Elko County Nevada Water Resource Management Plan 2017

Total Page:16

File Type:pdf, Size:1020Kb

Elko County Nevada Water Resource Management Plan 2017 Elko County Nevada Water Resource Management Plan 2017 Echo Lake - Ruby Mountains Elko County Board of Commissioners Elko County Natural Resource Management Advisory Commission December 6, 2017 Executive Summary The Elko County Water Resource Management Plan has been prepared to guide the development, management and use of water resources in conjunction with land use management over the next twenty-five (25) years. Use by decision makers of information contained within this plan will help to ensure that the environment of the County is sustained while at the same time enabling the expansion and diversification of the local economy. Implementation of the Elko County Water Resource Management Plan will assist in maintaining the quality of life enjoyed by residents and visitors of Elko County now and in the future. Achievement of goals outlined in the plan will result in water resources found within Elko County being utilized in a manner beneficial to the residents of Elko County and the State of Nevada. The State of Nevada Water Plan represents that Elko County will endure a loss of population and agricultural lands over the next twenty-five years. Land use and development patterns prepared by Elko County do not agree with this estimated substantial loss of population and agricultural lands. The trends show that agricultural uses in Elko County are stable with minimal notable losses each year. Development patterns represent that private lands that are not currently utilized for agricultural are being developed in cooperation and conjunction with agricultural uses. In 2007, Elko County was the largest water user in the State of Nevada. However, by 2010 Clark County surpassed Elko County as the largest water user among Nevada's 17 counties. The 2010 Census shows Elko County's population grew to 48,818 but the water use fell from 23.2% to 14% of the estimated total water withdrawals within Nevada. The largest of the water users being agriculture irrigation at approximately 94% or 335.4 Mgal/day down from 97% in 2007. Current water use in Elko County including domestic, recreation, commercial, industrial, mining, livestock and irrigated agriculture is estimated to be approximately 253,160 Mgal/day (millions of gallons per day) annually or 24% of the total state wide use. The State of Nevada Demographer and State of Nevada Division of Water Planning has provided estimates and forecast representing a decrease in population and a loss of agricultural lands in Elko County through 2026. Forecasts and estimates based on development patterns provided by Elko County represents continued growth of population, anticipated commercial and industrial growth, projected numbers of tourists visiting Elko County annually and sustained or minimal loss of agricultural lands. Should these estimates and forecasts come to realization annual water duties in Elko County could increase for domestic, commercial and municipal/ industrial consumptive uses by as much as 100 acre feet annually? However, this also represents a loss of Agricultural lands averaging 0.1% annually. Assuming that all of the elements of the economic and forecasted populations are achieved, the total water use in the year 2025 may exceed 918,000 acre feet annually. This represents a decrease of 1.6% primarily due to the loss of agricultural lands. Studies conducted by the United States Geological Survey (USGS) indicate that the quantity of groundwater being lost to evapotranspiration is generally more than double than that estimated in previous evaluations. Hydrographic Analysis Reports of this plan suggest that recharge over the specific areas of Elko County is significantly greater than previous estimates. However, research and analysis is characterized by considerable uncertainty and additional confirmation is required. The implications for this water plan are that more water is available and may be made available for development and use within Elko County. This mandates that additional Hydrographic Analysis Reports are necessary for the upper Humboldt River basin as well as all basins and hydrographic areas in Elko County to determine perennial yields based on current technology. i TABLE OF CONTENTS: EXECUTIVE SUMMARY .................................................................................................................. i EXECUTIVE INDEX ............................................................................................................................. ii