick your nose in the glass and inhale Called the nose, aroma, or bouquet Aroma traditionally refers to grape‐associated smells Bouquet refers to other smells (e.g. oak, vanilla, nutty or buttery) Aroma Wheel Evaluating Wine ‐ Taste Initial taste The first impression of a wine on your tongue Take a sip, don’t swallow yet Taste Swirl the wine around in your mouth, draw in some air Evaluate body & texture as well as flavor and balance Aftertaste The flavors and aromas that last after swallowing the wine Evaluate length of finish (the longer the better) as well as flavor Spit or Swallow…? Evaluating Wine Body Light, medium, or full? (think about the difference between skim milk, whole milk, and cream) Texture How does the wine feel in your mouth (e.g. soft, sharp, smooth)? If you had to describe the wine as a fabric, what would it be? Flavor What specific components can you taste? It may help to run through lists of choices. Balance Is the wine overwhelmed by any components (alcohol, acidity, tannin, fruitiness, sugar)? Length How long do the flavors and aromas linger after swallowing? Evaluating Wine ‐ Sight Color Hold glass down & at 45 degree angle against a white backdrop Is a clue to age (whites darken, reds lighten w/ age) Is not a clue to flavor intensity For white wines, also look for clarity Legs Swirl the wine in the glass & note viscosity of droplets which form & run down glass Indicates body & possibly alcohol content and/or sweetness Definitions USA: definition for taxation Table wine: 7 –14% alcohol Fortified wine: up to 24% alcohol Sparkling wine: effervescent wine with certain level of carbonation Europe Table wine: lowest quality wine produced No appellation or much distribution From the vineyard to the glass ‐ Terroir, the taste of place The qualities in a wine determined by its point of origin or appellation The combined effect of sun exposure, soil conditions, climate, water quality The sense of history In all agricultural products, but most talked about in wine and maybe cheese Upper Mississippi River Valley Viticulture Area Winery Operations Harvest Crush Must Additions Pressing Settling/Racking Fermentation(s) Aging/Blending Filtering/Cold Stabilization Bottling Harvest Harvest decisions • How do we determine ripeness? • Vineyard Sampling • Berry Growth • Sugar concentration (Brix) • Titratable Acidity and pH Portable refractometer for Brix Vineyard Sampling Sample must represent entire vineyard (changes in topography, soil, etc.) Everything must be chosen randomly i.e.. different areas of cluster, canopy location, row orientation Berry Sample (100‐200 berries) Most Robust but must be meticulous and unbiased Cluster Sample (20‐50) Removes bias in berry sampling but requires more fruit Vine Sample (all clusters from 1 vine) Only useful in vineyards where topography is uniform Most robust is Berry sampling Berry Expansion During Ripening Berry Growth goes through 3 stages Stage 1 Rapid Growth Stage 2 Lag Phase Stage 3 Resumed Growth and Maturation Growth pattern follows a double sigmoid During ripening the berry is expanding 3 to 4 cell number cell volume 300 fold. Veraison (softening and coloration) begins at stage 3 Sugar and Organic Acids Primary compounds of interest are sugar and organic acids (sweet and sour). As grape ripens it accumulates sugar Rapid sugar accumulation starts at veraison Organic Acids decline during ripening Decline is due to dilution and respiration. Climatic Variation changes sugars and organic acids Hot Climate: High sugar Low Acid Cool Climate: Low sugar High Acid Sugar and Organic Acids during Ripening Sugar Measurement Sugar (glucose and fructose) is the most abundant compound(s) found in berry. Other berry constituents are synthesized from it. Abundance allows indirect methodology for measurement. (Unit Brix=% or g/100 mL) Hydrometer used in winery to monitor fermentation Refractometer used in vineyard. (Uses refractive index of sugars) Sugar and Ripeness Typically grapes will accumulate up to 25‐26 Brix and after that increases are apparent and occur from dehydration. Winemakers often will allow crop to hang on vine and dehydrate waiting for flavors to develop. During this hang time the berries tend to shrivel and lose weight. Negotiation for grape prices can be based on tonnage and this reduces weight of clusters. Winemakers who like to develop flavors should negotiate an acreage contract to maintain grower relationship. Ethanol Predictions Ethanol can be predicted from initial Brix in crusher. Alcohol % = about ½ Brix Table wine (USA definition) = 7 –14% alcohol Organic Acids Principal organic acids are