The Hopkins-Levitzki Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Generality Vs Arithmetic Generality in the Controversy Between C
Algebraic generality vs arithmetic generality in the controversy between C. Jordan and L. Kronecker (1874). Frédéric Brechenmacher (1). Introduction. Throughout the whole year of 1874, Camille Jordan and Leopold Kronecker were quarrelling over two theorems. On the one hand, Jordan had stated in his 1870 Traité des substitutions et des équations algébriques a canonical form theorem for substitutions of linear groups; on the other hand, Karl Weierstrass had introduced in 1868 the elementary divisors of non singular pairs of bilinear forms (P,Q) in stating a complete set of polynomial invariants computed from the determinant |P+sQ| as a key theorem of the theory of bilinear and quadratic forms. Although they would be considered equivalent as regard to modern mathematics (2), not only had these two theorems been stated independently and for different purposes, they had also been lying within the distinct frameworks of two theories until some connections came to light in 1872-1873, breeding the 1874 quarrel and hence revealing an opposition over two practices relating to distinctive cultural features. As we will be focusing in this paper on how the 1874 controversy about Jordan’s algebraic practice of canonical reduction and Kronecker’s arithmetic practice of invariant computation sheds some light on two conflicting perspectives on polynomial generality we shall appeal to former publications which have already been dealing with some of the cultural issues highlighted by this controversy such as tacit knowledge, local ways of thinking, internal philosophies and disciplinary ideals peculiar to individuals or communities [Brechenmacher 200?a] as well as the different perceptions expressed by the two opponents of a long term history involving authors such as Joseph-Louis Lagrange, Augustin Cauchy and Charles Hermite [Brechenmacher 200?b]. -
Modules with Artinian Prime Factors
PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 3. March 1980 MODULES WITH ARTINIAN PRIME FACTORS EFRAIM P. ARMENDARIZ Abstract. An R -module M has Artinian prime factors if M/PM is an Artinian module for each prime ideal P of R. For commutative rings R it is shown that Noetherian modules with Artinian prime factors are Artinian. If R is either commutative or a von Neumann regular K-rmg then the endomorphism ring of a module with Artinian prime factors is a strongly ir-regular ring. A ring R with 1 is left ir-regular if for each a G R there is an integer n > 1 and b G R such that a" = an+lb. Right w-regular is defined in the obvious way, however a recent result of F. Dischinger [5] asserts the equivalence of the two concepts. A ring R is ir-regular if for any a G R there is an integer n > 1 and b G R such that a" = a"ba". Any left 7r-regular ring is 77-regular but not con- versely. Because of this, we say that R is strongly ir-regular if it is left (or right) w-regular. In [2, Theorem 2.5] it was established that if R is a (von Neumann) regular ring whose primitive factor rings are Artinian and if M is a finitely generated R-module then the endomorphism ring EndÄ(Af ) of M is a strongly 77-regular ring. Curiously enough, the same is not true for finitely generated modules over strongly w-regular rings, as Example 3.1 of [2] shows. -
Multilinear Algebra and Chess Endgames
Games of No Chance MSRI Publications Volume 29, 1996 Multilinear Algebra and Chess Endgames LEWIS STILLER Abstract. This article has three chief aims: (1) To show the wide utility of multilinear algebraic formalism for high-performance computing. (2) To describe an application of this formalism in the analysis of chess endgames, and results obtained thereby that would have been impossible to compute using earlier techniques, including a win requiring a record 243 moves. (3) To contribute to the study of the history of chess endgames, by focusing on the work of Friedrich Amelung (in particular his apparently lost analysis of certain six-piece endgames) and that of Theodor Molien, one of the founders of modern group representation theory and the first person to have systematically numerically analyzed a pawnless endgame. 1. Introduction Parallel and vector architectures can achieve high peak bandwidth, but it can be difficult for the programmer to design algorithms that exploit this bandwidth efficiently. Application performance can depend heavily on unique architecture features that complicate the design of portable code [Szymanski et al. 1994; Stone 1993]. The work reported here is part of a project to explore the extent to which the techniques of multilinear algebra can be used to simplify the design of high- performance parallel and vector algorithms [Johnson et al. 1991]. The approach is this: Define a set of fixed, structured matrices that encode architectural primitives • of the machine, in the sense that left-multiplication of a vector by this matrix is efficient on the target architecture. Formulate the application problem as a matrix multiplication. -
