CHEMICAL HERITAGE FOUNDATION FRED W. MCLAFFERTY Transcript of Interviews Conducted by Michael A. Grayson at Cornell University I

Total Page:16

File Type:pdf, Size:1020Kb

CHEMICAL HERITAGE FOUNDATION FRED W. MCLAFFERTY Transcript of Interviews Conducted by Michael A. Grayson at Cornell University I CHEMICAL HERITAGE FOUNDATION FRED W. MCLAFFERTY Transcript of Interviews Conducted by Michael A. Grayson at Cornell University Ithaca, New York on 22 and 23 January 2007 (With Subsequent Corrections and Additions) ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry This interview has been designated as Free Access. One may view, quote from, cite, or reproduce the oral history with the permission of CHF. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation Oral History Program to credit CHF using the format below: Fred W. McLafferty, interview by Michael A. Grayson at Cornell University, Ithaca, New York, 22 and 23 January 2007 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0352). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. FRED W. MCLAFFERTY 1923 Born in Evanston, Illinois on 11 May Education 1943 B.S., University of Nebraska, Chemistry 1947 M.S., University of Nebraska 1950 Ph.D., Cornell University Professional Experience University of Iowa 1950 Post-Doctorate under Ralph Shriner Dow Chemical Company 1950-1956 In charge of mass spectrometry and gas chromatography 1956-1964 First Director of Eastern Research Laboratory, Basic Research Purdue University 1964-1968 Professor of Chemistry Cornell University 1968-present Peter J. W. Debye Professor of Chemistry (Emeritus) Honors 1972 American Chemical Society Award in Chemical Instrumentation 1975 Spectroscopy Society of Pittsburgh Award 1981 American Chemical Society Award in Analytical Chemistry 1983 Honorary DSc degree, University of Nebraska 1984 New York Section- American Chemical Society Nichols Gold Medal 1985 International Mass Spectrometry Society J. J. Thomson Gold Medal 1985 Cincinnati Section- American Chemical Society Oesper Award 1985 The Association of Analytical Chemistry Award 1986 East Tennessee Section- American Chemical Society S. C. Lind Award 1987 Ohio State University W. L. Evans Award 1987 Honorary DSc degree, The University of Liege 1989 University of Naples Gold Medal 1989 American Chemical Society Award in Mass Spectrometry 1992 Royal Society of Chemists Robert Boyle Gold Medal 1994 Pioneer in Analytical Instrumentation Award 1995 Honorary DSc degree, Purdue University 1996 American Institute of Chemistry Chemical Pioneer Award 1997 Utrecht University J. M. Bijvoet Medal 1999 Czech Academy of Sciences J. Heyrovsky Medal 2000 Italian Chemical Society G. Natta Gold Medal 2001 Swedish Chemical Society Torbern Bergman Medal 2003 American Society of Mass Spectrometry Award for Distinguished Contributions to Mass Spectrometry 2004 French Chemical Society Lavoisier Medal 2006 International Association of Protein Structure Analysis and Proteomics Pehr Edman Award ABSTRACT Fred W. McLafferty’s oral history begins with a discussion of his family’s history of education and his early life in Nebraska during the Great Depression. Sparked by a high school chemistry class, McLafferty decided to pursue the subject at the University of Nebraska. Because his undergraduate career coincided with World War II, McLafferty entered an accelerated degree program and enlisted in the war. After months of combat, he returned for graduate work at Nebraska, where he earned his Master’s degree and published papers as an analytical chemist. After moving to Cornell University to pursue his doctorate degree, his interest shifted to organic chemistry and his work on organofluorine compounds began. In 1950, after completing his degree, McLafferty entered industry at the Dow Chemical Company in Michigan, where he was introduced to mass spectrometry. There, McLafferty and Roland Gohlke helped develop instrumentation and gas chromatography-mass spectrometry. After several years, McLafferty