The Race for Hydroxamate-Based Zirconium-89 Chelators

Total Page:16

File Type:pdf, Size:1020Kb

The Race for Hydroxamate-Based Zirconium-89 Chelators cancers Review The Race for Hydroxamate-Based Zirconium-89 Chelators Irene V. J. Feiner 1,2, Marie Brandt 1,2, Joseph Cowell 3 , Tori Demuth 4,5, Daniëlle Vugts 6, Gilles Gasser 3 and Thomas L. Mindt 1,2,7,* 1 Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, 1090 Vienna, Austria; [email protected] (I.V.J.F.); [email protected] (M.B.) 2 Division of Nuclear Medicine, Department of Biomedical Imaging and Imaging Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria 3 Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, Chimie ParisTech, PSL University, CNRS, 75005 Paris, France; [email protected] (J.C.); [email protected] (G.G.) 4 TU Wien, Institut für Angewandte Synthesechemie, Getreidemarkt 9, 1060 Wien, Austria; [email protected] 5 TU Wien, Center for Labeling and Isotope Production, Stadionallee 2, 1020 Wien, Austria 6 Department of Radiology and Nuclear Medicine, Amsterdam UMC, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] 7 Department of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria * Correspondence: [email protected]; Tel.: +43-1-40400-25350 Simple Summary: Chelators are small molecules that can form a complex with a metal ion by coordinating electron rich atoms from the chelator to the electron-poor cation. Bifunctionalization of the chelator allows for the coupling of the chelator to a vector, such as a biomolecule. Using this Citation: Feiner, I.V.J.; Brandt, M.; Cowell, J.; Demuth, T.; Vugts, D.; approach, radiolabeling of biomolecules with metallic radionuclides can be performed, enabling Gasser, G.; Mindt, T.L. The Race for nuclear imaging studies for diagnosis and radiotherapy of diseases. In the case of positron emission Hydroxamate-Based Zirconium-89 tomography (PET) of radiolabeled antibodies, this approach is called immunoPET. In this review Chelators. Cancers 2021, 13, 4466. we focus on chelators using hydroxamate groups to coordinate the radionuclide zirconium-89 https://doi.org/10.3390/ ([89Zr]Zr4+, denoted as 89Zr in the following). The most common chelator used in this context is cancers13174466 desferrioxamine (DFO). However, preclinical studies indicate that the 89Zr-DFO complex is not stable enough in vivo, in particular when combined with biomolecules with slow pharmacokinetics (e.g., Academic Editors: antibodies). Subsequently, new chelators with improved properties have been developed, of which Vladimir Tolmachev and some show promising potential. The progress is summarized in this review. Anzhelika Vorobyeva Abstract: Metallic radionuclides conjugated to biological vectors via an appropriate chelator are Received: 17 August 2021 employed in nuclear medicine for the diagnosis (imaging) and radiotherapy of diseases. For the Accepted: 31 August 2021 application of radiolabeled antibodies using positron emission tomography (immunoPET), zirconium- Published: 4 September 2021 + 89 has gained increasing interest over the last decades as its physical properties (t1/2 = 78.4 h, 22.6% β Publisher’s Note: MDPI stays neutral decay) match well with the slow pharmacokinetics of antibodies (tbiol. = days to weeks) allowing for 89 with regard to jurisdictional claims in late time point imaging. The most commonly used chelator for Zr in this context is desferrioxamine published maps and institutional affil- (DFO). However, it has been shown in preclinical studies that the hexadentate DFO ligand does 89 iations. not provide Zr-complexes of sufficient stability in vivo and unspecific uptake of the osteophilic radiometal in bones is observed. For clinical applications, this might be of concern not only because of an unnecessary dose to the patient but also an increased background signal. As a consequence, next generation chelators based on hydroxamate scaffolds for more stable coordination of 89Zr have been Copyright: © 2021 by the authors. developed by different research groups. In this review, we describe the progress in this research field Licensee MDPI, Basel, Switzerland. until