The Hopkins-Levitzki Theorem

Total Page:16

File Type:pdf, Size:1020Kb

The Hopkins-Levitzki Theorem Trends in Mathematics Trends in Mathematics is a series devoted to the publication of volumes arising from con- ferences and lecture series focusing on a particular topic from any area of mathematics. Its aim is to make current developments available to the community as rapidly as possible without compromise to quality and to archive these for reference. Proposals for volumes can be sent to the Mathematics Editor at either Springer Basel AG Birkhäuser P.O. Box 133 CH-4010 Basel Switzerland or Birkhauser Boston 233 Spring Street New York, NY 10013 USA Material submitted for publication must be screened and prepared as follows: All contributions should undergo a reviewing process similar to that carried out by journals and be checked for correct use of language which, as a rule, is English. Articles without proofs, or which do not contain any significantly new results, should be rejected. High quality survey papers, however, are welcome. We expect the organizers to deliver manuscripts in a form that is essentially ready for direct reproduction. Any version of TeX is acceptable, but the entire collection of files must be in one particular dialect of TeX and unified according to simple instructions available from Birkhäuser. Furthermore, in order to guarantee the timely appearance of the proceedings it is essential that the final version of the entire material be submitted no later than one year after the conference. The total number of pages should not exceed 350. The first-mentioned author of each article will receive 25 free offprints. To the participants of the congress the book will be offered at a special rate. Ring and Module Theory Toma Albu Gary F. Birkenmeier Ali Erdoğan Adnan Tercan Editors Birkhäuser Editors: Toma Albu Ali Erdoğan “Simion Stoilow” Institute of Mathematics Department of Mathematics of the Romanian Academy Hacettepe University P.O. Box 1-764 Beytepe Çankaya 010145 Bucharest 1 06532 Ankara Romania Turkey e-mail: [email protected] e-mail: [email protected] [email protected] Adnan Tercan Gary F. Birkenmeier Department of Mathematics Department of Mathematics Hacettepe University University of Louisiana at Lafayette Beytepe Çankaya Lafayette, LA 70504-1010 06532 Ankara USA Turkey e-mail: [email protected] e-mail: [email protected] 2000 Mathematics Subject Classification 13, 16; 17W, 18E Library of Congress Control Number: 2010927812 Bibliographic information published by Die Deutsche Bibliothek. Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de ISBN 978-3-0346-0006-4 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © 2010 Springer Basel AG P.O. Box 133, CH-4010 Basel, Switzerland Part of Springer Science+Business Media Printed on acid-free paper produced from chlorine-free pulp. TCF ∞ Cover Design: Alexander Faust, Basel, Switzerland Printed in Germany ISBN 978-3-0346-0006-4 e-ISBN 978-3-0346-0007-1 9 8 7 6 5 4 3 2 1 www.birkhauser.ch Contents Preface ................................................................... vii T. Albu A Seventy Years Jubilee: The Hopkins-Levitzki Theorem . 1 G.F. Birkenmeier, J.K. Park and S. Tariq Rizvi A TheoryofHullsforRingsandModules ............................ 27 A.S. C¸evik, C. Ozel¨ and E.G. Karpuz Rewriting as a Special Case of Noncommutative Gr¨obner Bases Theory for the Affine Weyl Group An ................................ 73 C.J. Chikunji A Classification of a Certain Class of CompletelyPrimaryFiniteRings .................................... 83 M. Cohen and S. Westreich Higman Ideals and Verlinde-type Formulas forHopfAlgebras .................................................... 91 H.E. Heatherly and R.P. Tucci RightWeaklyRegularRings:A Survey .............................. 115 F. Kasch Substructures of Hom . 125 D. Keskin T¨ut¨unc¨u and S.H. Mohamed WeakLiftingModuleswithSmallRadical ........................... 129 L. Mao and N. Ding FP-injectiveComplexes ............................................. 135 M.J.NikmehrandF.Shaveisi A GeneralizationofHomologicalDimensions ......................... 143 P.F. Smith Additive Rank Functions and Chain Conditions . 149 vi Contents L. VaˇsandC.Papachristou ANoteon(α, β)-higher Derivations and their Extensions to ModulesofQuotients ................................................ 165 R. Wiegand and S. Wiegand PrimeIdealsinNoetherianRings:A Survey ......................... 175 Participants .............................................................. 