tartaric acid and malic acid. Tartaric acid (most abundant) Stereochemistry was elucidated by Louis Pasteur in 1849. Stable to microbial fermentation but forms insoluble salts with potassium (K2Tar found on the bottom of the cork or bottle in aged wines, KHTar is cream of tartar) Malic acid (second abundant) can be metabolized by yeast and bacteria (discussed later). Organic Acid Measurement Measured by titrating with a base of known concentration in the presence of a chemical indicator with a known pH end point. This measurement called titratable acidity (TA) pH is measured either with a meter or litmus paper. Concentrations range from 8.0 g/L to 6.5 g/L pH ranges from 2.8 to 4.0. White wine 3.0‐3.3 Red wine 3.2‐3.4 Other Parameters? Anthocyanin and tannin content in red grapes Total phenols in white grapes. Grape and wine relationship not well established for either because of processing effects. Aroma compounds in grape difficult to measure. Methodology(s) for measurement tedious and not ready for production scale. Tasting Grapes Contrary to myth no one can accurately estimate sugars and acid by taste. Tasting by panel (including winemaker and grower) with examination of sugar, acid, color, and flavor. Experience will provide perspective on varietal aroma, color and balance. Building a historical database with subjective and objective descriptions can help. Harvesting Practices Primary objectives: Pick all of the grapes as fast as possible with minimum damage, inexpensively. Sounds impossible? Condition of fruit at crush largely determines wine quality. Competition with birds (good ripeness indicator). Early morning harvest are good because it is easier to process cool fruit. Manual vs. Machine Harvesting Manual harvesting can be quick, selective, thorough, with minimal damage but not cheap. Machine harvesting is cheaper but usually damages vines and reduces yield slightly. Vineyard topography and trellis design largely determine type of harvesting style. Hilly vineyards are difficult to machine harvest. Trellis design must be able to withstand machine damage and make fruit easily accessible to machine mechanism. Good manual labor is hard to find. Crush Making White Wine Grapes are picked Grapes are crushed (stems may or may not be removed) Grapes are pressed, skins removed, and placed in tank Yeast may be added, and fermentation begins Making White Wine (cont.) When fermentation ends, wine may be left in contact with lees (spent yeast) Wine is racked Possibly cold stabilized Possibly put into barrels to age Possibly filtered Wine is bottled Making Red Wine Grapes are picked Grapes are crushed (stems may or may not be removed) Grapes, juice, skins and seeds are put in a tank Yeast may be added, and fermentation begins Making Red Wines (cont.) “Cap” is pushed down Wine is drained (first run) and then pressed (first press) off skins after fermentation ends Wine is put in barrels to age Periodically racked Possibly filtered Wine is bottled Press Tanks for aging Bottling Fermentation Primary fermentation is conversion
Recommended publications
  • Properties of Acids and Bases
    GREEN CHEMISTRY LABORATORY MANUAL Lab 22 Properties of Acids and Bases TN Standard 4.2: The student will investigate the characteristics of acids and bases. Have you ever brushed your teeth and then drank a glass of orange juice? hat do you taste when you brush your teeth and drink orange juice afterwards. Yuck! It leaves a really bad taste in your mouth, but why? Orange juice and toothpaste by themselves taste good. But the terrible taste W results because an acid/base reaction is going on in your mouth. Orange juice is a weak acid and the toothpaste is a weak base. When they are placed together they neutralize each other and produce a product that is unpleasant to taste. How do you determine what is an acid and what is a base? In this lab we will discover how to distinguish between acids and bases. Introduction Two very important classes of compounds are acids and bases. But what exactly makes them different? There are differences in definition, physical differences, and reaction differences. According to the Arrhenius definition, acids ionize in water to + produce a hydronium ion (H3O ), and bases dissociate in water to produce hydroxide ion (OH -). Physical differences can be detected by the senses, including taste and touch. Acids have a sour or tart taste and can produce a stinging sensation to broken skin. For example, if you have ever tasted a lemon, it can often result in a sour face. Bases have a bitter taste and a slippery feel. Soap and many cleaning products are bases.