end of 2020, including promising examples of new candidates of chelators currently in advanced This article is an open access article stages for clinical translation that outrun the performance of the current gold standard DFO. distributed under the terms and conditions of the Creative Commons Keywords: hydroxamate chelators; zirconium-89; immunoPET; desferrioxamine; DFO Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Cancers 2021, 13, 4466. https://doi.org/10.3390/cancers13174466 https://www.mdpi.com/journal/cancers Cancers 2021, 13, x 2 of 23 Cancers 2021, 13, 4466 2 of 23 1.1. IntroductionIntroduction NuclearNuclear imagingimaging is is a medicala medical tool tool using using radionuclides radionuclides for diagnosis, for diagnosis, to predict to therapypredict outcometherapy outcome and follow and disease follow progression. disease progressio One distinctn. One fielddistinct of nuclearfield of imaging,nuclear imaging, namely immunoPET,namely immunoPET, has become has increasingly become increasingly important overimportant the last over decade the[ 1last]. It decade combines [1]. the It highcombines target the specificity high target of monoclonal specificity antibodies of monoclonal (mAbs) withantibodies the high (mAbs) sensitivity with of the positron high emissionsensitivity tomography of positron (PET). emission The choicetomography of an appropriate (PET). The radioisotope choice of foran theappropriate labeling ofradioisotope mAbs relates for the to the labeling following of mAbs aspects. relates Besides to the following the required aspects. positron Besides decay the required for PET imaging,positron availabilitydecay for PET of theimaging, radionuclide availability and itsof physicalthe radionuclide half-life playand aits crucial physical role. half-life Some 1/2 ofplay the a mostcrucial common role. Some PET of isotopes, the most such common as fluorine-18 PET isotopes, (t1/2 such= 109.7 as fluorine-18 min) and gallium-68 (t = 109.7 (tmin)1/2 = and 67.6 gallium-68 min), are not (t1/2 appropriate = 67.6 min), for are immunoPET not appropriate due to for their immunoPET short physical due half-lifeto their whichshort physical does not half-life match the which slow does biodistribution not match the of mAbs.slow biodistribution Therefore, the of use mAbs. of long Therefore, half-life 89 89 124 radioisotopes,the use of long such half-life as zirconium-89 radioisotopes, ( Zr, such t1/2 as= zirconium-89 78.4 h) [2], iodine-124 ( Zr, t1/2 ( = 78.4I, t1/2 h) =[2], 4.2 iodine- d) [3], 124 64 64 90 90 copper-64124 ( I, t1/2 ( = Cu,4.2 d) t1/2 [3],= copper-64 12.7 h) [4], ( niobium-90Cu, t1/2 = 12.7 ( h)Nb, [4], t 1/2niobium-90= 14.6 h) ( [5Nb,] and t1/2 manganese- = 14.6 h) [5] 52g 52g 52gand (manganese-52gMn, t1/2 = 5.6 ( d)Mn, [6 ],t1/2 is = more 5.6 d) reasonable [6], is more for reasonable radiolabeling for radiolabeling of mAbs. However, of mAbs. whileHowever, the availabilitywhile the availability of some of of these some radioisotopesof these radioisotopes is low, the is low, production the production of 89Zr isof rather89Zr is straightforwardrather straightforward via 89Y(p,n) via 8989ZrY(p,n) reaction89Zr reaction and be obtained and be obtained commercially commercially in sufficient in puritysufficient [7,8 ].purity That convenience[7,8]. That makesconvenience89Zr preferred makes and89Zr has preferred led to a progressivelyand has led larger to a setprogressively of data and larger publications. set of Thisdata riseand of publications. research related This to rise89Zr of highlights research therelated importance to 89Zr ofhighlights finding anthe effective importance chelator of finding for the stablean effective complexation chelator offor the the radiometal, stable complexation since such isof requiredthe radiometal, for clinical since applications such is of required biomolecules for radiolabeledclinical applications with metallic of radionuclidesbiomolecules (Figureradiolabeled1). with metallic radionuclides (Figure 1). FigureFigure 1.1.Schematic Schematic representation representation of aof biological a biological vector