Angela Perkins History of Mathematics Essay 1: the Golden Ratio In

Total Page:16

File Type:pdf, Size:1020Kb

Angela Perkins History of Mathematics Essay 1: the Golden Ratio In Angela Perkins History of Mathematics Essay 1: The Golden Ratio in Ancient Greece The Golden Ratio, though not named this until the nineteenth century, has been used and studied for thousands of years. Though the exact origin of discovery is not known, the Golden Ratio is thought to be discovered in ancient Greece. Some researcher have said that the Pythagoreans, particularly Hippasus of Metapontum, discovered the Golden Ratio. The first known written definition of the Golden Ratio was by Euclid, a Greek philosopher and mathematician that lived around 300 B.C, in his collection of mathematic works called Elements. Another prominent Greek philosopher that also was known to have an interest in the Golden Ratio was Plato. Though Plato didn’t make much mathematical contributions like Euclid, his interest influenced many important people. The Golden Ratio goes by many names, including; Golden Number, Golden Ratio, Golden Section, Divine Proportion, phi (φ), and extreme and mean ratio (in Elements). The definition that Euclid gives in Elements is, “A straight line is said to have been cut in extreme and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser.” Though the words might be hard to follow on first read, the concept is fairly simple. In Figure 1, the line segment A is to B as B is to C. The Golden Ratio is (1 + √5)/2 and can be reduced to 1.61803398… It is irrational because it never ends. Figure 1. Golden Ratio as a proportion of a line Though the concept of irrational numbers is known and accepted readily today, irrational numbers were not known about or accepted in ancient times. Whole numbers and fractions of whole number were, for a long time, the only known numbers to exist. Hippasus of Metapontum, who was a follower of Pythagoras in fifth century B.C. Greece, discovered irrational numbers. The Pythagoreans strongly believed that the universe was ruled and could be understood by whole numbers and fractions of whole numbers. Hippasus’s discovery made them question one of their most fundamental and important beliefs. Because this discovery discredited their beliefs, it was kept a secret. The Pythagoreans were interested in pentagrams and pentagons. The pentagram was the symbol of their brotherhood. As shown in Figure 2, a pentagon is formed at the center of the pentagram. A smaller pentagram can be formed inside this pentagon. This pentagram forms an even smaller pentagon, and so on and so on. Each pentagon is exactly to the previous, by the Golden Ratio. The pentagrams also follow this trend. Because of the Pythagoreans’ interest in pentagrams and pentagons, some researchers believe that they discovered the Golden Ratio. Particularly, it is thought that the Pythagorean that discovered the Golden ratio was Hippasus. Figure 2. Golden Ratio and the pentagram Another Greek philosopher that is known to be connected to the Golden Ratio is Plato (427 B.C. - 347 B.C.). Plato is considered one of the greatest minds of ancient Greece. Though he studied mathematics with Theodorus of Cyrene, he did not contribute greatly to mathematics directly. His influence of other mathematicians is what was important. Some of the best mathematicians of ancient Greece studied at his institution called the Academy. In Plato’s Timaeus, he describes the Golden Ratio by saying, ”For whenever in any three numbers, whether cube or square, there is a mean, which is to the last term what the first term is to it; and again, when the mean is to the first term as the last term is to the mean-then the mean becoming first and last, and the first and last both becoming means, they will all of them of necessity come to be the same, and having become the same with one another will be all one.”. Plato looked at mathematics as something divine and beautiful. Plato attempted to explain the cosmos and also the structure of matter. He used five regular solids. These five solids have been studied previously by the Pythagoreans and by Theaetetus. These solids are called the five Platonic solids. They are the tetrahedron, cube, octahedron, dodecahedron, and the icosahedron, as shown in Figure 3. His theory was that the solids represented different fundamental particles. The Platonic solids have a connection with the Golden Ratio, in particular the dodecahedron and icosahedron. The total surface area of the dodecahedron, with an edge length of 1, is 15φ/√3 − 휑 and the volume is represented by 5φ3/(6-2φ). The volume of the icosahedron, with a side length of 1 is 5φ5/6. (φ representing the Golden Ratio). Also, another connection between Platonic solids and the