was sent by Dow to Boston, Massachusetts to direct its new research lab. There he worked on patents and the McLafferty rearrangements in mass spectra correlations and utilized time-of-flight. In his oral history, McLafferty speaks often of the community and meetings of mass spectrometrists, and how he has collaborated and interacted with this community in the past fifty years. In 1964 he left Dow for an academic position at Purdue University, where he created a new research program. He continued his collaboration with Gohlke and also started collaborating with Klaus Biemann on topics such as collisional activation and gas chromatography. While at Purdue, McLafferty consulted for companies like Dow and Hitachi, and began securing grant money for research. After four years at Purdue University, he became Peter J. W. Debye Professor of Chemistry at Cornell University. McLafferty discusses his longtime position at Cornell University, which has allowed him both to publish landmark works and to develop techniques like electron capture dissociation and top down proteomics, and his most recent research work, which has included published papers on the use of ammonium tartrate and succinate in electrospray solution. McLafferty concludes his interview by discussing his impressions and remembrances of his long list of peers. INTERVIEWER Michael A. Grayson is a member of the Mass Spectrometry Research Resource at Washington University in St. Louis. He received his B.S. degree in physics from St. Louis University in 1963 and his M.S. in physics from the University of Missouri at Rolla in 1965. He is the author of over forty-five papers in the scientific literature. Before joining the Research Resource, he was a staff scientist at McDonnell Douglas Research Laboratory. While completing his undergraduate and graduate education, he worked at Monsanto Company in St. Louis, where he learned the art and science of mass spectrometry. Grayson is a member of the American Society for Mass Spectrometry [ASMS], and has served many different positions within that organization. He has served on the Board of Trustees of CHF and is currently a member of CHF's Heritage Council. He currently pursues his interest in the history of mass spectrometry by recording oral histories, assisting in the collection of papers, and researching the early history of the field. TABLE OF CONTENTS Childhood 1 Family’s history of college education. Life in rural Nebraska during Great Depression. High school chemistry. College Education 6 University of Nebraska. Agricultural school and land grants. ROTC and Officer Candidate School. Accelerated bachelor’s plan in chemistry. World War II combat and awards. Analytical chemistry. Graduate Education and Post-Doctoral Research 18 University of Nebraska, master’s degree. Publishing papers. Cornell University, doctorate work. Organofluorine compounds research. Organic chemistry. University of Iowa post-doctoral research with Ralph Shriner. The Dow Chemical Company 24 Introduction to mass spectrometry. Early instrumentation. The petroleum industry. Solving problems of the physical research lab. The Gordon Research Conference and gas chromatography. The Bersworth Chemical Company. Directing new Boston research lab. Patenting. Publishing. Mass Spectra Correlations. The Community of Mass Spectrometrists. 46 Sybil Rock. Uncertified Spectra Committee. The research community at Dow. John Beynon. Family. Principal Investigator 52 Purdue University. Creating new research program at Purdue University. Carl Djerassi. Klaus Biemann. Time-of-flight and direct probes. Roland Gohlke. Consulting for Dow and Hitachi. Reverse geometry. Cornell University. Babu Venkataraghaven. Perkin Elmer dispute. Collisional activation. Mass Spectrometry Research 73 Early American Society for Testing and Materials community cooperation. First electrospray with Fourier Transform Mass Spectrometry. Landmark papers. Competition with National Institute of Standards and