Nototheniidae

Total Page:16

File Type:pdf, Size:1020Kb

Nototheniidae FAMILY Nototheniidae Gunther, 1861 – cod icefishes SUBFAMILY Pleuragrammatinae Andersen & Hureau 1979 - cod icefishes GENUS Aethotaxis DeWitt, 1962 - cod icefishes Species Aethotaxis mitopteryx DeWitt, 1962 - longfin icedevil [=pawsoni] GENUS Dissostichus Smitt, 1898 - cod icefishes [=Macrias] Species Dissostichus eleginoides Smitt, 1898 - Patagonian toothfish [=amissus] Species Dissostichus mawsoni Norman, 1937 - Antarctic toothfish GENUS Gvozdarus Balushkin, 1989 - cod icefishes Species Gvozdarus balushkini Voskoboinikova & Kellermann, 1993 - Balushkin's icefish Species Gvozdarus svetovidovi Balushkin, 1989 - nakedhead toothfish GENUS Pleuragramma Boulenger, 1902 - cod icefishes [=Gelidus] Species Pleuragramma antarcticum Boulenger, 1902 - Antarctic silverfish SUBFAMILY Nototheniinae Günther 1861 - notothens GENUS Gobionotothen Balushkin, 1976 - notothens Species Gobionotothen acuta (Gunther, 1880) - triangular rockcod Species Gobionotothen angustifrons (Fischer, 1885) - narrowhead rockcod [=sandwichensis] Species Gobionotothen barsukovi Balushkin, 1991 - Barsukovi's rockcod Species Gobionotothen gibberifrons (Lonnberg, 1905) - humped rockcod Species Gobionotothen marionensis (Gunther, 1880) - lobelip notothen GENUS Indonotothenia Balushkin, 1984 - cod icefishes Species Indonotothenia cyanobrancha (Richardson, 1844) - blue rockcod [=purpuriceps] GENUS Lepidonotothen Balushkin, 1976 - cod icefishes [=Lindbergia, Lindbergichthys] Species Lepidonotothen kempi (Norman, 1937) - Kemp's icefish Species Lepidonotothen larseni (Lonnberg, 1905) - painted rockcod Species Lepidonotothen loesha (Balushkin, 1976) - loesha rockcod Species Lepidonotothen mizops (Gunther, 1880) - toad rockcod Species Lepidonotothen nudifrons (Lonnberg, 1905) - yellowfin rockcod Species Lepidonotothen nybelini (Balushkin, 1976) - Nybelin's rockcod Species Lepidonotothen squamifrons (Gunther, 1880) - grey rockcod [=atlantica, brevipectoralis, macrophthalma] GENUS Notothenia Richardson, 1844 - cod icefishes [=Macronotothen] Species Notothenia angustata Hutton, 1875 - Maori chief [=latifrons, parva, patagonica, porteri] Species Notothenia coriiceps Richardson, 1844 - black rockcod Species Notothenia microlepidota Hutton, 1875 - black cod [=colbecki, filholi] Species Notothenia neglecta Nybelin, 1951 - yellowbelly rockcod Species Notothenia rossii Richardson, 1844 - marbled rockcod [=macquariensis, marmorata] GENUS Nototheniops Balushkin, 1976 - cod icefishes Species Nototheniops loesha (Balushkin, 1976) - loesha nototheniops Species Nototheniops nybelini Balushkin, 1976 - Nyblelin's nototheniops Species Nototheniops tchizh (Balushkin, 1976) - tchizh icefish [=crozetensis, minutus] GENUS Paranotothenia Balushkin, 1976 - cod icefishes Species Paranotothenia dewitti Balushkin, 1990 - DeWitt's icefish Species Paranotothenia magellanica (Forster, 1801) - Magellanic rockcod [=antarctica, arguta, hassleriana, macrocephalus, maoriensis] GENUS Patagonotothen Balushkin, 1976 - cod icefishes Species Patagonotothen brevicauda (Lonnberg, 1905) - Patagonian rockcod Species Patagonotothen cornucola (Richardson, 1844) - Richardson's rockcod [=calva, intermedia, marginata, modesta, normani, squamifrons, virgata] Species Patagonotothen elegans (Gunther, 1880) - elegant rockcod Species Patagonotothen guntheri (Norman, 1937) - yellowfin notothen Species Patagonotothen jordani (Thompson, 1916) - Jordan's rockcod Species Patagonotothen kreffti Balushkin & Stehmann, 1993 - Krefft's rockcod Species Patagonotothen longipes (Steindachner, 1876) - longfin rockcod [=gilberti] Species Patagonotothen occidentalis (Balushkin, 1976) - occidentalis