<<

JETJET ,Neutron, GammaGamma && ParticleParticle DiagnosticsDiagnostics

Brian Syme

EIROForum 2013, May 2013 EIROForumD. B. Syme2013, et al, May 2013 EIROForum May 2013 Acknowledgements

JET Neutron, Gamma & Particle Diagnostics

D.B. Syme 1, S. Popovichev 1, V. Kiptily 1, L. Giacomelli 2, S. Conroy 3, P. Beaumont 1, M. Santala 4, G. Ericsson 3, M. Weiszflog 3, A. Hjalmarsson 3, C. Hellesen 3, H. Henriksson 3, G. Gorini 2, M. Tardocchi 2, R. Pereira 5, A Fernandez 5, M. Riva 6, F. Belli 6 and JET EFDA contributors *

[email protected] , [email protected] JETEFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

1EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK 2 EURATOM-CNR Fusion Association , Istituto di Fisica del Plasma "Piero Caldirola“, CNR, Milano, Italy 3 EURATOM-VR Fusion Association , Department of Physics and Astronomy, Uppsala, Sweden 4 EURATOM-Tekes Fusion Association , VTT Technical Research Centre, P.O. Box 1000, FI-02044 VTT, Finland 5 EURATOM-IST Fusion Association, Instituto de Plasmas e Fusão Nuclear / IST Av. Rovisco Pais, 1049-001 Lisboa Portugal 6 Associazione EURATOM-ENEA sulla Fusione, C.P. 65, Frascati I-00044, Roma (Italy)

* See the Appendix of F. Romanelli et al, Proceedings of the 24th IAEA Fusion Energy Conference 2012, San Diego, USA.

D. B. Syme et al, EIROForum May 2013 Fusion energy research Ions, and fusion products

Fusion power has the potential to provide energy in the future 1.E+0110 DD in a sustainable way – reactions between hydrogen ions DT 1.E+001 D3He TT – 2D + 2D 3He (0.82 MeV ) + n (2.45 MeV ) 50% –  3T (1.11 MeV ) + p (3.02 MeV ) 50% 1.E0110 1 – 2D + 3T 4He (3.5 MeV ) + n (14.1 MeV ) 1.E022 – 2D + 3He 4He (3.6 MeV ) + p (14.7 MeV ) 10 cross section (barn) section cross 3 3 – T + T 4He + 2n <11.3 MeV > 1.E0310 3

DT is favoured : Best yield. at lowest temperature (ion energy) 1.E0410 4 1 10 100 1000 kT (keV) Need containment at high temperature and density In the Sun – Gravitational containment On Earth – Magnetic containment – ‘ ’ like JET are now favoured

– Maximise Fusion Product = ni.Ti .τe

Arising points for Diagnostics – Neutrons measure the fusion yield – directly MAST – Same number of p, 3T ions as n in a D,D plasma – There are 3T ions + 14 MeV neutrons, even in D,D plasmas From Triton ‘burnup ’ And adsorbed in the walls

3 D. B. Syme et al, EIROForum May 2013 FusionFusion energyenergy researchresearch

The present world leading machine is JET (Joint European Torus ), A European project, operated by Euratom 16 MW peak D T and closest approach to break even (Q~1) [1997] Flexible machine with 25 years operation, JET machine parameters and & plasma conditions are nearest to those of the next step = ITER (now in build)

5 T-3 4 MAST JET 3 ITER

2

1

0

-1

-2

-3 vertical distance from midplane (m) from midplane distance vertical -4

-5 0 2 4 6 8 10 radial distance from toroidal axis (m)

D. B. Syme et al, EIROForum May 2013 NeutronNeutron DiagnosticsDiagnostics

Reactions in D D and D T research and power devices produce neutrons:

2D + 2D  3He + n 3.27 MeV [ 3T + p 4.03 MeV] 2D + 3T  4He + n 17.6 MeV – At a laboratory scale: neutrons are a diagnostic tool used for measurement of plasma parameters Technique Apparatus Measurement

