(Carnian) of Brazil and the Rise of Sphenodontians in Gondwana Received: 30 November 2018 Annie S

Total Page:16

File Type:pdf, Size:1020Kb

(Carnian) of Brazil and the Rise of Sphenodontians in Gondwana Received: 30 November 2018 Annie S www.nature.com/scientificreports OPEN A New Clevosaurid from the Triassic (Carnian) of Brazil and the Rise of Sphenodontians in Gondwana Received: 30 November 2018 Annie S. Hsiou 1, Randall L. Nydam2, Tiago R. Simões 3,4, Flávio A. Pretto5, Silvio Onary1, Accepted: 2 August 2019 Agustín G. Martinelli 6,7, Alexandre Liparini8, Paulo R. Romo de Vivar Martínez7, Published: xx xx xxxx Marina B. Soares7, Cesar L. Schultz7 & Michael W. Caldwell3,9 The early evolution of lepidosaurs is marked by an extremely scarce fossil record during the Triassic. Importantly, most Triassic lepidosaur specimens are represented by disarticulated individuals from high energy accretion deposits in Laurasia, thus greatly hampering our understanding of the initial stages of lepidosaur evolution. Here, we describe the fragmentary remains of an associated skull and mandible of Clevosaurus hadroprodon sp. nov., a new taxon of sphenodontian lepidosaur from the Late Triassic (Carnian; 237–228 Mya) of Brazil. Referral to Sphenodontia is supported by the combined presence of a marginal dentition ankylosed to the apex of the dentary, maxilla, and premaxilla; the presence of ‘secondary bone’ at the bases of the marginal dentition; and a ventrally directed mental process at the symphysis of the dentary. Our phylogenetic analyses recover Clevosaurus hadroprodon as a clevosaurid, either in a polytomy with the Late Triassic to Early Jurassic Clevosaurus and Brachyrhinodon (under Bayesian inference), or nested among diferent species of Clevosaurus (under maximum parsimony). Clevosaurus hadroprodon represents the oldest known sphenodontian from Gondwana, and its clevosaurid relationships indicates that these sphenodontians achieved a widespread biogeographic distribution much earlier than previously thought. Te Triassic period marks one of the great transitions in the history of life afer the mass-extinction at the end of the Permian. Most notably, this was a period of diversifcation of several major groups of extant terrestrial and marine vertebrates1, including lepidosaurian (Squamata + Rhynchocephalia) reptiles2. Today, Lepidosauria is the largest and the most diverse group of non-avian reptiles with over 10,000 known species3. Most of these are lizards and snakes with rhynchocephalians limited to two recognized sphenodontian species (Sphenodon punctatus and S. guntheri) in New Zealand4. However, during the early Mesozoic, rhynchocephalians (particularly sphenodon- tians), were the most diverse and widely distributed members of Lepidosauria5. In the last decade, the discovery of several important fossils has greatly increased our knowledge of the anat- omy, systematics, distribution, and early evolution of sphenodontians. Tese new fndings include presumably stem rhynchocephalians of the Late Triassic, such as Gephyrosaurus evansae6 and Penegephyrosaurus curtiscoppi7 from the United Kingdom, and Deltadectes elvetica7 from Switzerland. These three taxa, though not being well-understood phylogenetically, have been tentatively positioned as stem rhynchocephalians, sharing morpho- logical features with Gephyrosaurus and closely related taxa6,7. By far, the most well-known early sphenodontian clade is Clevosauridae, which currently includes several species allocated to three genera: Brachyrhinodon, Clevosaurus, and Polysphenodon from the Late Triassic to Early 1Laboratório de Paleontologia, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil. 2Arizona College of Osteopathic Medicine and Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA. 3Department of Biological Sciences, University of Alberta, Edmonton, Canada. 4Present address: Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA. 5CAPPA - Centro de Apoio à Pesquisa Paleontológica da Quarta Colônia, Universidade Federal de Santa Maria, São João do Polêsine, Brazil. 