Microchromosomes Are Building Blocks of Bird, Reptile and Mammal Chromosomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Short Communications
SHORT COMMUNICATIONS J. Raptor Res. 53(4):419–430 Ó 2019 The Raptor Research Foundation, Inc. COMMENTARY:DEFINING RAPTORS AND BIRDS OF PREY 1 CHRISTOPHER J. W. MCCLURE, SARAH E. SCHULWITZ, AND DAVID L. ANDERSON The Peregrine Fund, 5668 West Flying Hawk Lane, Boise, ID 83709 USA BRYCE W. ROBINSON Ornithologi, PO Box 6423, Boise, ID 83707 USA ELIZABETH K. MOJICA EDM International, Inc. 4001 Automation Way, Fort Collins, CO 80526 USA JEAN-FRANCOIS THERRIEN Hawk Mountain Sanctuary, 410 Summer Valley Road, Orwigsburg, PA 17961 USA M. DAVID OLEYAR HawkWatch International, 2240 South 900 East, Salt Lake City, UT 84106 USA JEFF JOHNSON University of North Texas, Department of Biological Sciences, 1155 Union Circle #310559, Denton, TX 76203 USA ABSTRACT.—Species considered raptors are subjects of monitoring programs, textbooks, scientific societies, legislation, and multinational agreements. Yet no standard definition for the synonymous terms ‘‘raptor’’ or ‘‘bird of prey’’ exists. Groups, including owls, vultures, corvids, and shrikes are variably considered raptors based on morphological, ecological, and taxonomic criteria, depending on the authors. We review various criteria previously used to define raptors and we present an updated definition that incorporates current understanding of bird phylogeny. For example, hunting live vertebrates has been largely accepted as an ecological trait of raptorial birds, yet not all species considered raptors are raptorial (e.g., Palm-nut Vulture [Gypohierax angolensis]), and not all raptorial birds are considered raptors (e.g., skuas [Stercorariidae]). Acute vision, a hooked bill, and sharp talons are the most commonly used morphological characters for delineating raptors; however, using those characters as criteria may cause confusion because they can be vague and exceptions are sometimes made. -
Comparative Cytogenetics and Supernumerary Chromosomes In
Hereditas 136: 51–57 (2002) Comparative cytogenetics and supernumerary chromosomes in the Brazilian lizard genus Enyalius (Squamata, Polychrotidae) CAROLINA ELENA VIN0A BERTOLOTTO1,3, KATIA CRISTINA MACHADO PELLEGRINO1, MIGUEL TREFAUT RODRIGUES2 and YATIYO YONENAGA-YASSUDA1 1 Departamento de Biologia, Instituto de Biocieˆncias, Uni6ersidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brasil 2 Departamento de Zoologia, Instituto de Biocieˆncias and Museu de Zoologia, Uni6ersidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brasil 3 Uni6ersidade Santo Amaro, Faculdade de Medicina Veterina´ria, Sa˜o Paulo, SP, Brasil Bertolotto, C. E. V., Pellegrino, K. C. M., Rodrigues, M. T. and Yonenaga-Yassuda, Y. 2002. Comparative cytogenetics and supernumerary chromosomes in the Brazilian lizard genus Enyalius (Squamata, Polychrotidae).—Hereditas 136: 51–57. Lund, Sweden. ISSN 0018-0661. Received August 13, 2001. Accepted January 24, 2002 Cytogenetical analyses based on conventional and differential staining were performed for the first time on five species of the Brazilian lizard genus Enyalius: E. bibronii, E. bilineatus, E. iheringii, E. leechii,andE. perditus. The species share a similar 2n=36 (12M+24m) karyotype, comprised of 12 metacentric or submetacentric macrochromosomes, except for an acrocentric pair 6 that characterizes E. bibronii. The 24 microchromosomes were acrocentrics, but in E. perditus two meta/submetacentric microchromosome pairs were unambiguously identified. Karyotypes with 2n=37 and 2n=37/38 chromosomes were also observed in some specimens of E. bilineatus as a result of the presence of supernumerary chromosomes (Bs). Ag-NORs were always located at the distal region of the long arm of the submetacentric pair 2. The constitutive heterochromatin was mostly restricted to the pericentromeric regions of some macrochromosomes and microchromosomes. -
La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles. -