rockcod Species Patagonotothen ramsayi (Regan, 1913) - longtail southern cod Species Patagonotothen shagensis Balushkin & Permitin, 1982 - Shag rockcod Species Patagonotothen sima (Richardson, 1845) - sima rockcod [=karlandreae] Species Patagonotothen squamiceps (Peters, 1877) - Peters' rockcod Species Patagonotothen tessellata (Richardson, 1845) - black southern cod Species Patagonotothen thompsoni Balushkin, 1993 - Thompson's cod Species Patagonotothen trigramma (Regan, 1913) - trigramma rockcod Species Patagonotothen wiltoni (Regan, 1913) - Wilton's rockcod SUBFAMILY Trematominae Balushkin 1982 - cod icefishes GENUS Cryothenia Daniels, 1981 - cod icefishes Species Cryothenia amphitreta Cziko & Cheng, 2006 - amphitreta icefish Species Cryothenia peninsulae Daniels, 1981 - pithead GENUS Pagothenia Nichols & La Monte, 1936 - cod icefishes Species Pagothenia borchgrevinki (Boulenger, 1902) - bald notothen [=hodgsoni] Species Pagothenia phocae (Richardson, 1844) - stocky rockcod [=antarctica, brachysoma] GENUS Pseudotrematomus Balushkin, 1982 - cod icefishes Species Pseudotrematomus bernacchii (Boulenger, 1902) - Bernacchi's icefish Species Pseudotrematomus centronotus (Regan, 1914) - centronotus icefish Species Pseudotrematomus eulepidotus (Regan, 1914) - eulepidotus icefish Species Pseudotrematomus hansoni (Boulenger, 1902) - Hanson's icefish Species Pseudotrematomus lepidorhinus (Pappenheim, 1911) - lepidorhinus icefish Species Pseudotrematomus loennbergii (Regan, 1913) - Loennberg's icefish Species Pseudotrematomus nicolai (Boulenger, 1902) - Nicola's icefish Species Pseudotrematomus pennellii (Regan, 1914) - Pennelli's icefish Species Pseudotrematomus scotti (Boulenger, 1907) - Scott's icefish Species Pseudotrematomus tokarevi (Andriashev, 1978) - Tokarev's icefish Species Pseudotrematomus vicarius (Lonnberg, 1905) - vicarius icefish [=dubia] GENUS Trematomus Boulenger, 1902 - cod icefishes Species Trematomus newnesi Boulenger, 1902 - dusky rockcod.
Recommended publications
  • The Kerguelen Plateau: Marine Ecosystem + Fisheries
    THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Important readjustments in the biomass and distribution of groundfish species in the northern part of the Kerguelen Plateau and Skiff Bank Guy Duhamel1, Clara Péron1, Romain Sinègre1, Charlotte Chazeau1, Nicolas Gasco1, Mélyne Hautecœur1, Alexis Martin1, Isabelle Durand2 and Romain Causse1 1 Muséum national d’Histoire naturelle, Département Adaptations du vivant, UMR 7208 BOREA (MNHN, CNRS, IRD, Sorbonne Université, UCB, UA), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France 2 Muséum national d’Histoire naturelle, Département Origines et Evolution, UMR 7159 LOCEAN (Sorbonne Université, IRD, CNRS, MNHN), CP 26, 43 rue Cuvier, 75231 Paris cedex 05, France Corresponding author: [email protected] Abstract The recent changes in the conservation status (establishment and extension of a marine reserve) and the long history of fishing in the Kerguelen Islands exclusive economic zone (EEZ) (Indian sector of the Southern Ocean) justified undertaking a fish biomass evaluation. This study analysed four groundfish biomass surveys (POKER 1–4) conducted from 2006 to 2017 across depths ranging from 100 to 1 000 m. Forty demersal species were recorded in total and density distributions of twenty presented. However, only seven species account for the majority of the biomass (96%). Total biomass was 250 000 tonnes during the first three surveys (POKER 1–3), and 400 000 tonnes for POKER 4 due to a high catch of marbled notothen (Notothenia rossii) and mackerel icefish (Champsocephalus gunnari) (accounting for 44% and 17% of the 400 000 tonnes biomass respectively).