195 Preface This volume is a collection of 13 peer reviewed papers consisting of expository/sur- vey articles and research papers by 24 authors. Many of these papers were presented at the International Conference on Ring and Module Theory held at Hacettepe University in Ankara, Turkey, during August 18–22, 2008. The selected papers and articles examine wide ranging and cutting edge de- velopments in various areas of Algebra including Ring Theory, Module Theory, Hopf Algebras, and Commutative Algebra. The survey articles are by well-known experts in their respective areas and provide an overview which is useful for re- searchers in the area, as well as, for researchers looking for new or related fields to investigate. The research papers give a taste of current research. We feel the variety of topics will be of interest to both graduate students and researchers. We wish to thank the large number of conference participants from over 20 countries, the contributors to this volume, and the referees. Encouragement and support from Hacettepe University, The Scientific and Technological Research Council of Turkey (TUB¨ ITAK)˙ and Republic of Turkey Ministry of Culture and Tourism are greatly appreciated. We also appreciate Evrim Akalan, Sevil Barın, Canan Celep Y¨ucel, Esra Demiry¨urek, Ozlem¨ Erdo˘gan, Fatih Karabacak, Didem Kavalcı, Mine Polat, Tu˘g¸ce Sivrikaya, Ay¸se S¨onmez, Figen Takıl, Muharrem Yavuz, Filiz Yıldız and U˘gur Y¨ucel for their assistance and efficient arrangement of the facilities which greatly contributed to the success of the conference. Finally, we must thank Erkan Afacan of Gazi University for his excellent job of typing and uniformizing manuscripts. December, 2009 The Editors Toma Albu, Bucharest, Romania Gary F. Birkenmeier, Lafayette, USA Ali Erdo˘gan, Ankara, Turkey Adnan Tercan, Ankara, Turkey Ring and Module Theory Trends in Mathematics, 1–26 c 2010 Springer Basel AG A Seventy Years Jubilee: The Hopkins-Levitzki Theorem Toma Albu Dedicated to the memory of Mark L. Teply (1942–2006) Abstract. The aim of this expository paper is to discuss various aspects of the Hopkins-Levitzki Theorem (H-LT), including the Relative H-LT, the Absolute or Categorical H-LT, the Latticial H-LT, as well as the Krull dimension-like H-LT. Mathematics Subject Classification (2000). Primary 16-06, 16P20, 16P40; Sec- ondary 16P70, 16S90, 18E15, 18E40. Keywords. Hopkins-Levitzki Theorem, Noetherian module, Artinian module, hereditary torsion theory, τ-Noetherian module, τ-Artinian module, quotient category, localization, Grothendieck category, modular lattice, upper contin- uous lattice, Krull dimension, dual Krull dimension. 1. Introduction In this expository paper we present a survey of the work done in the last forty years on various extensions of the Classical Hopkins-Levitzki Theorem: Relative, Absolute or Categorical, Latticial, and Krull dimension-like. We shall also illustrate a general strategy which consists on putting a module- theoretical theorem in a latticial frame, in order to translate that theorem to Grothendieck categories and module categories equipped with hereditary torsion theories. The author gratefully acknowledges partial financial support from the Grant ID-PCE 1190/2008 awarded by the Consiliul Nat¸ional al Cercet˘arii S¸tiint¸ifice ˆın ˆInv˘at¸˘amˆantul Superior (CNCSIS), Romˆania. 2T.Albu The (Molien-)Wedderburn-Artin Theorem One can say that the Modern Ring Theory begun in 1908, when Joseph Henry Maclagan Wedderburn (1882–1948) proved his celebrated Classification Theorem for finitely dimensional semi-simple algebras over a field F (see [49]). Before that, in 1893, Theodor Molien or Fedor Eduardovich Molin (1861–1941) proved the theorem for F = C (see [36]). In 1921, Emmy Noether (1882–1935) considers in her famous paper [42], for the first time in the literature, the Ascending Chain Condition (ACC) I1 ⊆ I2 ⊆···⊆In ⊆··· for ideals in a commutative ring R. In 1927, Emil Artin (1898–1962) introduces in [17] the Descending Chain Condition (DCC) I1 ⊇ I2 ⊇···⊇In ⊇··· for left/right ideals of a ring and extends the Wedderburn Theorem to rings satis- fying both the DCC and ACC for left/right ideals, observing that both ACC and DCC are a good substitute for finite dimensionality of algebras over a field: The (Molien-)Wedderburn-Artin Theorem. Aring R is semi-simple if and only if R is isomorphic to a finite direct product of full matrix rings over skew- fields ×···× R Mn1 (D1) Mnk (Dk). Recall that by a semi-simple ring one understands a ring R which is left (or right) Artinian and has Jacobson radical or prime radical zero. Since 1927, the (Molien-)Wedderburn-Artin Theorem became a cornerstone of the Noncommuta- tive Ring Theory. In 1929, Emmy Noether
Recommended publications
  • Algebraic Generality Vs Arithmetic Generality in the Controversy Between C