Gsm073-Endmatter.Pdf
http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining -
Lectures on Non-Commutative Rings
Lectures on Non-Commutative Rings by Frank W. Anderson Mathematics 681 University of Oregon Fall, 2002 This material is free. However, we retain the copyright. You may not charge to redistribute this material, in whole or part, without written permission from the author. Preface. This document is a somewhat extended record of the material covered in the Fall 2002 seminar Math 681 on non-commutative ring theory. This does not include material from the informal discussion of the representation theory of algebras that we had during the last couple of lectures. On the other hand this does include expanded versions of some items that were not covered explicitly in the lectures. The latter mostly deals with material that is prerequisite for the later topics and may very well have been covered in earlier courses. For the most part this is simply a cleaned up version of the notes that were prepared for the class during the term. In this we have attempted to correct all of the many mathematical errors, typos, and sloppy writing that we could nd or that have been pointed out to us. Experience has convinced us, though, that we have almost certainly not come close to catching all of the goofs. So we welcome any feedback from the readers on how this can be cleaned up even more. One aspect of these notes that you should understand is that a lot of the substantive material, particularly some of the technical stu, will be presented as exercises. Thus, to get the most from this you should probably read the statements of the exercises and at least think through what they are trying to address. -
La Controverse De 1874 Entre Camille Jordan Et Leopold Kronecker. Frederic Brechenmacher
La controverse de 1874 entre Camille Jordan et Leopold Kronecker. Frederic Brechenmacher To cite this version: Frederic Brechenmacher. La controverse de 1874 entre Camille Jordan et Leopold Kronecker. : Histoire du théorème de Jordan de la décomposition matricielle (1870-1930).. Revue d’Histoire des Mathéma- tiques, Society Math De France, 2008, 2 (13), p. 187-257. hal-00142790v2 HAL Id: hal-00142790 https://hal.archives-ouvertes.fr/hal-00142790v2 Submitted on 1 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. La controverse de 1874 entre Camille Jordan et Leopold Kronecker. * Frédéric Brechenmacher ( ). Résumé. Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au XIXe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considèrerions aujourd’hui équivalents, nous permettra de questionner l’identité algébrique de pratiques polynomiales de manipulations de « formes » mises en œuvre sur une période antérieure aux approches structurelles de l’algèbre linéaire qui donneront à ces pratiques l’identité de méthodes de caractérisation des classes de similitudes de matrices. -
Lectures on Local Cohomology
Contemporary Mathematics Lectures on Local Cohomology Craig Huneke and Appendix 1 by Amelia Taylor Abstract. This article is based on five lectures the author gave during the summer school, In- teractions between Homotopy Theory and Algebra, from July 26–August 6, 2004, held at the University of Chicago, organized by Lucho Avramov, Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley. These notes introduce basic concepts concerning local cohomology, and use them to build a proof of a theorem Grothendieck concerning the connectedness of the spectrum of certain rings. Several applications are given, including a theorem of Fulton and Hansen concern- ing the connectedness of intersections of algebraic varieties. In an appendix written by Amelia Taylor, an another application is given to prove a theorem of Kalkbrenner and Sturmfels about the reduced initial ideals of prime ideals. Contents 1. Introduction 1 2. Local Cohomology 3 3. Injective Modules over Noetherian Rings and