    [Show full text]
  • Marine Ecology Progress Series 502:281
    Vol. 502: 281–294, 2014 MARINE ECOLOGY PROGRESS SERIES Published April 15 doi: 10.3354/meps10709 Mar Ecol Prog Ser Foraging behaviour of southern elephant seals over the Kerguelen Plateau Malcolm O’Toole1,*, Mark A. Hindell1, Jean-Benoir Charrassin2, Christophe Guinet3 1Institute of Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia 2Muséum National d’Histoire Naturelle, Paris 75231, France 3Marine Predator Department, Centre Biologique de Chize, Villiers en Bois 79360, France ABSTRACT: A total of 79 (37 juvenile male, 42 adult female) southern elephant seals Mirounga leonina from the Kerguelen Islands were tracked between 2004 and 2009. Area-restricted search patterns and dive behaviour were established from location data gathered by CTD satellite- relayed data loggers. At-sea movements of the seals demonstrated that >40% of the juvenile ele- phant seal population tagged use the Kerguelen Plateau during the austral winter. Search activity increased where temperature at 200 m depth was lower, when closer to the shelf break, and, to a lesser extent, where sea-surface height anomalies were higher. However, while this model explained the observed data (F1,242 = 88.23, p < 0.0001), bootstrap analysis revealed poor predic- tive capacity (r2 = 0.264). There appears to be potential overlap between the seals and commercial fishing operations in the region. This study may therefore support ecosystem-based fisheries man- agement of the region, with the aim of maintaining ecological integrity of the shelf. KEY WORDS: Diving behaviour · 3-dimensional utilisation · Shelf break · Temperature · Sea-surface height · Fisheries management Resale or republication not permitted without written consent of the publisher INTRODUCTION cally indicated by reduced transit speed and in - creased turning frequency within a given area and is Quantifying animal movement provides informa- often indicative of foraging activity (e.g.
    [Show full text]
  • Microsatellite Markers for the Notothenioid Fish Lepidonotothen
    Papetti et al. BMC Res Notes (2016) 9:238 DOI 10.1186/s13104-016-2039-x BMC Research Notes SHORT REPORT Open Access Microsatellite markers for the notothenioid fish Lepidonotothen nudifrons and two congeneric species Chiara Papetti1*, Lars Harms1, Jutta Jürgens1, Tina Sandersfeld1,2, Nils Koschnick1, Heidrun Sigrid Windisch1,3, Rainer Knust1, Hans‑Otto Pörtner1 and Magnus Lucassen1 Abstract Background: Loss of genetic variability due to environmental changes, limitation of gene flow between pools of individuals or putative selective pressure at specific markers, were previously documented for Antarctic notothenioid fish species. However, so far no studies were performed for the Gaudy notothen Lepidonotothen nudifrons. Starting from a species-specific spleen transcriptome library, we aimed at isolating polymorphic microsatellites (Type I; i.e. derived from coding sequences) suitable to quantify the genetic variability in this species, and additionally to assess the population genetic structure and demography in nototheniids. Results: We selected 43,269 transcripts resulting from a MiSeq sequencer run, out of which we developed 19 primer pairs for sequences containing microsatellite repeats. Sixteen loci were successfully amplified in L. nudifrons. Eleven microsatellites were polymorphic and allele numbers per locus ranged from 2 to 17. In addition, we amplified loci identified from L. nudifrons in two other congeneric species (L. squamifrons and L. larseni). Thirteen loci were highly transferable to the two congeneric species. Differences in polymorphism among species were detected. Conclusions: Starting from a transcriptome of a non-model organism, we were able to identify promising polymor‑ phic nuclear markers that are easily transferable to other closely related species. These markers can be a key instru‑ ment to monitor the genetic structure of the three Lepidonotothen species if genotyped in larger population samples.