    Algebraic generality vs arithmetic generality in the controversy between C. Jordan and L. Kronecker (1874). Frédéric Brechenmacher (1). Introduction. Throughout the whole year of 1874, Camille Jordan and Leopold Kronecker were quarrelling over two theorems. On the one hand, Jordan had stated in his 1870 Traité des substitutions et des équations algébriques a canonical form theorem for substitutions of linear groups; on the other hand, Karl Weierstrass had introduced in 1868 the elementary divisors of non singular pairs of bilinear forms (P,Q) in stating a complete set of polynomial invariants computed from the determinant |P+sQ| as a key theorem of the theory of bilinear and quadratic forms. Although they would be considered equivalent as regard to modern mathematics (2), not only had these two theorems been stated independently and for different purposes, they had also been lying within the distinct frameworks of two theories until some connections came to light in 1872-1873, breeding the 1874 quarrel and hence revealing an opposition over two practices relating to distinctive cultural features. As we will be focusing in this paper on how the 1874 controversy about Jordan’s algebraic practice of canonical reduction and Kronecker’s arithmetic practice of invariant computation sheds some light on two conflicting perspectives on polynomial generality we shall appeal to former publications which have already been dealing with some of the cultural issues highlighted by this controversy such as tacit knowledge, local ways of thinking, internal philosophies and disciplinary ideals peculiar to individuals or communities [Brechenmacher 200?a] as well as the different perceptions expressed by the two opponents of a long term history involving authors such as Joseph-Louis Lagrange, Augustin Cauchy and Charles Hermite [Brechenmacher 200?b].
    [Show full text]
  • Modules with Artinian Prime Factors
    PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 3. March 1980 MODULES WITH ARTINIAN PRIME FACTORS EFRAIM P. ARMENDARIZ Abstract. An R -module M has Artinian prime factors if M/PM is an Artinian module for each prime ideal P of R. For commutative rings R it is shown that Noetherian modules with Artinian prime factors are Artinian. If R is either commutative or a von Neumann regular K-rmg then the endomorphism ring of a module with Artinian prime factors is a strongly ir-regular ring. A ring R with 1 is left ir-regular if for each a G R there is an integer n > 1 and b G R such that a" = an+lb. Right w-regular is defined in the obvious way, however a recent result of F. Dischinger [5] asserts the equivalence of the two concepts. A ring R is ir-regular if for any a G R there is an integer n > 1 and b G R such that a" = a"ba". Any left 7r-regular ring is 77-regular but not con- versely. Because of this, we say that R is strongly ir-regular if it is left (or right) w-regular. In [2, Theorem 2.5] it was established that if R is a (von Neumann) regular ring whose primitive factor rings are Artinian and if M is a finitely generated R-module then the endomorphism ring EndÄ(Af ) of M is a strongly 77-regular ring. Curiously enough, the same is not true for finitely generated modules over strongly w-regular rings, as Example 3.1 of [2] shows.
    [Show full text]
  • Multilinear Algebra and Chess Endgames
    Games of No Chance MSRI Publications Volume 29, 1996 Multilinear Algebra and Chess Endgames LEWIS STILLER Abstract. This article has three chief aims: (1) To show the wide utility of multilinear algebraic formalism for high-performance computing. (2) To describe an application of this formalism in the analysis of chess endgames, and results obtained thereby that would have been impossible to compute using earlier techniques, including a win requiring a record 243 moves. (3) To contribute to the study of the history of chess endgames, by focusing on the work of Friedrich Amelung (in particular his apparently lost analysis of certain six-piece endgames) and that of Theodor Molien, one of the founders of modern group representation theory and the first person to have systematically numerically analyzed a pawnless endgame. 1. Introduction Parallel and vector architectures can achieve high peak bandwidth, but it can be difficult for the programmer to design algorithms that exploit this bandwidth efficiently. Application performance can depend heavily on unique architecture features that complicate the design of portable code [Szymanski et al. 1994; Stone 1993]. The work reported here is part of a project to explore the extent to which the techniques of multilinear algebra can be used to simplify the design of high- performance parallel and vector algorithms [Johnson et al. 1991]. The approach is this: Define a set of fixed, structured matrices that encode architectural primitives • of the machine, in the sense that left-multiplication of a vector by this matrix is efficient on the target architecture. Formulate the application problem as a matrix multiplication.