Matlis Duality 10 4. Cohen-Macaulay and Gorenstein rings 16 d 5. Vanishing Theorems and the Structure of Hm(R) 22 6. Vanishing Theorems II 26 7. Appendix 1: Using local cohomology to prove a result of Kalkbrenner and Sturmfels 32 8. Appendix 2: Bass numbers and Gorenstein Rings 37 References 41 1. Introduction Local cohomology was introduced by Grothendieck in the early 1960s, in part to answer a conjecture of Pierre Samuel about when certain types of commutative rings are unique factorization 2000 Mathematics Subject Classification. Primary 13C11, 13D45, 13H10. Key words and phrases. local cohomology, Gorenstein ring, initial ideal. The first author was supported in part by a grant from the National Science Foundation, DMS-0244405. -
Certain Artinian Rings Are Noetherian
Can. J. Math., Vol. XXIV, No. 4, 1972, pp. 553-556 CERTAIN ARTINIAN RINGS ARE NOETHERIAN ROBERT C. SHOCK 1. Introduction. Throughout this paper the word "ring" will mean an associative ring which need not have an identity element. There are Artinian rings which are not Noetherian, for example C(pco) with zero multiplication. These are the only such rings in that an Artinian ring R is Noetherian if and only if R contains no subgroups of type C(pœ) [1, p. 285]. However, a certain class of Artinian rings is Noetherian. A famous theorem of C. Hopkins states that an Artinian ring with an identity element is Noetherian [3, p. 69]. The proofs of these theorems involve the method of "factoring through the nilpotent Jacobson radical of the ring". In this paper we state necessary and sufficient conditions for an Artinian ring (and an Artinian module) to be Noetherian. Our proof avoids the concept of the Jacobson radical and depends primarily upon the concept of the length of a composition series. As a corollary we obtain the result of Hopkins. All conditions are on the right, that is, an Artinian ring means a right Artinian ring, etc. We say a module A is embeddable in a module B provided that A is isomorphic to some submodule of B. Our Theorem 3 states that an Artinian ring R is Noetherian if and only if a cyclic Noetherian submodule ofR is embeddable in some Noetherian factor module of R. An example in the paper shows that in an Artinian ring R which is also Noetherian, a cyclic submodule need not be isomorphic to some factor module of R. -
Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 95, 201-216 (1985) Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated WILLIAM HEINZER Purdue University, West Lafayette, Indiana 47907 AND DAVID LANTZ Purdue University, West Lafayette, Indiana 47907, and Colgate University, Hamilton, New York 13346 Communicated by I. N. Herstein Received September 5, 1983 1. INTRODUCTION William D. Weakley, in [Wl], studied modules (unitary, over a com- mutative ring with unity) which are not finitely generated but all of whose proper submodules are finitely generated. Weakley called such modules “almost finitely generated” (a.f.g.). He noted that an a.f.g. module has prime annihilator and that, as a faithful module over a domain, it is either torsion or torsion-free. If torsion-free, it is isomorphic as a module to the domain’s quotient field. If torsion, it is Artinian, so Weakley was led to the tools of study of Artinian modules developed by Matlis [Ml, M23 and Vamos [V]. These tools include, for a quasilocal ring (R, M), the injective envelope E,(R/M) of the residue field R/M. The purpose of the present paper is to combine results of [Wl] and [GH2] to characterize the form of a.f.g. modules and the rings which admit such modules, and to describe the a.f.g. submodules of E,(R/M). In Section 2, we refine a result of [ Wl ] to conclude that, if R is a domain and (F’, P) is a discrete rank one valuation domain between R and its quotient field K, then K/V is an a.f.g. -
Topics in Group Rings, by Sudarshan K