Technology. Interpretation of Mass Spectra. Electron ionization. Electron capture dissociation. Top down proteomics. Recent Research 97 Cornell University. Ammonium tartrate and succinate. Carsten Reinhardt’s Shifting and Rearranging. Nuclear Magnetic Resonance. Conferences and meetings. Impressions of various notable peers. Bibliography 121 Index 169 INTERVIEWEE: Fred W. McLafferty INTERVIEWER: Michael A. Grayson LOCATION: Ithaca, New York DATE: 22 January 2007 GRAYSON: So, I’m going to start off saying that this is Mike Grayson. I’m in Ithaca. On January 22, year 2007, and I’m interviewing Fred McLafferty, who is a mass spectroscopist of note. What we’re
Recommended publications
  • Mass Spectrometry in Trace Organic Analysis
    Pure & Appl. Chem.,Vol. 63, No. 11, pp. 1637-1646, 1991 Printed in Great Britain. @ 1991 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON MICROCHEMICAL TECHNIQUES AND TRACE ANALYSIS* WORKING GROUP ON ORGANIC TRACE ANALYSIS ANALYTICAL TECHNIQUES FOR TRACE ORGANIC COMPOUNDS-I11 MASS SPECTROMETRY IN TRACE ORGANIC ANALYSIS Prepared for publication by KLAUS BIEMANN Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Membership of the Commission during the period (1985-89) when this report was prepared was as follows: Chairman: 1985-89 B. Griepink (Netherlands); Secretary: 1985-89 D. E. Wells (UK); Titular Members: K. Biemann (USA; 1985-89); W. H. Gries (FRG; 1987-89); E. Jackwerth (FRG; 1985-87); M. Leroy (France; 1987-89); A. Lamotte (France; 1985-87); Z. Marczenko (Poland; 1985-89); D. G. Westmoreland (USA; 1987-89); Yu. A. Zolotov (USSR; 1985-87); Associate Members: K. Ballschmiter (FRG; 1985-87); R. Dams (Belgium; 1985-89); K. Fuwa (Japan; 1985-89); M. Grasserbauer (Austria; 1985-87); W. H. Gries (FRG; 1985-87); M. W. Linscheid (FRG; 1985-89); M. Morita (Japan; 1987-89); M. Huntau (Italy; 1985-89); M. J. Pellin (USA; 1985-89); L. Reutergardh (Sweden; 1987-89); B. D. Sawicka (Canada; 1987-89); E. A. Schweikert (USA; 1987-89); G. Scilla (USA; 1987-89); B. Ya. Spivakov (USSR; 1985-89); A. Townshend (UK; 1985-87); W. Wegscheider (Austria; 1987-89); D. G. Westmoreland (USA; 1985-87); National Representatives: R. Gijbels (Belgium; 1985-89); Z.-M. Ni (Chinese Chemical Society; 1985-89); G. Werner (GDR; 1987-89); M.
    [Show full text]
  • Complete Manual!
    EXPERIMENT MANUAL Please observe the safety information, first aid information, information about hazardous substances, and poison control information on the inside front cover; the advice for supervising adults on page 3; and the safety rules on page 4. WARNING. WARNING — Chemistry Set. Not suitable for children This set contains chemicals and/ under 6 years. For use or parts that may be harmful under adult supervision. if misused. Read cautions on Read the instructions individual containers and in manual before use, follow them and carefully. Not to be used by children keep them for reference. except under adult supervision. Franckh-Kosmos Verlags-GmbH & Co. KG, Pfizerstr. 5-7, 70184 Stuttgart, Germany | +49 (0) 711 2191-0 | www.kosmos.de Thames & Kosmos, 301 Friendship St., Providence, RI, 02903, USA | 1-800-587-2872 | www.thamesandkosmos.com › › › SAFETY INFORMATION Safety Information ››› WARNING. Not suitable for children under 3 years. Choking Poison Control Centers hazard — small parts may be swallowed or inhaled. (United States) ››› Keep the packaging and instructions as they contain important information. In case of emergency, your nearest poison First Aid Information control center can be ››› In case of eye contact: Wash out eye with plenty of water, reached everywhere in holding eye open. Seek immediate medical advice. the United States by ››› If swallowed: Wash out mouth with water, drink some fresh dialing the number: water. Do not induce vomiting. Seek immediate medical advice. ››› In case of inhalation: Remove person to fresh air. ››› In case of skin contact and burns: Wash affected area with 1-800-222-1222 plenty of water for at least 10 minutes.