California Condor (Gymnogyps Californianus) 5-Year Review
California Condor (Gymnogyps californianus) 5-Year Review: Summary and Evaluation U.S. Fish and Wildlife Service Pacific Southwest Region June 2013 Acknowledgement: The Service gratefully acknowledges the commitment and efforts of the California Condor Recovery Program partners for their many on-going contributions towards condor recovery. Our partners were instrumental both in ensuring that we used the best available science to craft our analyses and recommendations in this 5-year review and in providing individual feedback that was used to refine this document. Photo Credit: Unless otherwise indicated, all photos, charts, and graphs are products of the U.S. Fish and Wildlife Service Page | 2 5-YEAR REVIEW California condor (Gymnogyps californianus) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act of 1973, as amended (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5- year review, we recommend whether the species should be removed from the Lists of Endangered and Threatened Wildlife, changed in status from endangered to threatened, or changed in status from threatened to endangered. Our original listing as endangered or threatened is based on the species’ status considering the five threat factors described in section 4(a)(1) of the Act. These same five factors are considered in any subsequent reclassification or delisting decisions. -
The Actin Family Member Arp6 and the Histone Variant H2A.Z Are Required
Short Report 3739 The actin family member Arp6 and the histone variant H2A.Z are required for spatial positioning of chromatin in chicken cell nuclei Eri Ohfuchi Maruyama1,*, Tetsuya Hori2,*, Hideyuki Tanabe3,`, Hiroshi Kitamura1,*, Ryo Matsuda1, Shigenobu Tone4, Pavel Hozak5, Felix A. Habermann6, Johann von Hase7, Christoph Cremer7, Tatsuo Fukagawa2 and Masahiko Harata1,` 1Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan 2Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies, Shizuoka 411-8540, Japan 3Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (Sokendai), Kanagawa 240-0193, Japan 4Department of Biochemistry, Kawasaki Medical School, Kurashiki 701-0192, Japan 5Department of Biology of the Cell Nucleus, Institute of Molecular Genetics, AS CR, v.v.i., Prague 4 14220, Czech Republic 6Ludwig-Maximilians-University, 80539 Munich, Germany 7Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, 55128 Mainz, Germany *These authors contributed equally to this work `Authors for correspondence ([email protected]; [email protected]) Accepted 3 April 2012 Journal of Cell Science 125, 3739–3744 ß 2012. Published by The Company of Biologists Ltd doi: 10.1242/jcs.103903 Summary The spatial organization of chromatin in the nucleus contributes to genome function and is altered during the differentiation of normal and tumorigenic cells. Although nuclear actin-related proteins (Arps) have roles in the local alteration of chromatin structure, it is unclear whether they are involved in the spatial positioning of chromatin. In the interphase nucleus of vertebrate cells, gene-dense and gene-poor chromosome territories (CTs) are located in the center and periphery, respectively. -
Ornithological Literature
Wilson Bull., 99(l), 1987, pp. 138-150 ORNITHOLOGICAL LITERATURE CURRENT ORNITHOLOGY. Vol. 2. By Richard F. Johnston (ed.). Plenum Press, New York, New York, 1985:364 pp., 43 numbered text figs., 26 tables. $41.00.