    [Show full text]
  • Gsm073-Endmatter.Pdf
    http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining
    [Show full text]
  • Lectures on Non-Commutative Rings
    Lectures on Non-Commutative Rings by Frank W. Anderson Mathematics 681 University of Oregon Fall, 2002 This material is free. However, we retain the copyright. You may not charge to redistribute this material, in whole or part, without written permission from the author. Preface. This document is a somewhat extended record of the material covered in the Fall 2002 seminar Math 681 on non-commutative ring theory. This does not include material from the informal discussion of the representation theory of algebras that we had during the last couple of lectures. On the other hand this does include expanded versions of some items that were not covered explicitly in the lectures. The latter mostly deals with material that is prerequisite for the later topics and may very well have been covered in earlier courses. For the most part this is simply a cleaned up version of the notes that were prepared for the class during the term. In this we have attempted to correct all of the many mathematical errors, typos, and sloppy writing that we could nd or that have been pointed out to us. Experience has convinced us, though, that we have almost certainly not come close to catching all of the goofs. So we welcome any feedback from the readers on how this can be cleaned up even more. One aspect of these notes that you should understand is that a lot of the substantive material, particularly some of the technical stu, will be presented as exercises. Thus, to get the most from this you should probably read the statements of the exercises and at least think through what they are trying to address.
    [Show full text]
  • La Controverse De 1874 Entre Camille Jordan Et Leopold Kronecker. Frederic Brechenmacher
    La controverse de 1874 entre Camille Jordan et Leopold Kronecker. Frederic Brechenmacher To cite this version: Frederic Brechenmacher. La controverse de 1874 entre Camille Jordan et Leopold Kronecker. : Histoire du théorème de Jordan de la décomposition matricielle (1870-1930).. Revue d’Histoire des Mathéma- tiques, Society Math De France, 2008, 2 (13), p. 187-257. hal-00142790v2 HAL Id: hal-00142790 https://hal.archives-ouvertes.fr/hal-00142790v2 Submitted on 1 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. La controverse de 1874 entre Camille Jordan et Leopold Kronecker. * Frédéric Brechenmacher ( ). Résumé. Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au XIXe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considèrerions aujourd’hui équivalents, nous permettra de questionner l’identité algébrique de pratiques polynomiales de manipulations de « formes » mises en œuvre sur une période antérieure aux approches structurelles de l’algèbre linéaire qui donneront à ces pratiques l’identité de méthodes de caractérisation des classes de similitudes de matrices.
    [Show full text]
  • Lectures on Local Cohomology
    Contemporary Mathematics Lectures on Local Cohomology Craig Huneke and Appendix 1 by Amelia Taylor Abstract. This article is based on five lectures the author gave during the summer school, In- teractions between Homotopy Theory and Algebra, from July 26–August 6, 2004, held at the University of Chicago, organized by Lucho Avramov, Dan Christensen, Bill Dwyer, Mike Mandell, and Brooke Shipley. These notes introduce basic concepts concerning local cohomology, and use them to build a proof of a theorem Grothendieck concerning the connectedness of the spectrum of certain rings. Several applications are given, including a theorem of Fulton and Hansen concern- ing the connectedness of intersections of algebraic varieties. In an appendix written by Amelia Taylor, an another application is given to prove a theorem of Kalkbrenner and Sturmfels about the reduced initial ideals of prime ideals. Contents 1. Introduction 1 2. Local Cohomology 3 3. Injective Modules over Noetherian Rings and Matlis Duality 10 4. Cohen-Macaulay and Gorenstein rings 16 d 5. Vanishing Theorems and the Structure of Hm(R) 22 6. Vanishing Theorems II 26 7. Appendix 1: Using local cohomology to prove a result of Kalkbrenner and Sturmfels 32 8. Appendix 2: Bass numbers and Gorenstein Rings 37 References 41 1. Introduction Local cohomology was introduced by Grothendieck in the early 1960s, in part to answer a conjecture of Pierre Samuel about when certain types of commutative rings are unique factorization 2000 Mathematics Subject Classification. Primary 13C11, 13D45, 13H10. Key words and phrases. local cohomology, Gorenstein ring, initial ideal. The first author was supported in part by a grant from the National Science Foundation, DMS-0244405.