    [Show full text]
  • Pittsburgh Conference
    Journal of Automatic Chemistry, Vol. 16, No. 3 (May-June 1994), pp. 75-116 Abstracts of papers presented at the 1994 Pittsburgh Conference The following are the abstracts of the papers read at March 1994s Pittcon which are important to readers of 'Journal of Automatic Chemistry'. 1995s Pittcon will be held in New Orleans from 5 to 10 March. Details from The Pittsburgh Conference, 300 Penn Center Boulevard, Suite 332, Pittsburgh, PA 15235-5503, USA. Reflecting on the past; creating for the future interest in the determination of the structure of natural products. Therefore, no preconceived notions prevented Howard V. Malmstadt, University of the Nations, Kailua-Kona, him from applying mass spectrometry to the structure HI 96740 elucidation of new alkaloids, amino acids and peptides. A particularly field was the determination of Powerful and elegant analytical methods and instruments productive the structure of many indole alkaloids. By classical are used daily in industry, hospitals, R & D laboratories chemical methods this was difficult and very time and process control systems. Major improvements in but with the use of mass sensitivity, detectability, accuracy, speed and reliability consuming, spectrometry combined with a few chemical reactions, the task could provide the necessary data for dramatic breakthroughs in be accomplished quickly and with minimal material. science and technology. The speaker reflected on some of Thus, the early work brought mass spectrometry to the the developments on which he had helped pioneer. attention of the organic chemist. The story behind the story often starts with a simple In the 1960s, high resolution mass spectrometry was question or comment.
    [Show full text]
  • Nature Milestones Mass Spectrometry October 2015
    October 2015 www.nature.com/milestones/mass-spec MILESTONES Mass Spectrometry Produced with support from: Produced by: Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols MILESTONES Mass Spectrometry MILESTONES COLLECTION 4 Timeline 5 Discovering the power of mass-to-charge (1910 ) NATURE METHODS: COMMENTARY 23 Mass spectrometry in high-throughput 6 Development of ionization methods (1929) proteomics: ready for the big time 7 Isotopes and ancient environments (1939) Tommy Nilsson, Matthias Mann, Ruedi Aebersold, John R Yates III, Amos Bairoch & John J M Bergeron 8 When a velocitron meets a reflectron (1946) 8 Spinning ion trajectories (1949) NATURE: REVIEW Fly out of the traps (1953) 9 28 The biological impact of mass-spectrometry- 10 Breaking down problems (1956) based proteomics 10 Amicable separations (1959) Benjamin F. Cravatt, Gabriel M. Simon & John R. Yates III 11 Solving the primary structure of peptides (1959) 12 A technique to carry a torch for (1961) NATURE: REVIEW 12 The pixelation of mass spectrometry (1962) 38 Metabolic phenotyping in clinical and surgical 13 Conquering carbohydrate complexity (1963) environments Jeremy K. Nicholson, Elaine Holmes, 14 Forming fragments (1966) James M. Kinross, Ara W. Darzi, Zoltan Takats & 14 Seeing the full picture of metabolism (1966) John C. Lindon 15 Electrospray makes molecular elephants fly (1968) 16 Signatures of disease (1975) 16 Reduce complexity by choosing your reactions (1978) 17 Enter the matrix (1985) 18 Dynamic protein structures (1991) 19 Protein discovery goes global (1993) 20 In pursuit of PTMs (1995) 21 Putting the pieces together (1999) CITING THE MILESTONES CONTRIBUTING JOURNALS UK/Europe/ROW (excluding Japan): The Nature Milestones: Mass Spectroscopy supplement has been published as Nature Methods, Nature, Nature Biotechnology, Nature Publishing Group, Subscriptions, a joint project between Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols.