    [Show full text]
  • Q1.Sodium Carbonate Reacts with Dilute Hydrochloric Acid
    Q1.Sodium carbonate reacts with dilute hydrochloric acid: Na2CO3 + 2HCl → 2NaCl + H2O + CO2 A student investigated the volume of carbon dioxide produced when different masses of sodium car- bonate were reacted with dilute hydrochloric acid. This is the method used. 1. Place a known mass of sodium carbonate in a conical flask. 2. Measure 10 cm3 of dilute hydrochloric acid using a measuring cylinder. 3. Pour the acid into the conical flask. 4. Place a bung in the flask and collect the gas until the reaction is complete. (a) The student set up the apparatus as shown in the figure below. Identify the error in the way the student set up the apparatus. Describe what would happen if the student used the apparatus shown. (2) (b) The student corrected the error. The student’s results are shown in the table below. Mass of sodium carbonate Volume of carbon dioxide gas 3 in g in cm 0.07 16.0 0.12 27.5 0.23 52.0 0.29 12.5 0.34 77.0 0.54 95.0 0.59 95.0 0.65 95.0 The result for 0.29 g of sodium carbonate is anomalous. Suggest what may have happened to cause this anomalous result. (1) (c) Why does the volume of carbon dioxide collected stop increasing at 95.0 cm3? (1) (d) What further work could the student do to be more certain about the minimum mass of sodium M1.(a) (delivery) tube sticks into the acid 1 the acid would go into the water or the acid would leave the flask or go up the delivery tube ignore no gas collected 1 (b) any one from: • bung not put in firmly / properly • gas lost before bung put in • leak from tube 1 (c) all of the acid has reacted 1 (d) take more readings in range 0.34 g to 0.54 g 1 take more readings is insufficient ignore repeat 1 (e) The carbon dioxide was collected at room temperature and pressure.
    [Show full text]
  • Ph Indicators Analysis Within Seconds Ph Indicator Strips
    pH Indicators Analysis within Seconds pH Indicator Strips Economic in price In practice, it is normally quite sufficient to be able to measure pH in full units or in tenths of a unit. For this type of determination, as carried out in many laboratories, our various types of indicator paper, strips and liquids have proven themselves over many years. pH indicator paper has been on the market for decades in booklet and roll form. However, these forms are being more and more replaced by the more modern strip form (see next page). Indicator paper consists of high quality filter paper impregnated with indicator or indicator mixture. Order No. Designation pH range Graduation Roll length/ The table alongside shows the (*transition range) (pH units) No. of strips various types of booklet and rolls available Rolls 1.09565.0001 pH box 0.5 -13.0 0.5 3 x 4.8 m 1.09568.0001 Refill rolls, pH 0.5-5.0 0.5 - 5.0 0.5 6 x 4.8 m 1.09569.0001 Refill rolls, pH 5.5-9.0 5.5 - 9.0 0.5 6 x 4.8 m 1.09570.0001 Refill rolls, pH 9.5-13.0 9.5 -13.0 0.5 6 x 4.8 m 1.10962.0001 Universal indicator 1 -14.0 1 6 x 4.8 m 1.10232.0001 Refill rolls 6 x 4.8 m 1.09526.0001 Universal indicator 1 -10.0 1 6 x 4.8 m 1.09527.0001 Refill rolls 6 x 4.8 m 1.09560.0001 Acilit 0.5 - 5.0 0.5 6 x 4.8 m 1.09568.0001 Refill rolls 6 x 4.8 m 1.09564.0001 Neutralit 5.5 - 9.0 0.5 6 x 4.8 m 1.09569.0001 Refill rolls 6 x 4.8 m 1.09562.0001 Alkalit 9.5 -13.0 0.5 6 x 4.8 m 1.09570.0001 Refill rolls 6 x 4.8 m 1.09486.0001 Litmus paper, blue pH <7 red / >7 blue* 6 x 4.8 m 1.09489.0001 Litmus paper, red