6CONICET-Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Buenos Aires, Argentina. 7Laboratório de Paleontologia de Vertebrados, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. 8PIBi-Lab – Laboratório de Pesquisas Integrativas em Biodiversidade, Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil. 9Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada. Correspondence and requests for materials should be addressed to A.S.H. (email: [email protected]) SCIENTIFIC REPORTS | (2019) 9:11821 | https://doi.org/10.1038/s41598-019-48297-9 1 www.nature.com/scientificreports/ www.nature.com/scientificreports Jurassic of Britain8–12, Germany9,13,14, Africa15,16, China17, North America18, and South America19. Although sup- port for this clade has not been universal9,20–22, the genus Clevosaurus is currently considered the most specious (six species) and widely distributed (Asia, Europe, North America, South America, Africa) of the clevosaurid taxa17,18,23–25. The new sphenodontian taxon described herein is the oldest unequivocal record of Rhynchocephalia (Sphenodontia) from South America, as well as in Gondwana. It provides the frst evidence of a greater diversity of early sphenodontians than previously understood for southern Pangaea and provides new information on the earliest stages of the acquisition of the acrodont dentition in sphenodontians in combination with unique dental specializations. Results Systematic Palaeontology. Lepidosauria Dumeril and Bibron, 1839 sensu Evans, 1984 Rhynchocephalia Gunther, 1867 sensu Gauthier et al., 1988 Sphenodontia Williston, 1925 sensu Benton, 1985 Referral to Sphenodontia is supported by the combined presence of a marginal dentition ankylosed to the apex of the dentary, maxilla, and premaxilla; the presence of “secondary bone” (sensu Harrison26,27, Fraser28 and Jones22) at the bases of the marginal dentition; a ventrally directed mental process (sensu Apesteguía29,30) at the symphysis of the dentary; presence of a very shallow Meckelian canal. Clevosauridae Bonaparte and Sues, 2006 (sensu this study) New defnition. Clevosauridae was originally defned by Bonaparte and Sues19 as the least inclusive clade containing the last common ancestor shared between Brachyrhinodon, Polysphenodon, and Clevosaurus plus all of its descendants. Due to the uncertain position of Polysphenodon (i.e. if the genus is or is not closely related to the sister group Brachyrhinodon + Clevosaurus) in other topologies9,20,21,25, here we adopt the interpretation of Clevosauridae as a monophyletic group using the node–based defnition of the clade containing the last common ancestor shared between Brachyrhinodon and Clevosaurus plus all of its descendants. Clevosaurus hadroprodon sp. nov. Etymology. Species epithet comes from a combination of ‘hadroprodon’ (from the Greek “hadros”-meaning large) and “protos”, meaning frst (Greek), and “odous”, meaning tooth (Greek); in reference to the “big frst tooth”, i.e. the large tusk-like tooth of the premaxilla and the anteriormost/frst dentary tooth position. Holotype. MMACR PV-027-T, an incomplete right premaxilla, an incomplete right maxilla and right lower jaw in occlusion, and lef lower jaw located below these elements. Referred material. MMACR PV-028-T, an incomplete lef lower jaw; and MMACR PV-029-T, fragment of dentary with three isolated teeth. Locality and horizon. Linha Bernardino locality, Candelária municipality, Rio Grande do Sul State, Southern Brazil (Fig. 1); Santa Maria Formation (Santa Maria Supersequence, Candelária Sequence), Rosário do Sul Group, Paraná Basin; Carnian, Late Triassic31,32 (Fig. 1a–c). Clevosaurus hadroprodon was recovered from immediately beneath the layers that contained the cranial and postcranial remains of the cynodonts Exaeretodon sp. and Trucidocynodon sp. and a distal portion of femur that closely resembles the early dino- saur cf. Pampadromaeus (Fig. 1b). Te presence of these fossils referred to Exaeretodon, Trucidocynodon and a Pampadromaeus-like form places this locality within the Hyperodapedon AZ at the base of the Candelária Sequence. Recent high-precision U-Pb zircon geochronology