    [Show full text]
  • Fitting Together the Evolutionary Puzzle Pieces of the Immunoglobulin T Gene from Antarctic Fishes
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 November 2020 doi:10.20944/preprints202011.0685.v1 Article Fitting together the evolutionary puzzle pieces of the Immunoglobulin T gene from Antarctic fishes Alessia Ametrano1,2 Marco Gerdol3, Maria Vitale1,4, Samuele Greco3, Umberto Oreste1, Maria Rosaria Coscia1,* 1 Institute of Biochemistry and Cell Biology - National Research Council of Italy, 80131 Naples, Italy; [email protected] (A.A.); [email protected] (U.O.); [email protected] (M.R.C.) 2 Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; [email protected] (A.A.) 3 Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; [email protected] (M.G.); [email protected] (S.G.) 1,4 Department of Molecular Medicine and Medical biotechnology, University of Naples Federico II, 80131 Naples, Italy (Present address); [email protected] (M.V.) * Correspondence: [email protected]; Tel.: +0039 081 6132556 (M.R.C.) Abstract: Cryonotothenioidea is the main group of fishes that thrive in the extremely cold Antarctic environment, thanks to the acquisition of peculiar morphological, physiological and molecular adaptations. We have previously disclosed that IgM, the main immunoglobulin isotype in teleosts, display typical cold-adapted features. Recently, we have analyzed the gene encoding the heavy chain constant region (CH) of the IgT isotype from the Antarctic teleost Trematomus bernacchii (family Nototheniidae), characterized by the near-complete deletion of the CH2 domain. Here, we aimed to track the loss of the CH2 domain along notothenioid phylogeny and to identify its ancestral origins.
    [Show full text]
  • Food and Feeding Ecology of the Neritic-Slope Forager Black-Browed Albatross and Its Relationships with Commercial Fisheries in Kerguelen Waters
    MARINE ECOLOGY PROGRESS SERIES Vol. 207: 183–199, 2000 Published November 22 Mar Ecol Prog Ser Food and feeding ecology of the neritic-slope forager black-browed albatross and its relationships with commercial fisheries in Kerguelen waters Yves Cherel*, Henri Weimerskirch, Colette Trouvé Centre d’Etudes Biologiques de Chizé, UPR 1934 du Centre National de la Recherche Scientifique, 79360 Villiers-en-Bois, France ABSTRACT: Food and feeding ecology of black-browed albatrosses Diomedea melanophrys rearing chicks was studied during 2 austral summers (1994 and 1995) at the Kerguelen Islands. Dietary analy- sis and satellite tracking were used to estimate potential interactions with commercial fisheries in the area. Fish comprised 73% by fresh mass of albatross diet; other significant food items were penguins (14%) and cephalopods (10%). Twenty-one species of fish (232 individuals) were identified and included mainly nototheniid and channichthyid species. The most important were Dissostichus elegi- noides (18.3% by reconstituted mass), Channichthys rhinoceratus (16.9%), Lepidonotothen squam- ifrons (11.6%), and to a lesser extent, Bathyraja sp. (4.5%) and Notothenia cyanobrancha (4.5%). The cephalopod diet was dominated by 3 taxa, the ommastrephid squids Todarodes sp. (7.6%) and Mar- tialia hyadesi (3.6%), and the octopus Benthoctopus thielei (2.4%). Satellite tracking indicated that during trips lasting 2 to 3 d, albatrosses foraged mainly over the outer shelf and inner shelf-break of the Kerguelen Archipelago. Birds moved to northern, eastern and southern waters, but never to the western Kerguelen shelf where there was a commercial longline fishery for D. eleginoides. Interac- tions with trawlers targetting D.
    [Show full text]
  • Mitochondrial Phylogeny of Trematomid Fishes (Nototheniidae, Perciformes) and the Evolution of Antarctic Fish
    MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 5, No. 2, April, pp. 383±390, 1996 ARTICLE NO. 0033 Mitochondrial Phylogeny of Trematomid Fishes (Nototheniidae, Perciformes) and the Evolution of Antarctic Fish PETER A. RITCHIE,²,*,1,2 LUCA BARGELLONI,*,³ AXEL MEYER,*,§ JOHN A. TAYLOR,² JOHN A. MACDONALD,² AND DAVID M. LAMBERT²,2 ²School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand; *Department of Ecology and Evolution and §Program in Genetics, State University of New York, Stony Brook, New York 11794-5245; and ³Dipartimento di Biologia, Universita di Padova, Via Trieste 75, 35121 Padua, Italy Received November 22, 1994; revised June 2, 1995 there is evidence that this may have occurred about The subfamily of ®shes Trematominae is endemic to 12±14 million years ago (MYA) (Eastman, 1993; the subzero waters of Antarctica and is part of the Bargelloni et al., 1994). larger notothenioid radiation. Partial mitochondrial There may have been a suite of factors which allowed sequences from the 12S and 16S ribosomal RNA (rRNA) the notothenioids, in particular, to evolve to such domi- genes and a phylogeny for 10 trematomid species are nance in the Southern Oceans. Several authors have presented. As has been previously suggested, two taxa, suggested that speciation within the group could have Trematomus scotti and T. newnesi, do not appear to be been the result of large-scale disruptions in the Antarc- part of the main trematomid radiation. The genus Pa- tic ecosystem during the Miocene (Clarke, 1983). The gothenia is nested within the genus Trematomus and isostatic pressure from the accumulation of ice during has evolved a unique cyropelagic existence, an associ- the early Miocene (25±15 MYA) left the continental ation with pack ice.