-It is refreshing to find that one can pick up a book with a pretentious-sounding title and find the contents to be exactly as advertised. Not only do the chapters deal with some of the hottest (current) topics in ornithology, but these chapters are written by the established authorities in the respective fields. In the selection of some of the subjects for treatment, Johnston has shown elegant insight; in one case his choice of authors reveals subtle genius in his command of issues and the personalities involved, as I will argue below. The book contains nine chapters. The first, entitled “Data Analysis and the Design of Experiments in Ornithology,” by Frances C. James and Charles E. McCulloch, is worth the price of the book to experimental ornithologists. It is a clearly written, no-nonsense analysis of experimental models and hypothesis testing, and includes an appendix defining and explaining the important statistical techniques and terms used in analysis these days, and offering the pros and cons of each. The good news is that Popperian hypothesis testing (rejection of series of null hypotheses leading inexorably closer to the “truth”) need not be the only valid approach to research. Indeed, the authors maintain strenuously, the art of inference is alive and well. Numerous areas of ornithological and other field investigations are not yet suited (for lack of maturity or precision) to the kinds of simple, unambiguous hypotheses that have been long used in molecular biology. -
2019.12.19.882399V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.19.882399; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Identifying the causes and consequences of assembly gaps using a multiplatform 2 genome assembly of a bird-of-paradise 3 4 Valentina Peona1,2, Mozes P.K. Blom3,4, Luohao Xu5,6, Reto Burri7, Shawn Sullivan8, Ignas Bunikis9, 5 Ivan Liachko8, Knud A. Jønsson10, Qi Zhou5,6,11, Martin Irestedt3, Alexander Suh1,2 6 7 Affiliation 8 9 1 Department of Ecology and Genetics – Evolutionary Biology, Uppsala University, Science for 10 Life Laboratories, Norbyvägen 18D, SE-752 36, Uppsala, Sweden 11 2 Department of Organismal Biology – Systematic Biology, Uppsala University, Norbyvägen 18D, 12 SE-752 36, Uppsala, Sweden 13 3 Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05, 14 Stockholm, Sweden 15 4 Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin, 16 Germany 17 5 MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang 18 University, Hangzhou, China 19 6 Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria 20 7 Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller- 21 University Jena, Dornburger Strasse 159, D-07743 Jena, Germany 22 8 Phase Genomics, Inc. 1617 8th Ave N, Seattle, WA 98109 USA 23 9 Uppsala Genome Center, Science for Life Laboratory, Dept. -
'Hyperdisease' Responsible for the Late Pleistocene Megafaunal Extinction?
Ecology Letters, (2004) 7: 859–868 doi: 10.1111/j.1461-0248.2004.00643.x REPORT Was a ÔhyperdiseaseÕ responsible for the late Pleistocene megafaunal extinction? Abstract S. Kathleen Lyons,1* Felisa A. Numerous hypotheses have been proposed to explain the end Pleistocene extinction of Smith,1 Peter J. Wagner,2 Ethan large bodied mammals. The disease hypothesis attributes the extinction to the arrival of a P. White1 and James H. Brown1 novel ÔhyperdiseaseÕ brought by immigrating aboriginal humans. However, until West 1 Department of Biology, Nile virus (WNV) invaded the United States, no known disease met the criteria of a University of New Mexico, hyperdisease. We evaluate the disease hypothesis using WNV in the United States as a Albuquerque, NM 87131, USA model system. We show that WNV is size-biased in its infection of North America birds, 2Department of Geology, Field but is unlikely to result in an extinction similar to that of the end Pleistocene. WNV Museum of Natural History, infects birds more uniformly across the body size spectrum than extinctions did across Chicago, IL 60605, USA Present address: S. Kathleen mammals and is not size-biased within orders. Our study explores the potential impact Lyons, National Center for of WNV on bird populations and provides no support for disease as a causal mechanism Ecological Analysis and for the end Pleistocene megafaunal extinction. Synthesis, University of California – Santa Barbara, Keywords Santa Barbara, CA 93101, USA. Disease hypothesis, end-Pleistocene extinctions, mammals, megafauna, size-biased *Correspondence: E-mail: extinctions, West Nile virus. [email protected] Ecology Letters (2004) 7: 859–868 The disease hypothesis attributes the extinction of large INTRODUCTION mammals during the late Pleistocene to indirect effects of The mammalian faunas of Australia and the New World are the newly arrived aboriginal humans (MacPhee & Marx depauperate today. -