    [Show full text]
  • Certain Artinian Rings Are Noetherian
    Can. J. Math., Vol. XXIV, No. 4, 1972, pp. 553-556 CERTAIN ARTINIAN RINGS ARE NOETHERIAN ROBERT C. SHOCK 1. Introduction. Throughout this paper the word "ring" will mean an associative ring which need not have an identity element. There are Artinian rings which are not Noetherian, for example C(pco) with zero multiplication. These are the only such rings in that an Artinian ring R is Noetherian if and only if R contains no subgroups of type C(pœ) [1, p. 285]. However, a certain class of Artinian rings is Noetherian. A famous theorem of C. Hopkins states that an Artinian ring with an identity element is Noetherian [3, p. 69]. The proofs of these theorems involve the method of "factoring through the nilpotent Jacobson radical of the ring". In this paper we state necessary and sufficient conditions for an Artinian ring (and an Artinian module) to be Noetherian. Our proof avoids the concept of the Jacobson radical and depends primarily upon the concept of the length of a composition series. As a corollary we obtain the result of Hopkins. All conditions are on the right, that is, an Artinian ring means a right Artinian ring, etc. We say a module A is embeddable in a module B provided that A is isomorphic to some submodule of B. Our Theorem 3 states that an Artinian ring R is Noetherian if and only if a cyclic Noetherian submodule ofR is embeddable in some Noetherian factor module of R. An example in the paper shows that in an Artinian ring R which is also Noetherian, a cyclic submodule need not be isomorphic to some factor module of R.
    [Show full text]
  • Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 95, 201-216 (1985) Artinian Modules and Modules of Which All Proper Submodules Are Finitely Generated WILLIAM HEINZER Purdue University, West Lafayette, Indiana 47907 AND DAVID LANTZ Purdue University, West Lafayette, Indiana 47907, and Colgate University, Hamilton, New York 13346 Communicated by I. N. Herstein Received September 5, 1983 1. INTRODUCTION William D. Weakley, in [Wl], studied modules (unitary, over a com- mutative ring with unity) which are not finitely generated but all of whose proper submodules are finitely generated. Weakley called such modules “almost finitely generated” (a.f.g.). He noted that an a.f.g. module has prime annihilator and that, as a faithful module over a domain, it is either torsion or torsion-free. If torsion-free, it is isomorphic as a module to the domain’s quotient field. If torsion, it is Artinian, so Weakley was led to the tools of study of Artinian modules developed by Matlis [Ml, M23 and Vamos [V]. These tools include, for a quasilocal ring (R, M), the injective envelope E,(R/M) of the residue field R/M. The purpose of the present paper is to combine results of [Wl] and [GH2] to characterize the form of a.f.g. modules and the rings which admit such modules, and to describe the a.f.g. submodules of E,(R/M). In Section 2, we refine a result of [ Wl ] to conclude that, if R is a domain and (F’, P) is a discrete rank one valuation domain between R and its quotient field K, then K/V is an a.f.g.
    [Show full text]
  • Topics in Group Rings, by Sudarshan K
    654 BOOK REVIEWS 14. R. S. Michalski, and P. Negri, An experiment in inductive learning in chess end games, Machine Intelligence 8 (E. W. Elcock and D. Michie, eds.)> Halsted Press, New York, 1977, pp. 175-185. 15. M. Polanyi, Personal knowledge, Routledge and Kegan Paul, London, 1958. 16. K. R. Popper, The logic of scientific discovery, Hutchinson, London, 1959. 17. A. Ralston and C. L. Meek (eds.), Encyclopedia of computer science, Petrocelli and Charter, New York, 1976. 18. A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Develop. 3 (1959), 210-229. 19. C. E. Shannon, Programming a computer for playing chess, Phill. Mag. (London) 7th Ser. 41 (1950), 256-275. 20. P. H. Winston, Artificial intelligence, Addison-Wesley, Reading, Mass., 1977. 21. J. Woodger, The axiomatic method in biology, Cambridge Univ. Press, London and New York 1937. I. J. GOOD BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 1, Number 4, July 1979 © 1979 American Mathematical Society O002-9904/79/0000-0308/$02.25 Topics in group rings, by Sudarshan K. Sehgal, Monographs and Textbooks in Pure and Applied Mathematics, vol. 50, Marcel Dekker, New York and Basel, 1978, vi + 251 pp., $24.50. The theory of the group ring has a peculiar history. In some sense, it goes back to the 1890's, but it has emerged as a separate focus of study only in relatively recent times. We start with the early development of the theory of representations of finite groups over the complex field. Most people familiar with this think immediately of Frobenius and Burnside, who used approaches that seem unsuitable and even bizarre in the light of modern treatments.