    [Show full text]
  • The Hemoglobins of Sub-Antarctic Fishes of the Suborder Notothenioidei
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Polar Science 4 (2010) 295e308 http://ees.elsevier.com/polar/ The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei Daniela Coppola a, Daniela Giordano a, Alessandro Vergara b, Lelio Mazzarella b, Guido di Prisco a, Cinzia Verde a, Roberta Russo a,* a Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy b Department of Chemistry, University of Naples ‘Federico II’, Complesso Universitario Monte S. Angelo, Via Cinthia, I-80126 Naples, Italy Received 16 December 2009; revised 19 April 2010; accepted 19 April 2010 Available online 12 May 2010 Abstract Fishes of the perciform suborder Notothenioidei provide an excellent opportunity for studying the evolution and functional importance of evolutionary adaptations to temperature. To understand the unique biochemical features of high-Antarctic noto- thenioids, it is important to improve our knowledge of these highly cold-adapted stenotherms with new information on their sub- Antarctic relatives. This paper focuses on the oxygen-transport system of two non-Antarctic species, Eleginops maclovinus and Bovichtus diac- anthus. Unlike most Antarctic notothenioids, the blood of E. maclovinus and B. diacanthus displays high hemoglobin (Hb) multiplicity. E. maclovinus, the sister group of Antarctic notothenioids, has one cathodal (Hb C) and two anodal components (Hb 1, Hb 2). B. diacanthus, one of the most northern notothenioids, has three major Hbs. The multiple Hbs may have been maintained as a response to temperature differences and fluctuations of temperate waters, much larger than in the Antarctic.
    [Show full text]
  • Comparison of Size Selectivity Between Marine Mammals and Commercial Fisheries with Recommendations for Restructuring Management Policies
    NOAA Technical Memorandum NMFS-AFSC-159 Comparison of Size Selectivity Between Marine Mammals and Commercial Fisheries with Recommendations for Restructuring Management Policies by M. A. Etnier and C. W. Fowler U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center October 2005 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Etnier, M. A., and C. W. Fowler. 2005. Comparison of size selectivity between marine mammals and commercial fisheries with recommendations for restructuring management policies. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-159, 274 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-159 Comparison of Size Selectivity Between Marine Mammals and Commercial Fisheries with Recommendations for Restructuring Management Policies by M. A. Etnier and C. W. Fowler Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle, WA 98115 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Carlos M.
    [Show full text]
  • Adaptation of Proteins to the Cold in Antarctic Fish: a Role for Methionine?
    bioRxiv preprint doi: https://doi.org/10.1101/388900; this version posted August 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Cold fish 1 Article: Discoveries 2 Adaptation of proteins to the cold in Antarctic fish: A role for Methionine? 3 4 Camille Berthelot1,2, Jane Clarke3, Thomas Desvignes4, H. William Detrich, III5, Paul Flicek2, Lloyd S. 5 Peck6, Michael Peters5, John H. Postlethwait4, Melody S. Clark6* 6 7 1Laboratoire Dynamique et Organisation des Génomes (Dyogen), Institut de Biologie de l'Ecole 8 Normale Supérieure ‐ UMR 8197, INSERM U1024, 46 rue d'Ulm, 75230 Paris Cedex 05, France. 9 2European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome 10 Campus, Hinxton, Cambridge, CB10 1SD, UK. 11 3University of Cambridge, Department of Chemistry, Lensfield Rd, Cambridge CB2 1EW, UK. 12 4Institute of Neuroscience, University of Oregon, Eugene OR 97403, USA. 13 5Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, 14 Nahant, MA 01908, USA. 15 6British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, 16 Cambridge, CB3 0ET, UK. 17 18 *Corresponding Author: Melody S Clark, British Antarctic Survey, Natural Environment Research 19 Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK. Email: [email protected] 20 21 bioRxiv preprint doi: https://doi.org/10.1101/388900; this version posted August 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Antarctic Notothenioid Fishes Do Not Display Metabolic Cold Adaptation in Hepatic Gluconeogenesis Leonardo J