Parasitaemia Data and Molecular Characterization of Haemoproteus Catharti from New World Vultures (Cathartidae) Reveals a Novel Clade of Haemosporida Michael J
Yabsley et al. Malar J (2018) 17:12 https://doi.org/10.1186/s12936-017-2165-5 Malaria Journal RESEARCH Open Access Parasitaemia data and molecular characterization of Haemoproteus catharti from New World vultures (Cathartidae) reveals a novel clade of Haemosporida Michael J. Yabsley1,2* , Ralph E. T. Vanstreels3,4, Ellen S. Martinsen5,6, Alexandra G. Wickson1, Amanda E. Holland1,7, Sonia M. Hernandez1,2, Alec T. Thompson1, Susan L. Perkins8, Christopher J. West9, A. Lawrence Bryan7, Christopher A. Cleveland1,2, Emily Jolly1, Justin D. Brown10, Dave McRuer11, Shannon Behmke12 and James C. Beasley1,7 Abstract Background: New World vultures (Cathartiformes: Cathartidae) are obligate scavengers comprised of seven species in fve genera throughout the Americas. Of these, turkey vultures (Cathartes aura) and black vultures (Coragyps atratus) are the most widespread and, although ecologically similar, have evolved diferences in morphology, physiology, and behaviour. Three species of haemosporidians have been reported in New World vultures to date: Haemoproteus catharti, Leucocytozoon toddi and Plasmodium elongatum, although few studies have investigated haemosporidian parasites in this important group of species. In this study, morphological and molecular methods were used to investi- gate the epidemiology and molecular biology of haemosporidian parasites of New World vultures in North America. Methods: Blood and/or tissue samples were obtained from 162 turkey vultures and 95 black vultures in six states of the USA. Parasites were identifed based on their morphology in blood smears, and sequences of the mitochondrial cytochrome b and nuclear adenylosuccinate lyase genes were obtained for molecular characterization. Results: No parasites were detected in black vultures, whereas 24% of turkey vultures across all sampling locations were positive for H. -
AOU and Audubon Report: Status of the California Condor and Efforts To
Status of the California Condor and Efforts to Achieve its Recovery Prepared by the AOU Committee on Conservation, California Condor Blue Ribbon Panel, A Joint Initiative of The American Ornithologists’ Union and Audubon California Jeffrey R. Walters, Scott R. Derrickson, D. Michael Fry, Susan M. Haig, John M. Marzluff, Joseph M. Wunderle, Jr. August 2008 Status of the California Condor and Efforts to Achieve its Recovery August 2008 Prepared by the AOU Committee on Conservation, California Condor Blue Ribbon Panel, A Joint Initiative of The American Ornithologists’ Union and Audubon California Panel Members: Jeffrey R. Walters (chairman), Virginia Tech University Scott R. Derrickson, Smithsonian Institution, National Zoological Park D. Michael Fry, American Bird Conservancy Susan M. Haig, USGS Forest and Rangeland Ecosystem Science Center John M. Marzluff, University of Washington Joseph M. Wunderle, Jr., International Institute of Tropical Forestry, USDA Forest Service Assisted by: Brock B. Bernstein Karen L. Velas, Audubon California This report was supported with funding from the National Fish and Wildlife Foundation, the Morgan Family Foundation, and other private donors. © Copyright 2008 The American Ornithologists’ Union and Audubon California INTRODUCTION The California Condor (Gymnogyps californianus) has long been symbolic of avian conservation in the United States. Its large size, inquisitiveness and association with remote places make it highly charismatic, and its decline to the brink of extinction has aroused a continuing public interest in its plight. By 1982 only 22 condors remained, and the last wild bird was trapped and brought into captivity in 1987, rendering the species extinct in the wild (Snyder and Snyder 2000). At that time, some questioned whether viable populations could ever exist again in the natural environment, and whether limited conservation funds should be expended on what they viewed as a hopeless cause (Pitelka 1981). -