ABBREVIATIONS & ACRONYMS .................................................................................. vi WATER EQUIVALENT TABLE .......................................................................................... vii AUTHORS .......................................................................................................................... vii ELKO COUNTY APPROVAL AND ADOPTION……………………………………………….. ix SECTION 1…………………………………………………………………………………………. SECTION 2…………………………………………………………………………………………. SECTION 1 - PLAN DEVELOPMENT INFORMATION Introduction . S1 P 1 Institutional Framework & History . S1 P 3 History . S1 P 3 Elko County Board Of Commissioners . S1 P 3 Elko County Water Planning Commission . S1 P 3 Composition Of The Water Planning Commission. S1 P 4 Elko County Natural Resource Management Advisory Commission . S1 P 5 Mission Statement . S1 P 5 Planning Data Criteria . S1 P 5 Plan Areas . S1 P 6 Goals And Objectives . S1 P 7 Plan Goals . S1 P 7 Plan Objectives . S1 P 7 Guiding Principles . S1 P 8 Demographics . S1 P 9 Geographics . S1 P 9 County Climate & Precipitation . S1 P10 State Climate & Precipitation . S1 P11 Geology & Soils . S1 P12 Vegetation . S1 P13 Land Mass . S1 P14 County Populations . S1 P15 Municipal Boundaries . S1 P15 Land Use . S1 P16 Agriculture . S1 P16 Residential . S1 P17 Commercial . S1 P17 Industrial . S1 P17 Recreation . S1 P18 Natural Resources, Mining & Exploration . S1 P19 Private Ownership & Development . S1 P19 Transportation . S1 P20 Nevada & Elko County Public Land Use History . S1 P21 ii Western Settlements Of Public Lands . S1 P21 Socioeconomic Overview . S1 P22 History . S1 P22 Geography & Hydrology . S1 P26 Water Resources & Uses . S1 P28 Section 1 Summary Conclusions . S1 P31 SECTION 2 - Water Resource Management Nevada Water Law . S2 P 2 Socioeconomic Characteristics . S2 P 3 County Population Forecasts . S2 P 5 Regional Hydrographic Data. S2 P 7 Regional Hydrogeologic Features . .. S2 P 7 Snake River Basin . S2 P 9 Humboldt River Basin. S2 P10 Central Region . S2 P11 Great Salt Lake Basin . S2 P11 Hydrographic Basin Data . S2 P12 Local Hydrographic Data . .. S2 P14 Committed & Un-Committed Groundwater Resources . S2 P14 Snake River Basin . S2 P16 Humboldt River Basin . S2 P16 Central Region Basin . S2 P17 Great Salt Lake Basin . S2 P17 Domestic Well Inventories . S2 P18 Un-Incorporated Town Rural Communities Municipal Resource Availability. S2 P20 Permitted Towns /Rural /Municipal / Quasi-Municipal / Domestic. S2 P21 Incorporated Towns And Cities Permitted Water Resources. S2 P21 Rural Communities And Areas Domestic Water Resources. S2 P22 Elko County Water Use Forecast . S2 P23 Estimated and Forecasted Water Resource Use and Consumption. S2 P24 Development Considerations . S2 P24 Water Resource and Conservation Education . S2 P25 Drought Conditions . ..
Recommended publications
  • Julia's Unequivocal Nevada Klampout
    Julia's Unequivocal Nevada Klampout #35 JARBIDGE clamper year 6019 Brought to you by Julia C. Bulette chapter 1864, E Clampus Vitus Researched and interpreted by Jeffrey D. Johnson XNGH, Clamphistorian at chapter 1864 Envisioned by Noble Grand Humbug Bob Stransky Dedicated to Young Golddigging Widders and Old Orphans 2014 c.e. Why Why yes, Jarbidge is a ''fer piece'' from any place. This year's junk trip has the unique quirk that it is not in the Great Basin like the rest of our territory. Northern Elko County is drained by the tributaries of the Owyhee, Bruneau and Jarbidge Rivers. They flow in to the Snake River and out to the sea. To the South the range is drained by the North Fork of the Humboldt and in the East, St. Mary's River. Geology The North American Continental plate moves at a rate of one inch a year in a Southwesterly direction. Underneath the plate is a volcanic hotspot or mantle plume. 10 to 12 million years ago the hotspot was just North of the Idaho border. Over that time it has moved, leaving a trail of volcanic debris and ejectamenta from McDermitt Nevada, East. Now the Yellowstone Caldera area is over the plume. During the middle and late Miocene, a sequence of ash flows, enormous lava flows and basalt flows from 40 odd shield volcanoes erupted from the Bruneau-Jarbidge caldera. The eruptive center has mostly been filled in by lava flows and lacustrine and fluvial sediments. Two hundred Rhinos, five different species of horse, three species of cameloids, saber tooth deer and other fauna at Ashfall Fossil Beds 1000 miles downwind to the East in Nebraska, were killed by volcanic ash from the Bruneau Jarbidge Caldera.