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2002 Antarctic Notothenioid Fishes Do Not Display Metabolic Cold Adaptation in Hepatic Gluconeogenesis Leonardo J. Magnoni Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Oceanography Commons Recommended Citation Magnoni, Leonardo J., "Antarctic Notothenioid Fishes Do Not Display Metabolic Cold Adaptation in Hepatic Gluconeogenesis" (2002). Electronic Theses and Dissertations. 140. http://digitalcommons.library.umaine.edu/etd/140 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ANTARCTIC NOTOTHENIOID FISHES DO NOT DISPLAY METABOLIC COLD ADAPTATION IN HEPATIC GLUCONEOGENESIS BY Leonardo J. Magnoni "Licenciadon in Biology, Universidad Nacional de Mar del Plata, Argentina, 1997 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) The Graduate School The University of Maine August, 2002 Advisory Committee: Bruce D. Sidell, Professor of Marine Sciences, Advisor Robert Cashon, Assistant Professor of Biochemistry Ione Hunt von Herbing, Assistant Professor of Marine Sciences ANTARCTIC NOTOTHENIOID FISHES DO NOT DISPLAY METABOLIC COLD ADAPTATION IN HEPATIC GLUCONEOGENESIS By Leonardo J. Magnoni Thesis Advisor: Dr. Bruce D. Side11 An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Biology) August, 2002 Antarctic notothenioid fishes present specializations related to their chronically cold environment, such as high lipid content in tissues (predominantly triacylglycerols, TAG). When TAGs are mobilized, they yield fatty acids and glycerol.
    [Show full text]
  • BIOMASS, ABUNDANCE and DISTRIBUTION of FISH in the KERGUELEN ISLANDS EEZ (CCAMLR Statistical DIVISION 58.5.1)
    CCAMLR Science, Vol. 16 (2009): 1–32 BIOMASS, ABUNDANCE AND DISTRIBUTION OF FISH IN THE KERGUELEN ISLANDS EEZ (CCAMLR statistical DIVISION 58.5.1) G. Duhamel and M. Hautecoeur Muséum national d’histoire naturelle Département des milieux et peuplements aquatiques UMR 5178, USM 401, CP 26 43 rue Cuvier 75231 Paris Cedex 05, France Email – [email protected] Abstract ‘POKER 2006’, a bottom trawl fish biomass survey, was conducted from September to October 2006 in the northern part of the Kerguelen Plateau (CCAMLR Statistical Division 58.5.1). The swept-area method was used in the depth range from 100 to 1 000 m with 207 random stratified stations. Estimates of biomass and abundance were produced for eight commercial species. The total biomass was 245 000 tonnes and Patagonian toothfish (Dissostichus eleginoides) accounted for half of the value (124 000 tonnes). The fish biomass was distributed between the shelf and the deep sea. However, this evaluation remains incomplete as four of the species (D. eleginoides, bigeye grenadier (Macrourus carinatus), Eaton’s skate (Bathyraja eatonii) and Kerguelen sandpaper skate (B. irrasa)) extend deeper than 1 000 m, the limit of the POKER 2006 survey. Some shelf and slope species (mackerel icefish (Champsocephalus gunnari) and marbled rockcod (Notothenia rossii)) exhibit low levels of biomass when compared to the results of previous surveys (SKALP surveys, 1987 and 1988). Other species (unicorn icefish (Channichthys rhinoceratus) and grey rockcod (Lepidonotothen squamifrons)) seem to have increased, even doubled, their biomass during the period between the two surveys. In addition to the commercial species, Zanclorhynchus spinifer was abundant on the shelf and Alepocephalus cf.
    [Show full text]
  • UV-Protective Compounds in Marine Organisms from the Southern Ocean
    marine drugs Review UV-Protective Compounds in Marine Organisms from the Southern Ocean Laura Núñez-Pons 1 , Conxita Avila 2 , Giovanna Romano 3 , Cinzia Verde 1,4 and Daniela Giordano 1,4,* 1 Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy; [email protected] (L.N.-P.); [email protected] (C.V.) 2 Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain; [email protected] 3 Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy; [email protected] 4 Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy * Correspondence: [email protected]; Tel.: +39-081-613-2541 Received: 12 July 2018; Accepted: 12 September 2018; Published: 14 September 2018 Abstract: Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota—particularly in euphotic and dysphotic zones—depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R.
    [Show full text]