Golden Ratio is it appears if an icosahedron is mapped into a dodecahedron. The ratio of the solid’s edge length can be expressed as φ2/√5. The math of the solids were not known to this extent to Plato and his followers, but they still appreciated the beauty that they held. Figure 3. Platonic Solids It is believed that Euclid was educated by Plato’s pupils. He wrote many books about things such as music and optics. Euclid also wrote one of the best known books about mathematics in history called Elements. Elements is a collection of thirteen volumes about geometry and number theory. Elements was used for thousands of years for the study of mathematics. There are multiple locations in this work that the Golden Ratio is mentioned. In Elements, the Golden Ratio is referred to as extreme and mean ratio. Book II gives the definition of the Golden Ratio in relation to areas. Book VI provides another definition related to proportion as shown in Figure 1. In Book IV, the Golden Ratio was used to construct a pentagon, and in Book XIII, to construct icosahedrons and dodecahedrons. The Golden Ratio has been of human interest for thousands of years. The mathematicians and philosophers of ancient Greece have been recorded of having knowledge and studying it. To Hippasus of Metapontum and the Pythagoreans, the Golden Ratio, being an irrational number, was detrimental to their fundamental beliefs of the universe. For Plato, it was about geometry, beauty, and seeking understanding of Platonic solids and the cosmos. Finally, a recorded definition and explanation was given by Euclid in Elements. Though the history of the Golden Ratio spans much father in time than this, these three people (and groups of people) were an important beginning. Works Cited Dunlap, Richard, A. The Golden Ratio and Fibonacci Numbers. World Scientific, 1997. Euclid, Heiberg, J L, and Richard Fitzpatrick. Euclid's Elements of Geometry: The Greek Text of J.l. Heiberg (1883-1885) : from Euclidis Elementa, Edidit Et Latine Interpretatus Est I.l. Heiberg, in Aedibus B.g. Teubneri, 1883-1885, 2008. Huntley, H.E. The Divine Proportion. Dover Publications, 1970 Livio, Mario. The Golden Ratio. Broadway Books, 2002. Plato, , and Benjamin Jowett. Timaeus. Champaign, Ill: Project Gutenberg, 1990. Internet resource. Walser, Hans. The Golden Section. The mathematical Association of America, 1996. Figures: Figure 1. “Golden Ratio as a proportion of a line.”. http://blog.minitab.com/blog/statistics-and- quality-data-analysis/six-sigma-sweet-spot-the-search-for-a-divine-proportion Figure 2. “Golden Ratio and the pentagram”. http://www.freemasonry.bcy.ca/symbolism/golden_ratio/index.html Figure 3. “Platonic Solids”. http://www.maths.gla.ac.uk/~ajb/3H-WP/Platonic%20solids.html .
Recommended publications
  • Skepticism and Pluralism Ways of Living a Life Of
    SKEPTICISM AND PLURALISM WAYS OF LIVING A LIFE OF AWARENESS AS RECOMMENDED BY THE ZHUANGZI #±r A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHILOSOPHY AUGUST 2004 By John Trowbridge Dissertation Committee: Roger T. Ames, Chairperson Tamara Albertini Chung-ying Cheng James E. Tiles David R. McCraw © Copyright 2004 by John Trowbridge iii Dedicated to my wife, Jill iv ACKNOWLEDGEMENTS In completing this research, I would like to express my appreciation first and foremost to my wife, Jill, and our three children, James, Holly, and Henry for their support during this process. I would also like to express my gratitude to my entire dissertation committee for their insight and understanding ofthe topics at hand. Studying under Roger Ames has been a transformative experience. In particular, his commitment to taking the Chinese tradition on its own terms and avoiding the tendency among Western interpreters to overwrite traditional Chinese thought with the preoccupations ofWestern philosophy has enabled me to broaden my conception ofphilosophy itself. Roger's seminars on Confucianism and Daoism, and especially a seminar on writing a philosophical translation ofthe Zhongyong r:pJm (Achieving Equilibrium in the Everyday), have greatly influenced my own initial attempts to translate and interpret the seminal philosophical texts ofancient China. Tamara Albertini's expertise in ancient Greek philosophy was indispensable to this project, and a seminar I audited with her, comparing early Greek and ancient Chinese philosophy, was part ofthe inspiration for my choice ofresearch topic. I particularly valued the opportunity to study Daoism and the Yijing ~*~ with Chung-ying Cheng g\Gr:p~ and benefited greatly from his theory ofonto-cosmology as a means of understanding classical Chinese philosophy.
    [Show full text]
  • Plato As "Architectof Science"
    Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries.