vect (antibody)or (antibody) conjugated conjugated via a linker via toa linker a hydroxa- to a 89 matehydroxamate chelator andchelator radiolabeled and radiolabeled with Zr. Thewith enlargement 89Zr. The enlargement shows the O show,O-coordinations the O,O-coordination between the electronbetween rich the oxygen electron atoms rich and oxygen the radiometal atoms and cation the 89radiometalZr forming cation a stable 89 five-member-ring.Zr forming a stable five- member-ring. The use of chelators in radiolabeling approaches can be challenging as the vector usuallyThe undergoes use of chelators bigger changesin radiolabeling in its structure, approaches compared can be to challenging other labelling as strategies,the vector 124 e.g.,usually with undergoes a covalent biggerI radiolabeling. changes in its However, structure, when compared working to withother largerlabelling biomolecules strategies, (e.g.,e.g., with Abs) a as covalent in the case 124I ofradiolabeling. immunoPET, However, the coupling when of wo a chelatorrking with does larger usually biomolecules not affect the(e.g., bioactivity Abs) as in asthe long case asof theimmunoPET, number of the chelators coupling per of a mAb chelator molecule does usually is
Recommended publications
  • Metal-Ligand Bonding and Inorganic Reaction Mechanisms Year 2
    Metal-Ligand Bonding and Inorganic Reaction Mechanisms Year 2 RED Metal-ligand and metal-metal bonding of the transition metal elements Synopsis Lecture 1: Trends of the transition metal series. Ionic vs Covalent bonding. Nomenclature. Electron counting. Lecture 2: Thermodynamics of complex formation. Why complexes form. Recap of molecular orbital theory. 18-electron rule. Lecture 3: Ligand classes. -donor complexes. Octahedral ML6 molecular orbital energy diagram. Lecture 3: - acceptor ligands and synergic bonding. Binding of CO, CN , N2, O2 and NO. Lecture 4: Alkenes, M(H2) vs M(H)2, Mn(O2) complexes, PR3. Lecture 5: 2- - 2- 3- donor ligands, metal-ligand multiple bonds, O , R2N , RN , N . Lecture 6: ML6 molecular orbital energy diagrams incorporating acceptor and donor ligands. Electron counting revisited and link to spectrochemical series. Lecture 7: Kinetics of complex formation. Substitution mechanisms of inorganic complexes. Isomerisation. Lecture 8: Ligand effects on substitution rates (trans-effect, trans-influence). Metal and geometry effects on substitution rates. Lecture 9: Outer sphere electron transfer. Lecture 10: Inner Sphere electron transfer. Bridging ligands. 2 Learning Objectives: by the end of the course you should be able to i) Use common nomenclature in transition metal chemistry. ii) Count valence electrons and determine metal oxidation state in transition metal complexes. iii) Understand the physical basis of the 18-electron rule. iv) Appreciate the synergic nature of bonding in metal carbonyl complexes. v) Understand the relationship between CO, the 'classic' -acceptor and related ligands such as NO, CN, N2, and alkenes. 2 vi) Describe the nature of the interaction between -bound diatomic molecules (H2, O2) and their relationship to -acceptor ligands.
    [Show full text]
  • IR-9 Coordination Compounds (Draft March 2004)
    1 IR-9 Coordination Compounds (Draft March 2004) CONTENTS IR-9.1 Introduction IR-9.1.1 General IR-9.1.2 Definitions IR-9.1.2.1 Background IR-9.1.2.2 Coordination compounds and the coordination entity IR-9.1.2.3 Central atom IR-9.1.2.4 Ligands IR-9.1.2.5 Coordination polyhedron IR-9.1.2.6 Coordination number IR-9.1.2.7 Chelation IR-9.1.2.8 Oxidation state IR-9.1.2.9 Coordination nomenclature: an additive nomenclature IR-9.1.2.10 Bridging ligands IR-9.1.2.11 Metal-metal bonds IR-9.2 Describing the constitution of coordination compounds IR-9.2.1 General IR-9.2.2 Naming coordination compounds IR-9.2.2.1 Sequences of ligands and central atoms within names IR-9.2.2.2 Number of ligands in a coordination entity IR-9.2.2.3 Representing ligands in names IR-9.2.2.4 Charge numbers, oxidation numbers, and ionic proportions IR-9.2.3 Formulae of coordination compounds IR-9.2.3.1 Sequence of symbols within the coordination