    [Show full text]
  • CHEM C3000 Manual
    EXPERIMENT MANUAL Version 2.0 Please observe the safety information, the advice for supervising adults on page 5, the safety rules on page 6, the information about hazardous substances and mixtures (chemicals) on pages 7-9 and their environmentally sound disposal on pages 175-177, the safety for experiments with batteries on page 192, the first aid information on the inside front cover and the instructions on the use of the alcohol burner on page 12. WARNING. Not suitable for children under 12 years. For use under adult supervision. Contains some chemicals which present a hazard to health. Read the instructions before use, follow them and keep them for reference. Do not allow chemicals to come into contact with any part of the body, particularly the mouth and eyes. Keep small children and animals away from experiments. Keep the experimental set out of the reach of children under 12 years old. Eye protection for supervising adults is not included. WARNING — Chemistry Set. This set contains chemicals and parts that may be harmful if misused. Read cautions on individual containers and in manual carefully. Not to be used by children except under adult supervision. Franckh-Kosmos Verlags-GmbH & Co. KG, Pfizerstr. 5-7, 70184 Stuttgart, Germany | +49 (0) 711 2191-0 | www.kosmos.de Thames & Kosmos, 301 Friendship St., Providence, RI, 02903, USA | 1-800-587-2872 | www.thamesandkosmos.com Thames & Kosmos UK Ltd, Goudhurst, Kent, TN17 2QZ , United Kingdom | 01580 212000 | www.thamesandkosmos.co.uk Contents Safety and Information First Aid Information . Inside front cover Poison Control Contact Information . Inside front cover Advice for Supervising Adults .
    [Show full text]
  • STATUS and FUTURE TRENDS of the MINIATURIZATION of MASS SPECTROMETRY Richard R.A
    STATUS AND FUTURE TRENDS OF THE MINIATURIZATION OF MASS SPECTROMETRY Richard R.A. Syms*1 1EEE Dept., Imperial College London, London, UK ABSTRACT structures: the quadrupole filter and the quadrupole ion An overview of mass spectrometers incorporating trap. RF quadrupoles are workhorse instruments, with miniaturization technology is presented. A brief history of applications ranging from residual gas analysis to space conventional mass spectrometry is given, followed by a exploration. Related components such as RF ion guides summary of the status of miniaturized systems. are used for ion transport, while collision cells are used Applications for miniature/portable systems are reviewed, for ion cooling and fragmentation. In 1978, Richard Yost and opportunities and challenges are discussed. and Chris Enke introduced the triple quadrupole, in which the first quadrupole is used for initial mass analysis, a INTRODUCTION second for collision-induced dissociation, and the third for The development of microelectromechanical systems analysis of the resulting fragments, enabling so-called over the last 30 years has been dramatic, and MEMS now tandem mass spectrometry. The quadrupole ion trap was impact on most industrial sectors. Specific materials, developed commercially for Finnegan by Raymond device configurations and packaging have been developed March in 1983, and the linear quadrupole trap (which has for each application domain, and MEMS are available as an increased trapping volume) by Jae Schwartz in 2002. commodity items such as accelerometers or laboratory Other milestones include the development of the Fourier instruments such as atomic force microscopes. Until transform ion cyclotron resonance mass spectrometer by recently, one area that stubbornly resisted miniaturization Alan Marshal and Melvin Comisarow in 1976, and the was mass spectrometry.