    [Show full text]
  • MONEY and the EARLY GREEK MIND: Homer, Philosophy, Tragedy
    This page intentionally left blank MONEY AND THE EARLY GREEK MIND How were the Greeks of the sixth century bc able to invent philosophy and tragedy? In this book Richard Seaford argues that a large part of the answer can be found in another momentous development, the invention and rapid spread of coinage, which produced the first ever thoroughly monetised society. By transforming social relations, monetisation contributed to the ideas of the universe as an impersonal system (presocratic philosophy) and of the individual alienated from his own kin and from the gods (in tragedy). Seaford argues that an important precondition for this monetisation was the Greek practice of animal sacrifice, as represented in Homeric epic, which describes a premonetary world on the point of producing money. This book combines social history, economic anthropology, numismatics and the close reading of literary, inscriptional, and philosophical texts. Questioning the origins and shaping force of Greek philosophy, this is a major book with wide appeal. richard seaford is Professor of Greek Literature at the University of Exeter. He is the author of commentaries on Euripides’ Cyclops (1984) and Bacchae (1996) and of Reciprocity and Ritual: Homer and Tragedy in the Developing City-State (1994). MONEY AND THE EARLY GREEK MIND Homer, Philosophy, Tragedy RICHARD SEAFORD cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521832281 © Richard Seaford 2004 This publication is in copyright.
    [Show full text]
  • Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths.
    [Show full text]
  • The Golden Ratio and the Diagonal of the Square
    Bridges Finland Conference Proceedings The Golden Ratio and the Diagonal of the Square Gabriele Gelatti Genoa, Italy [email protected] www.mosaicidiciottoli.it Abstract An elegant geometric 4-step construction of the Golden Ratio from the diagonals of the square has inspired the pattern for an artwork applying a general property of nested rotated squares to the Golden Ratio. A 4-step Construction of the Golden Ratio from the Diagonals of the Square For convenience, we work with the reciprocal of the Golden Ratio that we define as: φ = √(5/4) – (1/2). Let ABCD be a unit square, O being the intersection of its diagonals. We obtain O' by symmetry, reflecting O on the line segment CD. Let C' be the point on BD such that |C'D| = |CD|. We now consider the circle centred at O' and having radius |C'O'|. Let C" denote the intersection of this circle with the line segment AD. We claim that C" cuts AD in the Golden Ratio. B C' C' O O' O' A C'' C'' E Figure 1: Construction of φ from the diagonals of the square and demonstration. Demonstration In Figure 1 since |CD| = 1, we have |C'D| = 1 and |O'D| = √(1/2). By the Pythagorean Theorem: |C'O'| = √(3/2) = |C''O'|, and |O'E| = 1/2 = |ED|, so that |DC''| = √(5/4) – (1/2) = φ. Golden Ratio Pattern from the Diagonals of Nested Squares The construction of the Golden Ratio from the diagonal of the square has inspired the research of a pattern of squares where the Golden Ratio is generated only by the diagonals.
    [Show full text]
  • Lecture 4. Pythagoras' Theorem and the Pythagoreans
    Lecture 4. Pythagoras' Theorem and the Pythagoreans Figure 4.1 Pythagoras was born on the Island of Samos Pythagoras Pythagoras (born between 580 and 572 B.C., died about 497 B.C.) was born on the island of Samos, just off the coast of Asia Minor1. He was the earliest important philosopher who made important contributions in mathematics, astronomy, and the theory of music. Pythagoras is credited with introduction the words \philosophy," meaning love of wis- dom, and \mathematics" - the learned disciplines.2 Pythagoras is famous for establishing the theorem under his name: Pythagoras' theorem, which is well known to every educated per- son. Pythagoras' theorem was known to the Babylonians 1000 years earlier but Pythagoras may have been the first to prove it. Pythagoras did spend some time with Thales in Miletus. Probably by the suggestion of Thales, Pythagoras traveled to other places, including Egypt and Babylon, where he may have learned some mathematics. He eventually settled in Groton, a Greek settlement in southern Italy. In fact, he spent most of his life in the Greek colonies in Sicily and 1Asia Minor is a region of Western Asia, comprising most of the modern Republic of Turkey. 2Is God a mathematician ? Mario Livio, Simon & Schuster Paperbacks, New York-London-Toronto- Sydney, 2010, p. 15. 23 southern Italy. In Groton, he founded a religious, scientific, and philosophical organization. It was a formal school, in some sense a brotherhood, and in some sense a monastery. In that organization, membership was limited and very secretive; members learned from leaders and received education in religion.