data recovered a weighted mean 206Pb/238U date of 233.23 ± 0.73 Ma for typical Hyperodapedon AZ sites33, which can be biostratigraphically correlated to the sedimentary layers containing C. hadroprodon. As such we conservatively consider the age for the fossil material to be Carnian (Late Triassic). Diagnosis. Small sphenodontian rhynchocephalian difering from all other known sphenodontians in pos- sessing the following combination of features: (1) a large, blunt, tusk-like tooth in both premaxilla and frst tooth position of dentary; (2) in having an angled, but nearly vertical mandibular symphysis and relatively deep den- tary; (3) absence of an edentulous gap between the tusk-like tooth and the remaining dentition; (4) absence of a posterodorsal process of the premaxilla; (5) in lacking well-developed medial-posteromedial expansion of the posterior dentition; (6) and lacking fanges on the teeth, and (7) lacking labially expanded teeth. Feature 4 makes this new taxon diferent from many sphenodontians, including other species of Clevosaurus, Rebbanasaurus, Godavariasaurus, Priosphenodon, Sphenotitan, Paminzisaurus and Ankylosphenodon. Features 5 and 6 make this taxon diferent from all other described species of Clevosaurus [Clevosaurus hudsoni, C. bairdi, C. latidens, C. sectumsemper, C. cambrica, and Clevosaurus
Recommended publications
  • Macroevolutionary Patterns in Rhynchocephalia: Is the Tuatara (Sphenodon Punctatus) a Living Fossil? Palaeontology, 60(3), 319-328
    Herrera Flores, J., Stubbs, T., & Benton, M. (2017). Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology, 60(3), 319-328. DOI: 10.1111/pala.12284 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/pala.12284 Link to publication record in Explore Bristol Research PDF-document University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms.html [Palaeontology, 2017, pp. 1–10] MACROEVOLUTIONARY PATTERNS IN RHYNCHOCEPHALIA: IS THE TUATARA (SPHENODON PUNCTATUS) A LIVING FOSSIL? by JORGEA.HERRERA-FLORES , THOMAS L. STUBBS and MICHAEL J. BENTON School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK; jorge.herrerafl[email protected], [email protected], [email protected] Typescript received 4 July 2016; accepted in revised form 19 January 2017 Abstract: The tuatara, Sphenodon punctatus, known from since the Triassic, rhynchocephalians had heterogeneous rates 32 small islands around New Zealand, has often been noted of morphological evolution and occupied wide mor- as a classic ‘living fossil’ because of its apparently close phospaces during the Triassic and Jurassic, and these then resemblance to its Mesozoic forebears and because of a long, declined in the Cretaceous. In particular, we demonstrate low-diversity history. This designation has been disputed that the extant tuatara underwent unusually slow lineage because of the wide diversity of Mesozoic forms and because evolution, and is morphologically conservative, being located of derived adaptations in living Sphenodon.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Dinosaur Remains from the 'Botucaraí Hill' (Caturrita Formation), Late
    This article was downloaded by: [Jonathas Souza Bittencourt] On: 17 August 2012, At: 06:23 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Historical Biology: An International Journal of Paleobiology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ghbi20 Dinosaur remains from the ‘Botucaraí Hill’ (Caturrita Formation), Late Triassic of south Brazil, and their stratigraphic context Jonathas Souza Bittencourt a b , Átila Augusto Stock da Rosa c , Cesar Leandro Schultz d & Max Cardoso Langer a a Departamento de Biologia, Universidade de São Paulo, Av. Bandeirantes 3900, 1404-901, Ribeirão Preto (SP), Brazil b Departamento de Geologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6670, 31270-901, Belo Horizonte (MG), Brazil c Departamento de Geociências, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900, Santa Maria (RS), Brazil d Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970, Porto Alegre (RS), Brazil Version of record first published: 17 Aug 2012 To cite this article: Jonathas Souza Bittencourt, Átila Augusto Stock da Rosa, Cesar Leandro Schultz & Max Cardoso Langer (2012): Dinosaur remains from the ‘Botucaraí Hill’ (Caturrita Formation), Late Triassic of south Brazil, and their stratigraphic context, Historical Biology: An International Journal of Paleobiology, DOI:10.1080/08912963.2012.694881 To link to this article: http://dx.doi.org/10.1080/08912963.2012.694881 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • A Small Lepidosauromorph Reptile from the Early Triassic of Poland