formula IR-9.2.3.2 Use of enclosing marks IR-9.2.3.3 Ionic charges and oxidation numbers IR-9.2.3.4 Use of abbreviations IR-9.2.4 Specifying donor atoms IR-9.2.4.1 General IUPAC ProvisionalIR-9.2.4.2 The kappa convention Recommendations IR-9.2.4.3 Comparison of the eta and kappa nomenclatures Page 1 of 69 DRAFT 2 April 2004 2 IR-9.2.4.4 Donor atom symbol to indicate points of ligation IR-9.2.5 Polynuclear complexes IR-9.2.5.1 General IR-9.2.5.2 Bridging ligands IR-9.2.5.3 Metal-metal bonding IR-9.2.5.4 Symmetrical dinuclear entities IR-9.2.5.5 Unsymmetrical dinuclear entities IR-9.2.5.6 Trinuclear and larger structures IR-9.2.5.7 Polynuclear
    [Show full text]
  • Novel Approaches to Iron Chelation Therapy: Novel Combinations and Novel Compounds
    NOVEL APPROACHES TO IRON CHELATION THERAPY: NOVEL COMBINATIONS AND NOVEL COMPOUNDS Dr Evangelia Vlachodimitropoulou Koumoutsea BSc, MBBS King’s College London A thesis submitted for the degree of PhD University College London (UCL) From work performed at the Department of Haematology, University College London, 72 Huntley Street, London, WC1E 6BT ‘I, Evangelia Vlachodimitropoulou Koumoutsea confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.’ 1 ITHACA by C.P Cavafy As you set out for Ithaka hope the voyage is a long one, full of adventure, full of discovery. Laistrygonians and Cyclops, angry Poseidon—don’t be afraid of them: you’ll never find things like that on your way as long as you keep your thoughts raised high, as long as a rare excitement stirs your spirit and your body. Laistrygonians and Cyclops, wild Poseidon—you won’t encounter them unless you bring them along inside your soul, unless your soul sets them up in front of you. Hope the voyage is a long one. May there be many a summer morning when, with what pleasure, what joy, you come into harbors seen for the first time; may you stop at Phoenician trading stations to buy fine things, mother of pearl and coral, amber and ebony, sensual perfume of every kind— as many sensual perfumes as you can; and may you visit many Egyptian cities to gather stores of knowledge from their scholars. Keep Ithaka always in your mind. Arriving there is what you are destined for.
    [Show full text]
  • Enhancement of Anion Binding in Lanthanide Optical Sensors
    NIH Public Access Author Manuscript Acc Chem Res. Author manuscript; available in PMC 2014 November 19. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Acc Chem Res. 2013 November 19; 46(11): . doi:10.1021/ar400050t. Enhancement of Anion Binding in Lanthanide Optical Sensors Morgan L. Cable§, James P. Kirby†, Harry B. Gray‡,*, and Adrian Ponce§,* §Jet Propulsion Laboratory, Pasadena, CA 91109 ‡Beckman Institute, California Institute of Technology, Pasadena, CA 91125 Abstract In the design of molecular sensors, researchers exploit binding interactions that are usually defined in terms of topology and charge complementarity. The formation of complementary arrays of highly cooperative, noncovalent bonding networks facilitates protein-ligand binding, leading to motifs such as the ‘lock-and-key.’ Synthetic molecular sensors often employ metal complexes as key design elements as a way to construct a binding site with the desired shape and charge to achieve target selectivity. In transition metal complexes, coordination number, structure and ligand dynamics are governed primarily by a combination of inner-sphere covalent and outer- sphere noncovalent interactions. These interactions provide a rich variable space that researchers can use to tune structure, stability and dynamics. In contrast, lanthanide(III)-ligand complex formation and ligand-exchange dynamics are dominated by reversible electrostatic and steric interactions, because the unfilled f shell is shielded by the larger, filled d shell. Luminescent lanthanides such as terbium, europium, dysprosium and samarium display many photophysical properties that make them excellent candidates for molecular sensor applications. Complexes of lanthanide ions act as receptors that exhibit a detectable change in metal-based luminescence upon binding of an anion.