    [Show full text]
  • Chapter 1. Classical Greek Mathematics
    Chapter 1. Classical Greek Mathematics Greek science and mathematics is distinguished from that of earlier cultures by its desire to know, in contrast to a need to make purely utilitarian advances or improvements. Greek geometry displays abstract and deductive elements which were largely lost during the Dark Ages, following the collapse of the Roman Empire, and only gradually recovered in the 16th and 17th centuries. It must be understood that many of the great discoveries in geometry were made about two and half thousand years ago. Given the difficulty of preserving fragile manuscripts, written on parchment or papyrus, over centuries when warfare could wipe out civilizations, it is not too surprising to find that we do not have many reliable records about the origin of Greek geometry or of its practitioners. We may count ourselves lucky that a few commentaries on Greek geometry, written in the fourth or fifth centuries of the present era, have survived to provide us with what details we have. Greeks from Ionia had settled in Asia Minor and there they had contact with two ancient civilizations, those of Babylon and Egypt. Although knowledge of science was elementary among the Babylonians and Egyptians, nonetheless they supplied the initial impetus that directed the Greeks towards the pursuit of systematic science. All authorities trace the beginnings of Greek geometry to Egypt. The rudimentary study of geometry in Egypt arose out of practical needs. Revenue was raised by taxation of landed prop- erty, and its assessment depended on the accurate fixing of the boundaries of fields in the possession of the landowners.
    [Show full text]
  • Examples of the Golden Ratio You Can Find in Nature
    Examples Of The Golden Ratio You Can Find In Nature It is often said that math contains the answers to most of universe’s questions. Math manifests itself everywhere. One such example is the Golden Ratio. This famous Fibonacci sequence has fascinated mathematicians, scientist and artists for many hundreds of years. The Golden Ratio manifests itself in many places across the universe, including right here on Earth, it is part of Earth’s nature and it is part of us. In mathematics, the Fibonacci sequence is the ordering of numbers in the following integer sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… and so on forever. Each number is the sum of the two numbers that precede it. The Fibonacci sequence is seen all around us. Let’s explore how your body and various items, like seashells and flowers, demonstrate the sequence in the real world. As you probably know by now, the Fibonacci sequence shows up in the most unexpected places. Here are some of them: 1. Flower petals number of petals in a flower is often one of the following numbers: 3, 5, 8, 13, 21, 34 or 55. For example, the lily has three petals, buttercups have five of them, the chicory has 21 of them, the daisy has often 34 or 55 petals, etc. 2. Faces Faces, both human and nonhuman, abound with examples of the Golden Ratio. The mouth and nose are each positioned at golden sections of the distance between the eyes and the bottom of the chin.
    [Show full text]
  • The Golden Relationships: an Exploration of Fibonacci Numbers and Phi
    The Golden Relationships: An Exploration of Fibonacci Numbers and Phi Anthony Rayvon Watson Faculty Advisor: Paul Manos Duke University Biology Department April, 2017 This project was submitted in partial fulfillment of the requirements for the degree of Master of Arts in the Graduate Liberal Studies Program in the Graduate School of Duke University. Copyright by Anthony Rayvon Watson 2017 Abstract The Greek letter Ø (Phi), represents one of the most mysterious numbers (1.618…) known to humankind. Historical reverence for Ø led to the monikers “The Golden Number” or “The Devine Proportion”. This simple, yet enigmatic number, is inseparably linked to the recursive mathematical sequence that produces Fibonacci numbers. Fibonacci numbers have fascinated and perplexed scholars, scientists, and the general public since they were first identified by Leonardo Fibonacci in his seminal work Liber Abacci in 1202. These transcendent numbers which are inextricably bound to the Golden Number, seemingly touch every aspect of plant, animal, and human existence. The most puzzling aspect of these numbers resides in their universal nature and our inability to explain their pervasiveness. An understanding of these numbers is often clouded by those who seemingly find Fibonacci or Golden Number associations in everything that exists. Indeed, undeniable relationships do exist; however, some represent aspirant thinking from the observer’s perspective. My work explores a number of cases where these relationships appear to exist and offers scholarly sources that either support or refute the claims. By analyzing research relating to biology, art, architecture, and other contrasting subject areas, I paint a broad picture illustrating the extensive nature of these numbers.