    [Show full text]
  • Ecoregions of Nevada Ecoregion 5 Is a Mountainous, Deeply Dissected, and Westerly Tilting Fault Block
    5 . S i e r r a N e v a d a Ecoregions of Nevada Ecoregion 5 is a mountainous, deeply dissected, and westerly tilting fault block. It is largely composed of granitic rocks that are lithologically distinct from the sedimentary rocks of the Klamath Mountains (78) and the volcanic rocks of the Cascades (4). A Ecoregions denote areas of general similarity in ecosystems and in the type, quality, Vegas, Reno, and Carson City areas. Most of the state is internally drained and lies Literature Cited: high fault scarp divides the Sierra Nevada (5) from the Northern Basin and Range (80) and Central Basin and Range (13) to the 2 2 . A r i z o n a / N e w M e x i c o P l a t e a u east. Near this eastern fault scarp, the Sierra Nevada (5) reaches its highest elevations. Here, moraines, cirques, and small lakes and quantity of environmental resources. They are designed to serve as a spatial within the Great Basin; rivers in the southeast are part of the Colorado River system Bailey, R.G., Avers, P.E., King, T., and McNab, W.H., eds., 1994, Ecoregions and subregions of the Ecoregion 22 is a high dissected plateau underlain by horizontal beds of limestone, sandstone, and shale, cut by canyons, and United States (map): Washington, D.C., USFS, scale 1:7,500,000. are especially common and are products of Pleistocene alpine glaciation. Large areas are above timberline, including Mt. Whitney framework for the research, assessment, management, and monitoring of ecosystems and those in the northeast drain to the Snake River.
    [Show full text]
  • Late Cenozoic Paleogeographic Evolution of Northeastern Nevada: Evidence from the Sedimentary Basins
    Late Cenozoic paleogeographic evolution of northeastern Nevada: Evidence from the sedimentary basins Alan R. Wallace* U.S. Geological Survey, MS 176, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, Nevada 89557, USA Michael E. Perkins* Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA Robert J. Fleck* U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT lier faults are more pronounced east of the hot-spring deposits formed at and near the Tuscarora Mountains, possibly refl ecting a paleosurface in the Chimney, Ivanhoe, and Field and geochronologic studies of Neo- hanging-wall infl uence related to uplift of the Carlin basins as those basins were forming. gene sedimentary basins in northeastern Ruby Mountains-East Humboldt core com- The Neogene geologic and landscape evolu- Nevada document the paleogeographic and plex on the east side of the Elko basin. The tion had variable effects on all of these depos- geologic evolution of this region and the later faults are concentrated along the north- its, including uplift, weathering, supergene effects on major mineral deposits. The broad northwest–trending northern Nevada rift enrichment, erosion, and burial, depending area that includes the four middle Miocene west of the Tuscarora Mountains. The area on the events at any particular deposit. As basins studied—Chimney, Ivanhoe, Car- west of the rift contains major tilted horsts such, this study documents the importance of lin, and Elko, from west to east—was an and alluvium-fi lled grabens, and differential evaluating post-mineralization processes at upland that underwent prolonged middle extension between this more highly extended both regional and local scales when exploring Tertiary exposure and moderate erosion.
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • (1987): "Tectonomagmatic Evolution of Cenozoic Extension in the North American Cordillera"
    Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Geological Society, London, Special Publications Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera Brian P. Wernicke, Philip C. England, Leslie J. Sonder and Robert L. Christiansen Geological Society, London, Special Publications 1987, v.28; p203-221. doi: 10.1144/GSL.SP.1987.028.01.15 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by Frances J Cooper on January 21, 2013 Tectonomagmatic evolution of Cenozoic extension in the North American Cordillera B.P. Wernicke, R.L. Christiansen, P.C. England & L.J. Sonder SUMMARY: The spatial and temporal distributions of Cenozoic extension and magmatism in the Cordillera suggest that the onset of major crustal extension at a particular latitude was confined to a relatively narrow belt (< 100 km, pre-extension) and followed the onset of intermediate and silicic magmatism by no more than a few million years. Extension began in early Eocene time in southern British Columbia, northern Washington, Idaho and Montana. Farther S, extension began at about the Eocene- Oligocene boundary in the Great Basin and slightly later in the Mojave-Sonora Desert region. The intervening area, at the latitude of Las Vegas, remained quiescent until mid- Miocene time. Compositional and isotopic characteristics of most pre-Miocene magmas are consistent with their containing major components of melted continental crust.