    [Show full text]
  • Superoxo, -Peroxo, and -Oxo Complexes from SPECIAL FEATURE Heme͞o2 and Heme-Cu͞o2 Reactivity: Copper Ligand Influences in Cytochrome C Oxidase Models
    ␮ ␮ Superoxo, -peroxo, and -oxo complexes from SPECIAL FEATURE heme͞O2 and heme-Cu͞O2 reactivity: Copper ligand influences in cytochrome c oxidase models Eunsuk Kim*, Matthew E. Helton*†, Ian M. Wasser*, Kenneth D. Karlin*§, Shen Lu¶, Hong-wei Huang¶, Pierre Moe¨ nne-Loccoz¶, Christopher D. Incarvitoʈ, Arnold L. Rheingoldʈ, Marcus Honecker†, Susan Kaderli†, and Andreas D. Zuberbu¨ hler† *Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218; ¶Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering at Oregon Health and Science University, Beaverton, OR 97006; ʈDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716; and †Department of Chemistry, University of Basel, 4056 Basel, Switzerland Edited by Jack Halpern, University of Chicago, Chicago, IL, and approved February 13, 2003 (received for review November 25, 2002) II -tet ؍ The O2-reaction chemistry of 1:1 mixtures of (F8)Fe (1; F8 rakis(2,6-diflurorophenyl)porphyrinate) and [(LMe2N)CuI]؉ (2; LMe2N (N,N-bis{2-[2-(N؅,N؅-4-dimethylamino)pyridyl]ethyl}methylamine ؍ is described, to model aspects of the chemistry occurring in cyto- chrome c oxidase. Spectroscopic investigations, along with stopped-flow kinetics, reveal that low-temperature oxygenation of III 1͞2 leads to rapid formation of a heme-superoxo species (F8)Fe - ؊ (O2 ) (3), whether or not 2 is present. Complex 3 subsequently re- ؊ III 2 II Me2N ؉ acts with 2 to form [(F8)Fe –(O2 )–Cu (L )] (4), which thermally III II Me N ؉ converts to [(F8)Fe –(O)–Cu (L 2 )] (5), which has an unusually bent (Fe–O–Cu) bond moiety. Tridentate chelation, compared with CHEMISTRY tetradentate, is shown to dramatically lower the ␯(O–O) values ob- served in 4 and give rise to the novel structural features in 5.
    [Show full text]
  • Lanthanide-Polyaminopolycarboxylate Complexation Kinetics in High Lactate Media
    LANTHANIDE-POLYAMINOPOLYCARBOXYLATE COMPLEXATION KINETICS IN HIGH LACTATE MEDIA: INVESTIGATING THE AQUEOUS PHASE OF TALSPEAK By DEREK MACKENZIE BRIGHAM A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Chemistry May 2013 © Copyright by DEREK MACKENZIE BRIGHAM, 2013 All Rights Reserved © Copyright by DEREK MACKENZIE BRIGHAM, 2013 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of DEREK MACKENZIE BRIGHAM find it satisfactory and recommend that it be accepted. ___________________________________ Kenneth L. Nash, Ph.D., Chair ___________________________________ Scot E. Wherland, Ph.D. ___________________________________ Sue B. Clark, Ph.D. ___________________________________ Jeremy J. Lessmann, Ph.D. ii ACKNOWLEDGMENTS “Faith in your partner, your fellow men, your friends, is very important, because without it there's no mutual component to your relationship, and relationships are important. So faith plays an important role, but faith in people you don't know, faith in religious or political leaders or even people on stages, people who are popular in the public eye, you shouldn't have faith in those people. You should listen to what they have to say and use it. It might give you some ideas on how to view the world, but ultimately you have to base your views on evidence. Evidence comes from your own eyes and ears.” Dr. Greg Graffin When I first arrived at WSU to begin my undergraduate studies I had very different ambitions and could not have predicted where I would end up. I certainly would not have guessed that I would still be in Pullman nearly ten years later.