    [Show full text]
  • The Glorious Golden Ratio
    Published 2012 by Prometheus Books The Glorious Golden Ratio. Copyright © 2012 Alfred S. Posamentier and Ingmar Lehmann. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, digital, electronic, mechanical, photocopying, recording, or otherwise, or conveyed via the Internet or a website without prior written permission of the publisher, except in the case of brief quotations embodied in critical articles and reviews. Inquiries should be addressed to Prometheus Books 59 John Glenn Drive Amherst, New York 14228–2119 VOICE: 716–691–0133 FAX: 716–691–0137 WWW.PROMETHEUSBOOKS.COM 16 15 14 13 12 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data Posamentier, Alfred S. The glorious golden ratio / by Alfred S. Posamentier and Ingmar Lehmann. p. cm. ISBN 978–1–61614–423–4 (cloth : alk. paper) ISBN 978–1–61614–424–1 (ebook) 1. Golden Section. 2. Lehmann, Ingmar II. Title. QA466.P67 2011 516.2'04--dc22 2011004920 Contents Acknowledgments Introduction Chapter 1: Defining and Constructing the Golden Ratio Chapter 2: The Golden Ratio in History Chapter 3: The Numerical Value of the Golden Ratio and Its Properties Chapter 4: Golden Geometric Figures Chapter 5: Unexpected Appearances of the Golden Ratio Chapter 6: The Golden Ratio in the Plant Kingdom Chapter 7: The Golden Ratio and Fractals Concluding Thoughts Appendix: Proofs and Justifications of Selected Relationships Notes Index Acknowledgments he authors wish to extend sincere thanks for proofreading and useful suggestions to Dr. Michael Engber, professor emeritus of mathematics at the City College of the City University of New York; Dr.
    [Show full text]
  • And the Golden Ratio
    Chapter 15 p Q( 5) and the golden ratio p 15.1 The field Q( 5 Recall that the quadratic field p p Q( 5) = fx + y 5 : x; y 2 Qg: Recall too that the conjugate and norm of p z = x + y 5 are p z¯ = x − y 5; N (z) = zz¯ = x2 − 5y2: We will be particularly interested in one element of this field. Definition 15.1. The golden ratio is the number p 1 + 5 φ = : 2 The Greek letter φ (phi) is used for this number after the ancient Greek sculptor Phidias, who is said to have used the ratio in his work. Leonardo da Vinci explicitly used φ in analysing the human figure. Evidently p Q( 5) = Q(φ); ie each element of the field can be written z = x + yφ (x; y 2 Q): The following results are immediate: 88 p ¯ 1− 5 Proposition 15.1. 1. φ = 2 ; 2. φ + φ¯ = 1; φφ¯ = −1; 3. N (x + yφ) = x2 + xy − y2; 4. φ, φ¯ are the roots of the equation x2 − x − 1 = 0: 15.2 The number ring Z[φ] As we saw in the last Chapter, since 5 ≡ 1 mod 4 the associated number ring p p Z(Q( 5)) = Q( 5) \ Z¯ consists of the numbers p m + n 5 ; 2 where m ≡ n mod 2, ie m; n are both even or both odd. And we saw that this is equivalent to p Proposition 15.2. The number ring associated to the quadratic field Q( 5) is Z[φ] = fm + nφ : m; n 2 Zg: 15.3 Unique Factorisation Theorem 15.1.
    [Show full text]
  • The Golden Ratio
    IOSR Journal Of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 12, Issue 2 Ser. II (Mar. – Apr. 2020), PP 36-57 www.Iosrjournals.Org The Golden Ratio Nafish Sarwar Islam Abstract:This paper is all about golden ratio Phi = 1.61803398874989484820458683436563811772030917980576286213544862270526046281890 244970720720418939113748475408807538689175212663386222353693179318006076672635 443338908659593958290563832266131992829026788067520876689250171169620703222104 321626954862629631361443814975870122034080588795445474924618569536486444924104 432077134494704956584678850987433944221254487706647809158846074998871240076521 705751797883416625624940758906970400028121042762177111777805315317141011704666 599146697987317613560067087480710131795236894275219484353056783002287856997829 778347845878228911097625003026961561700250464338243776486102838312683303724292 675263116533924731671112115881863851331620384005222165791286675294654906811317 159934323597349498509040947621322298101726107059611645629909816290555208524790 352406020172799747175342777592778625619432082750513121815628551222480939471234 145170223735805772786160086883829523045926478780178899219902707769038953219681 986151437803149974110692608867429622675756052317277752035361393621076738937645 560606059216589466759551900400555908950229530942312482355212212415444006470340 565734797663972394949946584578873039623090375033993856210242369025138680414577 995698122445747178034173126453220416397232134044449487302315417676893752103068 737880344170093954409627955898678723209512426893557309704509595684401755519881
    [Show full text]