654 BOOK REVIEWS 14. R. S. Michalski, and P. Negri, An experiment in inductive learning in chess end games, Machine Intelligence 8 (E. W. Elcock and D. Michie, eds.)> Halsted Press, New York, 1977, pp. 175-185. 15. M. Polanyi, Personal knowledge, Routledge and Kegan Paul, London, 1958. 16. K. R. Popper, The logic of scientific discovery, Hutchinson, London, 1959. 17. A. Ralston and C. L. Meek (eds.), Encyclopedia of computer science, Petrocelli and Charter, New York, 1976. 18. A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Develop. 3 (1959), 210-229. 19. C. E. Shannon, Programming a computer for playing chess, Phill. Mag. (London) 7th Ser. 41 (1950), 256-275. 20. P. H. Winston, Artificial intelligence, Addison-Wesley, Reading, Mass., 1977. 21. J. Woodger, The axiomatic method in biology, Cambridge Univ. Press, London and New York 1937. I. J. GOOD BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 1, Number 4, July 1979 © 1979 American Mathematical Society O002-9904/79/0000-0308/$02.25 Topics in group rings, by Sudarshan K. Sehgal, Monographs and Textbooks in Pure and Applied Mathematics, vol. 50, Marcel Dekker, New York and Basel, 1978, vi + 251 pp., $24.50. The theory of the group ring has a peculiar history. In some sense, it goes back to the 1890's, but it has emerged as a separate focus of study only in relatively recent times. We start with the early development of the theory of representations of finite groups over the complex field. Most people familiar with this think immediately of Frobenius and Burnside, who used approaches that seem unsuitable and even bizarre in the light of modern treatments. -
On the Noetherian Dimension of Artinian Modules*
Vietnam Journal o! Mathematics3O:2 (2002) 121-130 V [,e r[rma nm _J[o,rurrrrm a l[ olP Mt,A.]f lHI]EMt,A.]f ]IC S O NCST2OO2 On the Noetherian Dimension of Artinian Modules* Nguyen T\r Cuong and Le Thanh Nhan Institute of Mathemati,cs.P. O. Bor 631, Bo Ho, Hanoi, V'ietnam ReceivedJuly L4, 2000 Abstract. Somenew resultsof Noetheriandimension of Artinian modulesare given and severalproperties of Noetherian dimension of local cohomologymodules of finitely generatedmodules are shown. After giving an exampleof an Artinian module ,4 which has Krull dimension strictly larger than its Noetherian dimension, we present some sufficient conditions on Artinian modules .A such that the both notions of dimension of ,4 are the same. 1".Introduction The concept of Krull dimension for Artinian modules was introduced by Roberts lI2]. Kirby [7] changed the terminology of Roberts and referred to Noethe- rian dimension (N-dim) to avoid any confusion with Krull dimension defined for finitely generated modules. In this note we use the terminology of Kirby [7]. Many properties of Noetherian dimension of Artinian modules have been given in [3,7, L2,l7l. The purpose of this note is to study Noetherian dimension of Artinian modules. Expecially, we prove some results on Noetherian dimension of local cohomology modules when these modules are Artinian. This paper is divided into 4 sections. In Sec.2 we will give some preliminary results on Noetherian dimension of Artinian modules. Let R be a commuta- tive Noetherian ring, A an Artinian rR-module and M a finitely generated R- module. -
Commutative Algebra
Version of September 3, 2012 A Term of Commutative Algebra By Allen ALTMAN and Steven KLEIMAN Contents Preface . iii 1. Rings and Ideals ................... 1 2. Prime Ideals .................... 6 3. Radicals ...................... 10 4. Modules ...................... 14 5. Exact Sequences ................... 20 6. Direct Limits .................... 26 7. Filtered Direct Limits . 33 8. Tensor Products ................... 37 9. Flatness ...................... 43 10. Cayley{Hamilton Theorem . 49 11. Localization of Rings . 55 12. Localization of Modules . 61 13. Support ..................... 66 14. Krull{Cohen{Seidenberg Theory . 71 15. Noether Normalization . 75 Appendix: Jacobson Rings . 80 16. Chain Conditions . 82 17. Associated Primes . 87 18. Primary Decomposition . 91 19. Length ...................... 97 20. Hilbert Functions . 101 Appendix: Homogeneity . 107 21. Dimension . 109 22. Completion . 115 23. Discrete Valuation Rings . 122 24. Dedekind Domains . 127 25. Fractional Ideals . 131 26. Arbitrary Valuation Rings . 136 Solutions . 141 1. Rings and Ideals . 141 2. Prime Ideals . 143 3. Radicals . 145 4. Modules . 148 5. Exact Sequences . 149 i 6. Direct Limits . 153 7. Filtered direct limits . 156 8. Tensor Products . 158 9. Flatness . 159 10. Cayley{Hamilton Theorem . 161 11. Localization of Rings . 164 12. Localization of Modules . 167 13. Support . 168 14. Krull{Cohen{Seidenberg Theory . 171 15. Noether Normalization . 174 16. Chain Conditions . 177 17. Associated Primes . 179 18. Primary Decomposition . 180 19. Length . 183 20. Hilbert Functions . 185 21. Dimension . 188 22. Completion . 190 23. Discrete Valuation Rings . 193 24. Dedekind Domains . 197 25. Fractional Ideals . 199 26. Arbitrary Valuation Rings . 200 References . 202 Index . 203 ii Preface There is no shortage of books on Commutative Algebra, but the present book is different.