    [Show full text]
  • Copper Adduct Formation, Properties, and Reactivity
    Heme Axial Base Effects on Heme-Peroxo- Copper Adduct Formation, Properties, and Reactivity by Patrick J. Rogler Dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, MD October, 2018 Abstract Over the course of the next century, a fundamental understanding of the critical factors that control the efficiency, and selectivity of the four proton, four electron reduction of O2 to H2O will likely continue to grow in importance for inorganic and materials chemists. This may be driven in large part by the necessity and promise of sustainable and economically feasible alternative energy technologies which will undoubtedly rely on fundamental chemical insights into the discrete metal-oxy species formed in the course of reductive O—O bond activation and cleavage in both homogeneous and heterogeneous media. Bio-inorganic chemists seek to address these important problems by looking to natural systems, wherein lie excellent examples of efficient, selective O2 reduction provided by Heme-Copper Oxidases (HCOs). This superfamily of integral membrane proteins serve as the terminal electron acceptors of the mitochondrial electron transport chain where they bind and reduce O2 to H2O at a hetero-binuclear active site consisting of a tris-histidyl ligated CuB ion, and a heme iron cofactor. The discrete steps of this reductive O—O bond cleavage reaction are coupled to transmembrane proton pumping and oxidative phosphorylation. A long standing interest of our group has been to utilize heme-peroxo-copper adducts as model systems to understand in detail the factors which result in O2 reduction to water by drawing upon structure function relationships in the binuclear active site.
    [Show full text]
  • The Crisis of Iron in Transfusion Medicine: Improved Iron Chelation Therapy and Its Implications for Clinical Practice in the Maldives
    THE CRISIS OF IRON IN TRANSFUSION MEDICINE: IMPROVED IRON CHELATION THERAPY AND ITS IMPLICATIONS FOR CLINICAL PRACTICE IN THE MALDIVES by Ibrahim Mustafa BSc., Baqai Medical University, 1999 MSc., Baqai Medical University, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Pathology and Laboratory Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2011 © Ibrahim Mustafa, 2011 Abstract The Maldives has one of the highest incidences of ß thalassemia in the world. Treatment of ß thalassemia is characterized by two distinct phases: treatment of nature’s disease (anemia) and the secondary treatment of transfusional iron overload, a side effect of our cure. Interestingly, excess iron may also exert a negative effect on immune competence thus explaining the recurrent bacterial infections in these patients. Current iron chelation therapy using Desferal! (DFO) is challenging due to its short vascular half-life, frequency of injections, toxicity and expense. To address this problem, we have tested novel, low toxicity, high molecular weight (HMW) iron chelators. The utility of these chelators was tested in vitro using iron loaded (0-500 µM ferric (Fe3+) ammonium citrate, FAC; 0- 48 hours) HepG2 and dendritic cells (DC). Iron chelation studies utilized either single or combinational treatment with deferiprone (L1) or DFO (both low molecular weight chelators) and S-DFO (a HMW derivative of DFO) for 0-48 hrs. The efficacy of treatment was assessed by cellular ferritin, Perl's iron stain, transmission electron microscopy (TEM), antigen presentation assays and cell viability assays. Iron treatment alone resulted in a significant increase in intracellular ferritin, histochemical iron staining and also resulted in a ~65.2% reduction in PBMC proliferation in response to the tetanus toxoid following 14 days of incubation.
    [Show full text]
  • Transition Metal Coordination Chemistry
    Transition Metal Coordination Chemistry Chemistry 362 : Spring 2017 What we already know: • The dative or coordinate covalent bond • The valence bond approach to keeping track of electrons in Lewis acid/Lewis base adducts; • The Hard/Soft LA/LB approach to binding preferences • How to assemble molecular orbitals from linear combination of atomic orbitals • We remember!!!. What we want to know: • Explanations/predictions of properties: – Colors/spectroscopy – Magnetism – Compositions and Structures • Isomers • Symmetry point group designations • Dependence of the above on ligands and on Metals • We Can Do It!!!. Alfred Werner: Father of Coordination Chemistry. Structure of Co(NH3)6Cl3 is NOT Co(NH3-NH3-NH3-Cl)3 but rather is an octahedron with 6 - NH3 directly attached to Co(III) and 3 Cl are dissociable counterions, consistent with electrical conductivity of solutions- a 1:3 electrolyte. If this analysis is correct then the 1:1 electrolyte [Co(NH3)4Cl2]Cl should exist in two isomeric forms. It does; one is green and one is purple. Transition metals have 2 valencies: their coordination number and their charge balance requirement. The octahedron is a common geometry in coordination 1866-1919 chemistry. Nobel Prize in Chemistry, 1913 1866-1919 Nobel Prize in Chemistry, 1913 These are real and stable entities. They have thermodynamic stability Properties of Transition Metal Complexes 1. Highly colored (absorb light in visible, transmit light which eye detects) 2. May exhibit multiple oxidation states 3. May exhibit paramagnetism as dependent on metal oxidation state and on ligand field. 4. Reactivity includes: A) Ligand exchange processes: i) Associative (SN2; expanded coordination no.) ii) Dissociative (SN1; slow step is ligand loss) B) Redox Processes i) inner sphere atom transfer; ii) outer sphere electron processes) iii) Oxidative Addition and Reductive Elimination The magical porphyrin ligand: Hemoglobin, myoglobin and Other proteins have “Heme iron” When oxygenated, hemoglobin is red and diamagnetic.