    [Show full text]
  • Elko County Nevada Water Resource Management Plan 2017
    Elko County Nevada Water Resource Management Plan 2017 Echo Lake - Ruby Mountains Elko County Board of Commissioners Elko County Natural Resource Management Advisory Commission December 6, 2017 Executive Summary The Elko County Water Resource Management Plan has been prepared to guide the development, management and use of water resources in conjunction with land use management over the next twenty-five (25) years. Use by decision makers of information contained within this plan will help to ensure that the environment of the County is sustained while at the same time enabling the expansion and diversification of the local economy. Implementation of the Elko County Water Resource Management Plan will assist in maintaining the quality of life enjoyed by residents and visitors of Elko County now and in the future. Achievement of goals outlined in the plan will result in water resources found within Elko County being utilized in a manner beneficial to the residents of Elko County and the State of Nevada. The State of Nevada Water Plan represents that Elko County will endure a loss of population and agricultural lands over the next twenty-five years. Land use and development patterns prepared by Elko County do not agree with this estimated substantial loss of population and agricultural lands. The trends show that agricultural uses in Elko County are stable with minimal notable losses each year. Development patterns represent that private lands that are not currently utilized for agricultural are being developed in cooperation and conjunction with agricultural uses. In 2007, Elko County was the largest water user in the State of Nevada.
    [Show full text]
  • NUREG-1710 Vol 1 History of Water
    NUREG-1710 Vol. 1 History of Water Development in the Amargosa Desert Area: A Literature Review i I I I I I I I U.S. Nuclear Regulatory Commission Advisory Committee on Nuclear Waste Washington, DC 20555-0001 AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS 7 NRC Reference Material Non-NRC Reference Material As of November 1999, you may electronically access Documents available from public and special technical NUREG-series publications and other NRC records at libraries include all open literature items, such as NRC's Public Electronic Reading Room at books, journal articles, and transactions, Federal http://www.nrc.pov/reading-rm.html. Register notices, Federal and State legislation, and Publicly released records include, to name a few, congressional reports. Such documents as theses, NUREG-series publications; Federal Register notices; dissertations, foreign reports and translations, and applicant, licensee, and vendor documents and non-NRC conference proceedings may be purchased correspondence; NRC correspondence and internal from their sponsoring organization. memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are NRC publications in the NUREG series, NRC maintained at- regulations, and Title 10, Energy, in the Code of The NRC Technical Library Federal Regulations may also be purchased from one Two White Flint North of these two sources. 11545 Rockville Pike 1. The Superintendent of Documents Rockville, MD 20852-2738 U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402-0001 These standards are available in the library for Intemet: bookstore.gpo.gov reference use by the public.