    [Show full text]
  • Turning Image Sensors Into Position and Time Sensitive Quantitative Colorimetric Data Sources with the Aid of Novel Image Processing/Analysis Software
    sensors Article Turning Image Sensors into Position and Time Sensitive Quantitative Colorimetric Data Sources with the Aid of Novel Image Processing/Analysis Software Yeongsik Yoo 1 and Woo Sik Yoo 2,* 1 College of Liberal Arts, Dankook University, Yongin-si 16890, Gyeonggi-do, Korea; [email protected] 2 WaferMasters, Dublin, CA 94568, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 9 November 2020; Published: 10 November 2020 Abstract: Still images and video images acquired from image sensors are very valuable sources of information. From still images, position-sensitive, quantitative intensity, or colorimetric information can be obtained. Video images made of a time series of still images can provide time-dependent, quantitative intensity, or colorimetric information in addition to the position-sensitive information from a single still image. With the aid of novel image processing/analysis software, extraction of position- and time-sensitive quantitative colorimetric information was demonstrated from still image and video images of litmus test strips for pH tests of solutions. Visual inspection of the color change in the litmus test strips after chemical reaction with chemical solutions is typically exercised. Visual comparison of the color of the test solution with a standard color chart provides an approximate pH value to the nearest whole number. Accurate colorimetric quantification and dynamic analysis of chemical properties from captured still images and recorded video images of test solutions using novel image processing/analysis software are proposed with experimental feasibility study results towards value-added image sensor applications. Position- and time-sensitive quantitative colorimetric measurements and analysis examples are demonstrated.
    [Show full text]
  • Huskybites Slides
    bit.ly/mtuengfb or search for “Michigan Tech College of Engineering” Color-Changing Potions and Magical Microbes Rebecca Ong Assistant Professor Department of Chemical Engineering Michigan Technological University Biography PhD, Chemical Engineering, Michigan State University BS, Chemical Engineering, Michigan Technological University BS, Biological Sciences (Plant Biology), Michigan Technological University Courses Taught ● CM5300 – Advanced Transport Phenomena ● CM3979/ENT3979 - Alternative Energy Processes and Technologies ● CM4125 – Bioprocess Engineering Laboratory Research Interests ● Lignocellulosic-Based Biofuels and Biomaterials ● Sustainability of Bioenergy Production Systems The Science Behind the Magic: Color-Changing Potions Chromophores: an atom or group whose presence is responsible for the color of a compound http://wayfaringrachel.com/chlorophyll-water/ https://www.youtube.com/watch?v=-ijejlYbGh8 β-Carotene https://commons.wikimedia.org/wiki/File:Beta-carotene_conjugation.png https://www.medicalnewstoday.com/articles/252758 https://www.livescience.com/52487-carotenoids.html Anthocyanins https://www.robertbarrington.net/anthocya nin-chemistry-colour-changes/ https://nutritionyoucanuse.com/foods-high-in-anthocyanins Our homemade pH indicator tells us the amount of H+ ions in solution (or the acidity) More H+ = More acidic Less H+ = More basic https://www.researchgate.net/figure/Chemical-diagram-of-color-changing-anthocyanin-pH-reaction-Under-different-pH- conditions_fig4_301896057 http://www.compoundchem.com/2017/05/18/red-