    A SMALL LEPIDOSAUROMORPH REPTILE FROM THE EARLY TRIASSIC OF POLAND SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA Evans, S.E. and Borsuk−Białynicka, M. 2009. A small lepidosauromorph reptile from the Early Triassic of Poland. Palaeontologia Polonica 65, 179–202. The Early Triassic karst deposits of Czatkowice quarry near Kraków, southern Poland, has yielded a diversity of fish, amphibians and small reptiles. Two of these reptiles are lepido− sauromorphs, a group otherwise very poorly represented in the Triassic record. The smaller of them, Sophineta cracoviensis gen. et sp. n., is described here. In Sophineta the unspecial− ised vertebral column is associated with the fairly derived skull structure, including the tall facial process of the maxilla, reduced lacrimal, and pleurodonty, that all resemble those of early crown−group lepidosaurs rather then stem−taxa. Cladistic analysis places this new ge− nus as the sister group of Lepidosauria, displacing the relictual Middle Jurassic genus Marmoretta and bringing the origins of Lepidosauria closer to a realistic time frame. Key words: Reptilia, Lepidosauria, Triassic, phylogeny, Czatkowice, Poland. Susan E. Evans [[email protected]], Department of Cell and Developmental Biology, Uni− versity College London, Gower Street, London, WC1E 6BT, UK. Magdalena Borsuk−Białynicka [[email protected]], Institut Paleobiologii PAN, Twarda 51/55, PL−00−818 Warszawa, Poland. Received 8 March 2006, accepted 9 January 2007 180 SUSAN E. EVANS and MAGDALENA BORSUK−BIAŁYNICKA INTRODUCTION Amongst living reptiles, lepidosaurs (snakes, lizards, amphisbaenians, and tuatara) form the largest and most successful group with more than 7 000 widely distributed species. The two main lepidosaurian clades are Rhynchocephalia (the living Sphenodon and its extinct relatives) and Squamata (lizards, snakes and amphisbaenians).
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • The Giant Pliosaurid That Wasn't—Revising the Marine Reptiles From
    The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland DANIEL MADZIA, TOMASZ SZCZYGIELSKI, and ANDRZEJ S. WOLNIEWICZ Madzia, D., Szczygielski, T., and Wolniewicz, A.S. 2021. The giant pliosaurid that wasn’t—revising the marine reptiles from the Kimmeridgian, Upper Jurassic, of Krzyżanowice, Poland. Acta Palaeontologica Polonica 66 (1): 99–129. Marine reptiles from the Upper Jurassic of Central Europe are rare and often fragmentary, which hinders their precise taxonomic identification and their placement in a palaeobiogeographic context. Recent fieldwork in the Kimmeridgian of Krzyżanowice, Poland, a locality known from turtle remains originally discovered in the 1960s, has reportedly provided additional fossils thought to indicate the presence of a more diverse marine reptile assemblage, including giant pliosaurids, plesiosauroids, and thalattosuchians. Based on its taxonomic composition, the marine tetrapod fauna from Krzyżanowice was argued to represent part of the “Matyja-Wierzbowski Line”—a newly proposed palaeobiogeographic belt comprising faunal components transitional between those of the Boreal and Mediterranean marine provinces. Here, we provide a de- tailed re-description of the marine reptile material from Krzyżanowice and reassess its taxonomy. The turtle remains are proposed to represent a “plesiochelyid” thalassochelydian (Craspedochelys? sp.) and the plesiosauroid vertebral centrum likely belongs to a cryptoclidid. However, qualitative assessment and quantitative analysis of the jaws originally referred to the colossal pliosaurid Pliosaurus clearly demonstrate a metriorhynchid thalattosuchian affinity. Furthermore, these me- triorhynchid jaws were likely found at a different, currently indeterminate, locality. A tooth crown previously identified as belonging to the thalattosuchian Machimosaurus is here considered to represent an indeterminate vertebrate.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • Bristol Undergraduate Reconstructs the Skulls of Two Species of Ancient Reptile 25 February 2019