    [Show full text]
  • Lahontan Cutthroat Trout Species Management Plan for the Upper Humboldt River Drainage Basin
    STATE OF NEVADA DEPARTMENT OF WILDLIFE LAHONTAN CUTTHROAT TROUT SPECIES MANAGEMENT PLAN FOR THE UPPER HUMBOLDT RIVER DRAINAGE BASIN Prepared by John Elliott SPECIES MANAGEMENT PLAN December 2004 LAHONTAN CUTTHROAT TROUT SPECIES MANAGEMENT PLAN FOR THE UPPER HUMBOLDT RIVER DRAINAGE BASIN SUBMITTED BY: _______________________________________ __________ John Elliott, Supervising Fisheries Biologist Date Nevada Department of Wildlife, Eastern Region APPROVED BY: _______________________________________ __________ Richard L. Haskins II, Fisheries Bureau Chief Date Nevada Department of Wildlife _______________________________________ __________ Kenneth E. Mayer, Director Date Nevada Department of Wildlife REVIEWED BY: _______________________________________ __________ Robert Williams, Field Supervisor Date Nevada Fish and Wildlife Office U.S.D.I. Fish and Wildlife Service _______________________________________ __________ Ron Wenker, State Director Date U.S.D.I. Bureau of Land Management _______________________________________ __________ Edward C. Monnig, Forest Supervisor Date Humboldt-Toiyabe National Forest U.S.D.A. Forest Service TABLE OF CONTENTS Contents EXECUTIVE SUMMARY ……………………………………………………………………..1 INTRODUCTION……………………………………………………………………………….…2 AGENCY RESPONSIBILITIES……………………………………………………………….…4 CURRENT STATUS……………………………………………………………………………..6 RECOVERY OBJECTIVES……………………………………………………………………19 RECOVERY ACTIONS…………………………………………………………………………21 RECOVERY ACTION PRIORITIES BY SUBBASIN………………………………………….33 IMPLEMENTATION SCHEDULE……………………………………………………………..47
    [Show full text]
  • Spatially-Explicit Modeling of Modern and Pleistocene Runoff and Lake Extent in the Great Basin Region, Western United States
    Spatially-explicit modeling of modern and Pleistocene runoff and lake extent in the Great Basin region, western United States Yo Matsubara1 Alan D. Howard1 1Department of Environmental Sciences University of Virginia P.O. Box 400123 Charlottesville, VA 22904-4123 Abstract A spatially-explicit hydrological model balancing yearly precipitation and evaporation is applied to the Great Basin Region of the southwestern United States to predict runoff magnitude and lake distribution during present and Pleistocene climatic conditions. The model iteratively routes runoff through, and evaporation from, depressions to find a steady state solution. The model is calibrated with spatially-explicit annual precipitation estimates and compiled data on pan evaporation, mean annual temperature, and total yearly runoff from stations. The predicted lake distribution provides a close match to present-day lakes. For the last glacial maximum the sizes of lakes Bonneville and Lahontan were well predicted by linear combinations of decrease in mean annual temperature from 0 to 6 °C and increases in precipitation from 0.8 to 1.9 times modern values. Estimated runoff depths were about 1.2 to 4.0 times the present values and yearly evaporation about 0.3 to 1 times modern values. 2 1. Introduction The Great Basin of the southwestern United States in the Basin and Range physiographic province contains enclosed basins featuring perennial and ephemeral lakes, playas and salt pans (Fig. 1). The Great Basin consists of the entire state of Nevada, western Utah, and portions of California, Idaho, Oregon, and Wyoming. At present it supports an extremely dry, desert environment; however, about 40 lakes (some reaching the size of present day Great Lakes) episodically occupied the Great Basin, most recently during the last glacial maximum (LGM) [Snyder and Langbein, 1962; Hostetler et al., 1994; Madsen et al., 2001].
    [Show full text]
  • Paleozoic Geology of the Dobbin Summit-Clear Creek Area, Monitor
    AN ABSTRACT OF THE THESIS OF DIANE CAROL WISE for the degree of MASTER OF SCIENCE in Geology presented on August 13, 1976 Title: PALEOZOIC GEOLOGY OF THE DOBBIN SUMMIT- CLEAR CREEK AREA, MONITOR RANGE, NYiE COUNTY, NEVADA Abstract approved: Redacted for Privacy son Paleozoic limestones, dolomites, quartz arenites, and other clastic rocks were mapped in the vicinity of Dobbin Summit and Clear Creek in the central Monitor Range. Sedimentary rock units present in this area represent the shallow-shelf eastern assemblage and basin and also the basin-slope facies of the traditional limestone- clastic assemblage. The four oldest, Ordovician, units were deposited in shallow shelf environments. The Lower Ordovician Goodwin Formation is composed