    [Show full text]
  • Of the Ph of Given Substances by Using Litmus and Hydrion Papers. It Is A
    DOCUNENT RESUME ED 096 117 SE 018 017 AUTHOR Henderson, Paula TITLE pH [Measure of Acidity]. INSTITUTION Delaware State Dept. of Public Instruction, Dover.; Del Mod System, Dover, Del. SPONS AGENCY National science Foundation, Washington, D.C. REPORT NO NSF-GW-6703 PUB DATE 30 Jun 73 NOTE 12p. EDRS PRICE MF-80.75 HC -$1.50 PLUS POSTAGE DESCRIPTORS *Autoinstructional Programs; *Biology; Instruction; *Tnetructional Materials; Science Education; *Secondary School Science; Teacher Developed Materials; Units of Study (Subject Fields) IDENTIFIERS *Del Mod System ABSTRACT This autoinstructional program deals with thc. study of the pH of given substances by using litmus and hydrionpapers. It is a learning activity directed toward low achievers involved inthe study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for furtherpH testing). The equipment needed is itemized. With the student script there is included a pH worksheet that can be used for recording the observations made and answering suggested questions relevantto observations made.(!B) V 1 Or PAIITAAt NTOP Ht. At 114 tOtiChtiON IVO k.P AIL 11110 NA I IONAI, 460t1lOPE t t Oln. A T ION 14.'..I 1 4101110 '6. U. VI 4' 1.1 I ,1 11, LW': 1), 1I 16.1' # ." .64 1,1 wn.414 114(.41v41.o., i. 1%41. 6.41 6.#, #e * I.,y I ,I ,1 A ir , AI at,. 1#1 rick ,1 Ah . .' All IDO NI" /II I.. ti ni ....4 .Iy I ,,t I.. AthAt,NA, NO. (1,. AI, 'y Ico , I (.14.w ; WI, .
    [Show full text]
  • Chemical Engineering Vocabulary
    Chemical Engineering Vocabulary Maximilian Lackner Download free books at MAXIMILIAN LACKNER CHEMICAL ENGINEERING VOCABULARY Download free eBooks at bookboon.com 2 Chemical Engineering Vocabulary 1st edition © 2016 Maximilian Lackner & bookboon.com ISBN 978-87-403-1427-4 Download free eBooks at bookboon.com 3 CHEMICAL ENGINEERING VOCABULARY a.u. (sci.) Acronym/Abbreviation referral: see arbitrary units A/P (econ.) Acronym/Abbreviation referral: see accounts payable A/R (econ.) Acronym/Abbreviation referral: see accounts receivable abrasive (eng.) Calcium carbonate can be used as abrasive, for example as “polishing agent” in toothpaste. absorbance (chem.) In contrast to absorption, the absorbance A is directly proportional to the concentration of the absorbing species. A is calculated as ln (l0/l) with l0 being the initial and l the transmitted light intensity, respectively. absorption (chem.) The absorption of light is often called attenuation and must not be mixed up with adsorption, an effect at the surface of a solid or liquid. Absorption of liquids and gases means that they diffuse into a liquid or solid. abstract (sci.) An abstract is a summary of a scientific piece of work. AC (eng.) Acronym/Abbreviation referral: see alternating current academic (sci.) The Royal Society, which was founded in 1660, was the first academic society. acceleration (eng.) In SI units, acceleration is measured in meters/second Download free eBooks at bookboon.com 4 CHEMICAL ENGINEERING VOCABULARY accompanying element (chem.) After precipitation, the thallium had to be separated from the accompanying elements. TI (atomic number 81) is highly toxic and can be found in rat poisons and insecticides. accounting (econ.) Working in accounting requires paying attention to details.