    [Show full text]
  • CHE 131 Chemistry Set Inventory List 1 Digital Scale 1 Digital
    CHE 131 Chemistry Set Inventory List 1 Digital Scale 1 Digital Thermometer 100 mL Graduated Cylinder 3 Mixing Containers with Screw Lids (100 mL) 1 Screw Lid Test Tube (50 mL size) 10 Screw Lid Test Tubes (15 mL size) 100 mL Volumetric Flask 4 Large Plastic Container (1 quart) 4 Lids for Large Plastic Container (1 quart) 1 Mortar and Pestle 3 Droppers 1 Permanent Marker 1 10× Magnifying Loupe 1 Ruler 1.0 mL Syringe 1 Small Metal Binder Clip 1 Weighing Boat 1 Platonic Solid 1 Aluminum Pan 13 Disposable Filter Funnels 13 Disposable Filters 16 Large Dixie Cups 2 Small Dixie Cups 1 Plastic Squirt Bottle 4 Inch Framing Nail 1 Plastic Spoon 1 LED Flashlight 3 AAA Batteries 1 Blue Light Filter 11 Square Plastic Cuvettes (4.5 mL) 2 Squares (1.0 inch) of Double Stick Tape 1 Conductivity Apparatus consisting of: - Conductivity Sensor/Electrode - 12 Volt Green LED - 3 Volt Power Supply 1 Microfiber Rag Packet of Blue Litmus Paper Packet of Red Litmus Paper 2 Bottles Deionized Water 1 Large Dixie Cup Full of Lego Pieces 1 Gray Lego Board 1 Roll of Duct Tape 1.0 mL of Brilliant Blue FCF (Blue FC in an Eppendorf Tube) 15 mL of 1.0 % Acetic Acid (in a 15 mL Screw Lid Test Tube) 2.0 grams of L-Arginine 1 Baggie Full of Citric Acid 1 Baggie Full of Magnesium Sulfate Heptahydrate 1 Baggie Full of Sodium Chloride 1 Baggie Full of Sucrose 1 Baggie Full of Calcium Chloride Dihydrate 1 Baggie Full of Urea Calcium Sulfate Packet containing: 1) Materials Safety Data Sheets for all enclosed chemicals 2) Copies of all experimental laboratory procedures CHE 132
    [Show full text]
  • Original Filepdf
    CHEMICAL HERITAGE FOUNDATION NICO M. NIBBERING Transcript of an Interview Conducted by Michael A. Grayson at Home of Michael Gross St. Louis Park, Minnesota on 7 and 8 June 2013 (With Subsequent Corrections and Additions) NICO M. NIBBERING ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancemen t of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: Nico M. Nibbering, interview by Michael A. Grayson at the home of Michael Gross St. Louis Park, Minnesota, 7 and 8 June 2013 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0709). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • Chemistry Lab Kit Instructions
    CHEMISTRY LAB KIT INSTRUCTIONS Not suitable for children under 10 years. For use under WARNING! adult supervision. Contains some chemicals which present a hazard to health. Read the instructions before use, follow them and keep them for reference. Do not allow chemicals to come into contact with any part of the body, particularly mouth and eyes. Keep small children and animals away from experiments. Keep the experimental set out of reach of children under 10 years old. Eye protection for supervising adults is not included. MADE IN CHINA P38-CM001-81001003 CONTENTS : 2 Test Tubes with Stoppers 1 Cleaning Brush 1 Test Tube Holder 2 Glass Tubing 1 Rubber Tubing 1 Spirit Lamp 1 Beaker(0-100ml) 1 Stirring Rod 1 Measuring Spoon 6 Filter Papers 8 Universal Indicator Paper 1 Goggles 2 Cork Stoppers with hole 1 Funnel 2 Cork Stoppers 1 Instruction Book 1 Scoop 1 Dropping Pipette 1 Test Tube Rack The Safety Rules Read these instructions before use, follow them and keep them for reference. Keep young children, animals and those not wearing eye protection away from the experimental area. Always wear eye protection. Store this experimental set out of reach of children under 10 years of age. Clean all equipment after use. Make sure that all containers are fully closed and properly stored after use. Ensure that all empty containers are disposed of properly; Wash hands after carrying out experiments. DO NOT use any equipment which has not been supplied with the set or recommended in the instructions for use. DO NOT eat or drink in the experimental area.