of about 1200 feet of calcareous shales and thin-bedded limestones. The overlying Antelope Valley Limestone is about 500 feet thick and consists of wackestones, packstones, and rare algal grainstones.The Copenhagen Formation (135 feet thick) is the highest regressive deposit of sandstone, siltstone, and limestone below the transgressive Eureka Quartzite.The Eureka is a quartz arenite 181 feet thick, with an intercalated shallow marine dolomite member. The transition from shallow to deep water conditions can be seen in the change from algal boundstones to laminated lime mud- stones in the Hanson Creek Formation (190 feet thick).The super- jacent Roberts Mountains Formation (285 feet thick) is composed of lime mudstones and allodapic beds deposited in basinal, deep water conditions.During earliest Devonian
    [Show full text]
  • Detrital Zircon U-Pb Geochronology and Hf Isotope Geochemistry of the Roberts Mountains Allochthon: New Insights Into the Early GEOSPHERE; V
    Research Paper GEOSPHERE Detrital zircon U-Pb geochronology and Hf isotope geochemistry of the Roberts Mountains allochthon: New insights into the early GEOSPHERE; v. 12, no. 3 Paleozoic tectonics of western North America doi:10.1130/GES01252.1 Gwen M. Linde1, James H. Trexler, Jr.1, Patricia H. Cashman1, George Gehrels2, and William R. Dickinson2,* 12 figures; 2 tables; 2 supplemental tables 1Department of Geological Sciences and Engineering, University of Nevada, Reno, Nevada 89557-0172, USA 2Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, USA CORRESPONDENCE: gwenlinde@ yahoo .com CITATION: Linde, G.M., Trexler, J.H., Jr., Cashman, ABSTRACT et al., 1958; Burchfiel and Davis, 1972; Madrid, 1987). Various workers have P.H., Gehrels, G., and Dickinson, W.R., 2016, Detrital zircon U-Pb geochronology and Hf isotope suggested wildly disparate sources for the RMA strata. Some workers (e.g., geochemistry of the Roberts Mountains allochthon: Detrital zircon U-Pb geochronology and Hf isotope geochemistry provide Roberts et al., 1958; Burchfiel and Davis, 1972; Poole et al., 1992) suggested New insights into the early Paleozoic tectonics of new insights into the provenance, sedimentary transport, and tectonic evo- that the RMA strata originated in western Laurentia (Fig. 1) and deposited in western North America: Geosphere, v. 12, no. 3, p. 1016–1031, doi:10.1130/GES01252.1. lution of the Roberts Mountains allochthon strata of north-central Nevada. an ocean basin to the west. Speed and Sleep (1982) hypothesized that the RMA Using laser-ablation inductively coupled plasma mass spectrometry, a total of strata are the accretionary prism of a far-traveled arc.
    [Show full text]
  • Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models
    ©2005 Society of Economic Geologists, Inc. Economic Geology 100th Anniversary Volume pp. 451–484 Carlin-Type Gold Deposits in Nevada: Critical Geologic Characteristics and Viable Models JEAN S. CLINE,† University of Nevada, Las Vegas, 4505 Maryland Parkway, Box 454010, Las Vegas, Nevada 89154-4010 ALBERT H. HOFSTRA, Mineral Resources Program, U.S. Geological Survey, Mail Stop 973, Box 25046, Denver, Colorado 80225 JOHN L. MUNTEAN, Nevada Bureau of Mines and Geology, Mail Stop 178, University of Nevada, Reno, Nevada 89557-0088 RICHARD M. TOSDAL, AND KENNETH A. HICKEY Mineral Deposit Research Unit, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia, Canada V6T 1Z4 Abstract Carlin-type Au deposits in Nevada have huge Au endowments that have made the state, and the United States, one of the leading Au producers in the world. Forty years of mining and numerous studies have pro- vided a detailed geologic picture of the deposits, yet a comprehensive and widely accepted genetic model re- mains elusive. The genesis of the deposits has been difficult to determine owing to difficulties in identifying and analyzing the fine-grained, volumetrically minor, and common ore and gangue minerals, and because of postore weathering and oxidation. In addition, other approximately contemporaneous precious metal deposits have overprinted, or are overprinted by, Carlin-type mineralization. Recent geochronological studies have led to a consensus that the Nevada deposits formed ~42 to 36 m.y. ago, and the deposits can now be evaluated in the context of their tectonic setting. Continental rifting and deposi- tion of a passive margin sequence followed by compressional orogenies established a premineral architecture of steeply dipping fluid conduits, shallow, low dipping “traps” and reactive calcareous host rocks.
    [Show full text]