    [Show full text]
  • On-Farm Vineyard Trials: a Grower's Guide
    ON-FARM VINEYARD TRIALS: A GROWER'S GUIDE EM098E EM098E | Page 1 | ext.wsu.edu ON-FARM VINEYARD TRIALS: A GROWER'S GUIDE By Dr. Hemant Gohil, formerly, Technology Transfer Specialist, WSU Viticulture & Enology Program, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA. Dr. Markus Keller, Professor, Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA. Dr. Michelle M. Moyer, Assistant Professor / Viticulture Extension Specialist, Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA Abstract On-farm research offers many opportunities to understand the effectiveness of various management practices and products. However, how these trials are Table of Contents designed can alter the observed results. This guide summarizes the concepts of experimental design in vineyards and how those concepts are important in Introduction 3 conducting field trials and understanding their results. It also describes specific Basic Components of an Experiment 3 examples of trial design and explains how to collect data relevant to vineyard General Strategies for Conducting research. Finally, the guide explains simple statistical tests that are used to help On-Farm Trials 4 interpret results. General Experimental Design 9 Common On-Farm Trials and Their Design 10 Evaluation of New Pesticides or Fertilizers 11 Evaluation of Canopy Management Techniques 12 Evaluation of Irrigation Management
    [Show full text]
  • Contemporary Report
    Working Committee 6 Postharvest Handling Date: 04/13/2012 Revision: Final Produce Safety Alliance Page 1 Working Committee 6: Postharvest Introduction PSA working committee #6 was tasked with discussing the following areas related to post-harvest handling, with a special emphasis on co-management and NOP related issues. 6.1. Buildings-General Housekeeping 6.2. Water 6.2.1. Uses 6.2.2. Quality 6.2.3. Monitoring 6.3. Equipment (sanitation, lubricants, maintenance, etc.) 6.4. Chemicals 6.4.1. Cleaning agents 6.4.2. Sanitizers 6.4.3. Storage 6.5. Packing container storage 6.6. Storage & transportation Working Committee Chairs Barry Eisenberg Vice President of Food Safety Services, United Fresh Produce Association Wesley Kline Agricultural Agent, Cumberland County - New Jersey Meetings Held Date Attendance June 7, 2011 22 August 4, 2011 21 August 18, 2011 17 September 8, 2011 17 September 29, 2011 11 November 3, 2011 17 December 22, 2011 14 Total Meetings: 7 Total committee members1: 68 1 See Appendix I for full list of members Produce Safety Alliance Page 2 Working Committee 6: Postharvest Data Collection Information from committee members was collected during seven teleconferences held over five months (August to December of 2011). Each meeting held was approximately one hour long with open discussion between all participants. Detailed notes were taken and submitted to the committee after the meeting so that all participants, including those unable to attend, could review the content. Completed notes were then posted online at the PSA website. A basic outline was created based on discussions and outcomes. This outline was then formatted into an online survey using SurveyMonkey (http://www.surveymonkey.com/).
    [Show full text]
  • Feasibility and Economic Viability of Establishing a Wine Grape Vineyard in Moraga, Ca
    FEASIBILITY AND ECONOMIC VIABILITY OF ESTABLISHING A WINE GRAPE VINEYARD IN MORAGA, CA Presented to the Faculty of the Agribusiness Department California Polytechnic State University In Partial Fulfillment Of the Requirements for the Degree Bachelor of Science By Vincent Joseph Bruzzone June 2012 © 2012 Vincent Joseph Bruzzone 1 ABSTRACT This study was undertaken to determine the feasibility of establishing a wine grape vineyard in Moraga, CA, and whether or not it would be economically viable within a ten year period. The proposed vineyard site consists of 30 acres of grazing land. A price forecasting model for wine grapes was intended to aid in revenue analysis, but due to a faulty model, a simple trend analysis was utilized instead. The microclimate was analyzed and yielded several different varietals that were suitable for the area. Net Present Value and Break-even analysis were used to see if the vineyard was profitable by year ten of establishment. Production and establishment costs were taken from a UC Davis cost study of a Sonoma County Vineyard with similar features. The study concluded suitable grape varietals of Pinot Noir and Chardonnay could be used on the vineyard. The Net Present Value for either a Pinot Noir vineyard or a Chardonnay vineyard was negative at year ten of production. Further analysis showed that the NPV of the Pinot Noir vineyard became positive by year twelve of production. The Pinot Noir vineyard also broke even in year ten, and the Chardonnay vineyard was still at a negative profit by year ten of production. 2 TABLE OF CONTENTS Chapter Page I.