    [Show full text]
  • Chelation Therapy in the Treatment of Metal Intoxication Page Left Intentionally Blank Chelation Therapy in the Treatment of Metal Intoxication
    Chelation Therapy in the Treatment of Metal Intoxication Page left intentionally blank Chelation Therapy in the Treatment of Metal Intoxication Jan Aaseth Department of Public Health Hedmark University College, Elverum Department of Internal Medicine Innlandet Hospital, Kongsvinger Hedmark, Norway Guido Crisponi Department of Chemical and Geological Sciences University of Cagliari Cagliari, Italy Ole Andersen Department of Science and Environment Roskilde University Roskilde, Denmark AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an Imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Copyright © 2016 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, elec- tronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treat- ment may become necessary.
    [Show full text]
  • Environmental Science Processes & Impacts Accepted Manuscript
    Environmental Science Processes & Impacts Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/process-impacts Page 1 of 103 Environmental Science: Processes & Impacts Table of Content Entry This review covers technical applicability of chelation technology for metal extraction from contaminated sites, recent research trends and future opportunities to spring up Manuscript this process as a Green Chemical Engineering Approach. Accepted Impacts & Processes Science: Environmental Environmental Science: Processes & Impacts Page 2 of 103 Environmental Impact Statement Heavy metals are present in industrial wastes in significant amount and may become a threat to ecosystem and human health which. Chelation-dechelation technology Manuscript was coined by our research group for extraction of heavy metals from spent catalysts.
    [Show full text]
  • University of Oklahoma Graduate College The
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE THE EFFECT OF LIGAND DENTICITY IN STABILIZING ACTINIDE-ELEMENT MULTIPLE BOND FUNCTIONALITIES A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By BRIAN C. STOBBE Norman, Oklahoma 2017 THE EFFECT OF LIGAND DENTICITY IN STABILIZING ACTINIDE-ELEMENT MULTIPLE BOND FUNCTIONALITIES A DISSERTATION APPROVED FOR THE DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY BY ______________________________ Dr. Robert Thomson, Chair ______________________________ Dr. Lloyd Bumm ______________________________ Dr. Kenneth Nicholas ______________________________ Dr. Ronald Halterman ______________________________ Dr. Charles Rice © Copyright by BRIAN C. STOBBE 2017 All Rights Reserved. For my grandfather, Marco Rodriguez, a man of science. Acknowledgements I would like to thank the University of Oklahoma and the Department of Chemistry and Biochemistry for allowing me to pursue my Ph.D. studies. Additionally, I would like to formally thank the members of my committee: Dr. Halterman, Dr. Nicholas, Dr. Rice and Dr. Bumm for their guidance and assistance with my development as a scientist. Importantly, I would like to thank my research advisor, Dr. Robert K. Thomson, for giving me the opportunity to pursue my Ph.D. research in his lab. I am eternally grateful for his guidance and continued support, for without it, I would not have been nearly as successful in my endeavors. Additionally, I would like to thank Dr. Thomson for helping me to develop not only my laboratory research skills, but my presentation skills as they will be extremely useful to me in the future. Again, I am extremely grateful for all of the assistance and guidance provided to me by Dr.
    [Show full text]