Comparison of the Chromosome Structures Between the Chicken
http://www.jstage.jst.go.jp/browse/jpsa doi:10.2141/ jpsa.0130090 Copyright Ⓒ 2014, Japan Poultry Science Association. Comparison of the Chromosome Structures between the Chicken and Three Anserid Species, the Domestic Duck (Anas platyrhynchos), Muscovy Duck (Cairina moschata), and Chinese Goose (Anser cygnoides), and the Delineation of their Karyotype Evolution by Comparative Chromosome Mapping Fhamida B. Islam1, Yoshinobu Uno1, Mitsuo Nunome1, Osamu Nishimura2, 3, Hiroshi Tarui4, Kiyokazu Agata3 and Yoichi Matsuda1, 5 1 Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan 2 Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan 3 Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 4 Division of Genomic Technologies, Center for Life Science Technology, RIKEN, Yokohama 230-0045, Japan 5 Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan To better understand the process of karyotype evolution in Galloanserae (Galliformes and Anseriformes), we performed comparative chromosome painting with chicken chromosome-specific DNA probes and FISH mapping of the 18S-28S ribosomal RNA (rRNA) genes, telomeric (TTAGGG)n repeats, and cDNA clones of 37 genes for three anserid species, the domestic duck (Anas platyrhynchos), Muscovy duck (Cairina moschata), and Chinese goose (Anser cygnoides). Each chicken probe of chromosomes 1-9 and the Z chromosome painted a single pair of chromosomes in the three species except for the chromosome 4 probe, which painted acrocentric chromosome 4 and a pair of microchromosomes. The 18S-28S rRNA genes were localized to four pairs of microchromosomes in the domestic duck and Muscovy duck, and eight pairs of microchromosomes in the Chinese goose. -
The Chicken .82-Microglobulin Gene Is Located on a Non-Major
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 1243-1248, February 1996 Genetics The chicken .82-microglobulin gene is located on a non-major histocompatibility complex microchromosome: A small, G+C-rich gene with X and Y boxes in the promoter PATRICIA RIEGERT*, ROLF ANDERSENtt, NAT BUMSTEAD§, CHRISTIAN D6HRING*, MARINA DOMINGUEZ-STEGLICH$, JAN ENGBERGt, JAN SALOMONSENII, MICHAEL SCHMID1, JOSEPH SCHWAGER**, KARSTEN SKJ0DTtt, AND JIM KAUFMAN*#t *Basel Institute for Immunology, Basel, Switzerland; tBiochemical Institute B, Panum, University of Copenhagen, Copenhagen, Denmark; §Institute for Animal Health, Compton Laboratories, Compton, United Kingdom; lInstitute for Human Genetics, University of Wiirzburg, Wurzburg, Germany; lllnstitute of Life Sciences and Chemistry, University of Roskilde, Roskilde, Denmark; **Centre de Recherche sur la Nutrition Animale, Societe Roche S. A. Village-Neuf, France; and ttInstitute of Medical Microbiology, University of Odense, Odense, Denmark Communicated by D. Bernard Amos, Duke University Medical Center, Durham, NC, October 26, 1995 ABSTRACT f32-Microglobulin is an essential subunit of birds, that some chromosomes were affected to the point of major histocompatibility complex (Mhc) class I molecules, becoming microchromosomes, and that this process effectively which present antigenic peptides to T lymphocytes. We se- ended in the genomes of the few survivors that actually gave quenced a number of cDNAs and two genomic clones corre- rise to the birds (12-14). sponding to chicken .j2-microglobulin. The chicken 132- Mhc class I molecules are composed of an Mhc-encoded microglobulin gene has a similar genomic organization but polymorphic class I a chain noncovalently associated with a smaller introns and higher G+C content than mammalian small nonpolymorphic protein called P32-microglobulin (322m).