    [Show full text]
  • BD BBL ™ Litmus Milk
    BBL™ Litmus Milk B L007462 • Rev. 10 • February 2016 QUALITY CONTROL PROCEDURES I INTRODUCTION Litmus Milk is a medium for the maintenance of lactic acid bacteria and for the determination of bacterial action on milk. II PERFORMANCE TEST PROCEDURE 1. Loosen caps, boil the medium for 2 min and cool with tightened caps to room temperature before inoculation. 2. Inoculate representative samples with the cultures listed below. a. For the clostridia, use cultures grown in Cooked Meat Medium. For the remaining organisms, use fresh agar cultures. b. Immediately after inoculating each tube with clostridia, overlay with 1 mL of mineral oil. c. Incubate tubes inoculated with aerobes with loosened caps at 35 ± 2 °C in an aerobic atmosphere; incubate tubes inoculated with anaerobes with tightened caps at 35 ± 2 °C. Examine for up to 7 days for reactions. 3. Expected Results Organisms ATCC® Recovery Reaction *Lactobacillus acidophilus 314 Growth Acid clot (pink) *Clostridium perfringens 13124 Growth Stormy fermentation (acid with strong evolution of gas) with clot Clostridium butyricum 859 Growth Stormy fermentation (acid with strong evolution of gas) with clot Clostridium sporogenes 11437 Growth Acid clot and peptonization Enterococcus faecalis 29212 Growth Acid and reduction (white to colorless) *Recommended organism strain for User Quality Control. III ADDITIONAL QUALITY CONTROL 1. Examine tubes as described under “Product Deterioration.” 2. Visually examine representative tubes to assure that any existing physical defects will not interfere with use. 3. Incubate uninoculated representative tubes aerobically at 20–25 °C and 35–37 °C and examine after 5 days for microbial contamination. PRODUCT INFORMATION IV INTENDED USE Litmus Milk is used for the maintenance of lactic acid bacteria and as a differential medium for determining the action of bacteria on milk.
    [Show full text]
  • View Preprint
    A peer-reviewed version of this preprint was published in PeerJ on 16 June 2020. View the peer-reviewed version (peerj.com/articles/9376), which is the preferred citable publication unless you specifically need to cite this preprint. Gao H, Yin X, Jiang X, Shi H, Yang Y, Wang C, Dai X, Chen Y, Wu X. 2020. Diversity and spoilage potential of microbial communities associated with grape sour rot in eastern coastal areas of China. PeerJ 8:e9376 https://doi.org/10.7717/peerj.9376 Diversity and pathogenicity of microbial communities causing grape sour rot in eastern coastal areas of China Huanhuan Gao Corresp., Equal first author, 1, 2 , Xiangtian Yin Equal first author, 1 , Xilong Jiang 1 , Hongmei Shi 1 , Yang Yang 1 , Xiaoyan Dai 1, 2 , Yingchun Chen 1 , Xinying Wu Corresp. 1 1 Shandong Academy of Grape, Jinan, China 2 Shandong Academy of Agricultural Sciences, Institute of Plant Protection, Jinan, China Corresponding Authors: Huanhuan Gao, Xinying Wu Email address: [email protected], [email protected] Background As a polymicrobial disease, grape sour rot can lead to the decrease in the yield of grape berries and wine quality. The diversity of microbial communities in sour rot-infected grapes depends on the planting location of grapes and the identified methods. The east coast of China is one of the most important grape and wine regions in China and even in the world. Methods To identify the pathogenic microorganism s causing sour rot in table grapes of eastern coastal areas of China, the diversity and abundance of the bacteria and fungi were assessed based on two methods, including traditional culture-methods, and 16S rRNA and ITS gene high-throughput sequencing .
    [Show full text]