    Bristol undergraduate reconstructs the skulls of two species of ancient reptile 25 February 2019 Since then, similar beasts have been found elsewhere around Bristol and in South Wales, as well as in China and North America. Clevosaurus was an early representative of an ancient group of reptiles called Rhynchocephalia, which today is represent only by the tuatara of New Zealand. In her project, Sofia worked on new fossils of Clevosaurus hudsoni, the first species to be named, and Clevosaurus cambrica, which was named from a quarry site in South Wales in 2018. She used CT scans of both skulls to reconstruct their original appearance, and she found evidence that the two species, which lived at the same time in the Late Triassic, some 205 million years ago, showed significant differences. Sofia said: "I found that Clevosaurus cambrica was Skulls of the two species of Clevosaurus, showing the smaller overall and had a narrower snout than difference in size, and the differences kin the teeth kin Clevosaurus hudsoni. the jaws -- blade-like in Clevosaurus hudsoni and corkscrew-like in Clevosaurus cambrica. Credit: Image from the CT scan data, produced by Sophie Chambi-Trowell. Using two partially fragmented fossil skulls, a student at the University of Bristol has digitally reconstructed, in three-dimensions, the skulls of two species of ancient reptile that lived in the Late Triassic, one of which had been previously known only from its jaws. The research was completed by Sofia Chambi- Trowell, an undergraduate in Bristol's School of Earth Sciences, as part of her final-year project for her degree in Palaeobiology.
    [Show full text]
  • Neutron Scanning Reveals Unexpected Complexity in the Enamel Thickness of Rsif.Royalsocietypublishing.Org an Herbivorous Jurassic Reptile
    Downloaded from http://rsif.royalsocietypublishing.org/ on September 11, 2018 Neutron scanning reveals unexpected complexity in the enamel thickness of rsif.royalsocietypublishing.org an herbivorous Jurassic reptile Marc E. H. Jones1,2,3, Peter W. Lucas4, Abigail S. Tucker5, Amy P. Watson2, Research Joseph J. W. Sertich6, John R. Foster7, Ruth Williams8, Ulf Garbe9, Joseph J. Bevitt9 and Floriana Salvemini9 Cite this article: Jones MEH et al. 2018 1Department of Earth Sciences, The Natural History Museum, London, UK Neutron scanning reveals unexpected 2Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, North Terrace, complexity in the enamel thickness of Adelaide, South Australia 5005, Australia 3 an herbivorous Jurassic reptile. J. R. Soc. South Australian Museum, North Terrace, Adelaide, South Australia 5001, Australia 4Smithsonian Tropical Research Institute, Balboa, Panama Interface 15: 20180039. 5Craniofacial Development and Stem Cell Biology, King’s College London, London, UK http://dx.doi.org/10.1098/rsif.2018.0039 6Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA 7Museum of Moab, Moab, UT, USA 8Department of Adelaide Microscopy, The University of Adelaide, Adelaide, South Australia 5001, Australia 9Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, Received: 16 January 2018 Australia Accepted: 18 May 2018 MEHJ, 0000-0002-0146-9623; PWL, 0000-0001-5286-9101; AST, 0000-0001-8871-6094 Eilenodontines are one of the oldest radiation of herbivorous lepidosaurs (snakes, lizards and tuatara) characterized by batteries of wide teeth with thick enamel that bear mammal-like wear facets. Unlike most reptiles, eileno- Subject Category: dontines have limited tooth replacement, making dental longevity Life Sciences–Engineering interface particularly important to them.
    [Show full text]