    [Show full text]
  • On the Noetherian Dimension of Artinian Modules*
    Vietnam Journal o! Mathematics3O:2 (2002) 121-130 V [,e r[rma nm _J[o,rurrrrm a l[ olP Mt,A.]f lHI]EMt,A.]f ]IC S O NCST2OO2 On the Noetherian Dimension of Artinian Modules* Nguyen T\r Cuong and Le Thanh Nhan Institute of Mathemati,cs.P. O. Bor 631, Bo Ho, Hanoi, V'ietnam ReceivedJuly L4, 2000 Abstract. Somenew resultsof Noetheriandimension of Artinian modulesare given and severalproperties of Noetherian dimension of local cohomologymodules of finitely generatedmodules are shown. After giving an exampleof an Artinian module ,4 which has Krull dimension strictly larger than its Noetherian dimension, we present some sufficient conditions on Artinian modules .A such that the both notions of dimension of ,4 are the same. 1".Introduction The concept of Krull dimension for Artinian modules was introduced by Roberts lI2]. Kirby [7] changed the terminology of Roberts and referred to Noethe- rian dimension (N-dim) to avoid any confusion with Krull dimension defined for finitely generated modules. In this note we use the terminology of Kirby [7]. Many properties of Noetherian dimension of Artinian modules have been given in [3,7, L2,l7l. The purpose of this note is to study Noetherian dimension of Artinian modules. Expecially, we prove some results on Noetherian dimension of local cohomology modules when these modules are Artinian. This paper is divided into 4 sections. In Sec.2 we will give some preliminary results on Noetherian dimension of Artinian modules. Let R be a commuta- tive Noetherian ring, A an Artinian rR-module and M a finitely generated R- module.
    [Show full text]
  • Commutative Algebra
    Version of September 3, 2012 A Term of Commutative Algebra By Allen ALTMAN and Steven KLEIMAN Contents Preface . iii 1. Rings and Ideals ................... 1 2. Prime Ideals .................... 6 3. Radicals ...................... 10 4. Modules ...................... 14 5. Exact Sequences ................... 20 6. Direct Limits .................... 26 7. Filtered Direct Limits . 33 8. Tensor Products ................... 37 9. Flatness ...................... 43 10. Cayley{Hamilton Theorem . 49 11. Localization of Rings . 55 12. Localization of Modules . 61 13. Support ..................... 66 14. Krull{Cohen{Seidenberg Theory . 71 15. Noether Normalization . 75 Appendix: Jacobson Rings . 80 16. Chain Conditions . 82 17. Associated Primes . 87 18. Primary Decomposition . 91 19. Length ...................... 97 20. Hilbert Functions . 101 Appendix: Homogeneity . 107 21. Dimension . 109 22. Completion . 115 23. Discrete Valuation Rings . 122 24. Dedekind Domains . 127 25. Fractional Ideals . 131 26. Arbitrary Valuation Rings . 136 Solutions . 141 1. Rings and Ideals . 141 2. Prime Ideals . 143 3. Radicals . 145 4. Modules . 148 5. Exact Sequences . 149 i 6. Direct Limits . 153 7. Filtered direct limits . 156 8. Tensor Products . 158 9. Flatness . 159 10. Cayley{Hamilton Theorem . 161 11. Localization of Rings . 164 12. Localization of Modules . 167 13. Support . 168 14. Krull{Cohen{Seidenberg Theory . 171 15. Noether Normalization . 174 16. Chain Conditions . 177 17. Associated Primes . 179 18. Primary Decomposition . 180 19. Length . 183 20. Hilbert Functions . 185 21. Dimension . 188 22. Completion . 190 23. Discrete Valuation Rings . 193 24. Dedekind Domains . 197 25. Fractional Ideals . 199 26. Arbitrary Valuation Rings . 200 References . 202 Index . 203 ii Preface There is no shortage of books on Commutative Algebra, but the present book is different.
    [Show full text]