    [Show full text]
  • 03. Chemistry Sets 2
    III Three Centuries of the Chemistry Set Part II: The 20th Century 1. 20th-Century Chemcraft Chemistry Sets As we saw in Part I, in the 19th century chemistry sets were produced as a side-line by pharmacists, instru- ment makers, and laboratory supply houses (1). The hallmark of the 20th-century American chemistry set, on the other hand, is that its manufacture was largely dominated by toy and hobby companies – a fact which is coupled with a corresponding decline in both the quality of the apparatus and the selection of chemicals. The earliest, and by far the most successful, 20th- century American chemistry set was the Chemcraft Chemistry Set, produced by the Porter Chemical Co. of Hagerstown, Maryland. Begun in 1914 by two brothers – John Jermain Porter (figures 1) and Harold Mitchell Porter (figure 2) – Porter Chemical produced its first chemistry set in 1916 (2, 3). Though John, who was already a well-established chemical engineer, provided the initial capital for the company, it was Harold who actually managed it and whose name became most closely associated with the chemistry sets. The com- pany manufactured a wide variety of chemistry sets Figure 2. Harold Mitchell Porter (1893-1963). and related science toys until it was bought out by Gabriel Toys in 1969 and discontinued by Gabriel some- time in the 1980s (4). Though the Oesper Collections do not own an example of a surviving Chemcraft set from the period 1916-1920, they do own a small set from the mid- 1920s, as shown in figure 3. Likewise, figure 4 shows Figure 3.
    [Show full text]
  • Science History Institute Ronald D. Macfarlane
    SCIENCE HISTORY INSTITUTE RONALD D. MACFARLANE Transcript of an Interview Conducted by Michael A. Grayson at Texas A&M University College Station, Texas on 26 May 2011 (With Subsequent Corrections and Additions) Ronald D. Macfarlane ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Center for Oral History, Science History Institute, to credit the Science History Institute using the format below: Ronald D. MacFarlane, interview by Michael Grayson at Texas A&M University, College Station, Texas, 26 May 2011 (Philadelphia: Science History Institute, Oral History Transcript #0877). Formed by the merger of the Chemical Heritage Foundation and the Life Sciences Foundation, the Science History Institute collects and shares the stories of innovators and of discoveries that shape our lives. We preserve and interpret the history of chemistry, chemical engineering, and the life sciences. Headquartered in Philadelphia, with offices in California and Europe, the Institute houses an archive and a library for historians and researchers, a fellowship program for visiting scholars from around the globe, a community of researchers who examine historical and contemporary issues, and an acclaimed museum that is free and open to the public.
    [Show full text]
  • Ronald A. Hites
    RONALD A. HITES School of Public and Environmental Affairs Indiana University Bloomington, IN 47405 (812) 855-0193 [email protected] PROFESSIONAL EXPERIENCE Distinguished Professor, Indiana University, Bloomington, 1989-present Professor of Public and Environmental Affairs and of Chemistry, Indiana University, Bloomington, 1979-1989 Associate and Assistant Professor of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 1972-1979 Research Staff, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 1969-1972 National Academy of Sciences Postdoctoral Associate, Agricultural Research Service, Peoria, Illinois, 1968- 1969 EDUCATION Doctor of Philosophy in Analytical Chemistry, Massachusetts Institute of Technology, Cambridge, 1968; stud- ied with Professor Klaus Biemann (member of the National Academy of Sciences) Bachelor of Arts in Chemistry, Oakland University, Rochester, Michigan, 1964 HONORS (SELECTED) Lifetime Achievement Award, International Association for Great Lakes Research, 2016 “Ronald A. Hites Tribute Issue,” Environmental Science & Technology, 1 December 2015 Society of Environmental Toxicology and Chemistry Charter Fellow, 2014-present American Chemical Society Charter Fellow, 2009-present Ron Hites Award for an Outstanding Research Publication in the Journal of the American Society for Mass Spectrometry, named in Prof. Hites’ honor in November 2008 President, Board of Directors, International Association for Great Lakes Research, 2008-2009 Associate Editor, Environmental Science
    [Show full text]