Elemental foils Y Activation n Yield irradiation probes N spectrum Fission chambers, Yn yield (t) Neutron (rate) diodes, diamonds monitoring Y (t) Scintillators n yield nion profile eg Time of flight, N spectrum (t) Spectrometry Magnetic proton T (t) recoil & CNS types Tion (t)

D. B. Syme et al, EIROForum May 2013 JET Neutron Diagnostics Measurements & Challenges

From its beginning (1983), JET has had an extensive set of Neutron Diagnostics Neutron Diagnostics measurements: • Time resolved neutron yield • Time integrated absolute neutron yield • Radial profile of the neutron emission • Neutron energy spectra. + recently a range of Fast Ion Diagnostics • Fast ion loss detectors (FILD) • Fusion gamma diagnostics • Alfven Eigenmodes Antennas •Neutral Particle Analysers Measurement Challenges • 10 s pulses/20 mins , N yield range: 10 8 10 20 • Extended N source ( Toroidal , R~3m, H~1 2m) • Magnetic Fields, EM interference, Mechanical Vibrations • High N, X & Gamma ray backgrounds • Damage levels, Restricted access • [D,T equipment to be remotely handled]

Complementary Techniques are always required Fields of View [Different views, shielding, responses, sensitivities, +/ –’s]

6 D. B. Syme et al, EIROForum May 2013 JET TimeResolved Neutron Yield Monitors

Time resolved Total Neutron Yield Monitor Timeresolved 14 MeV (2.45 MeV plus 14 MeV both included) Neutron Yield Monitor 3 pairs of fission chambers U235 & U 238 • Threshold (n,p) and (n,a)  Located around JET (on the limbs in Oct. 2, 8 and 6). reactions in Si diodes & Diamonds  Wide Range of neutron yields: 10 10 to 10 20 n/s • Range: 10 13 10 18 n/s  Electronics: (All analogue) HV, preamps, log amps, high linearity  Absolutely calibrated to <10%, periodic verification

7 D. B. Syme et al, EIROForum May 2013 JET Neutron Yield Monitors Locations

Irradiation End Oct 3 3 Upper

Oct 4 Oct 2 FC D2

Oct 5 Oct 1

Oct 6 Oct 8

FCD3 FC D1 Oct 7 Fission Chamber FC

D. B. Syme et al, EIROForum May 2013 JET Neutron Yield Monitors - Activation

JET Octant 3 Crosssection (Octant 3 Upper) Irradiation End – I.E JET Mechanical Support Structure Vaccum Vessel (Doublewalled) IterLike Wall (Plasmafacing) JET Activation System • 8 Irradiation ends located in 5 octants :

• Capsules containing sample foils are delivered and retrieved pneumatically

• ConventionalC gamma-radiation measurements Range: 10 14 to >10 20 n/s most widely used reactions at JET: DD 115 In(n,n’)115m In, DT 28 Si (n,p) 28 AL, 63 Cu(n,2n) 62 Cu, 56 Fe(n,p) 56 Mn detectors : 3 NaI, HpGe (absolutely calibrated)

• CountingC of delayed neutrons Range 10 14 to >10 20 n/s After N,fission reactions in ( 235 U, 238 U, 232 Th) foils Gives DD neutron yield, when Y(DD)>> Y(DT) detector system : 2 stations with six 3He counters

• Accuracy typically ~ 8-10% for both DD and DT neutron yields delayed neutron measurements can give 7%

D. B. Syme et al, EIROForum May 2013 Neutron Yield Monitors Data

Typical time dependence of 7 sec pulse Calibration of Fission Chamber vs Activation system

1.0E +20 JET Daily Neutron Yields 1984-2009 DD neutrons 1.0E +19 DT neutrons

1.0E +18 JET Neutron Yield per day (1984 2010) 1.0E +17

1.0E +16

1.0E +15

Blue = Total Yield, / Neutrons day Red= D,T Yield 1.0E +14

1.0E +13

1.0E +12 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 D a te

10 D. B. Syme et al, EIROForum May 2013 JETJET NeutronNeutron YieldYield CalibrationCalibration Need absolute measure of fusion rate Need Absolute Calibration of Neutron Emission versus a calibrated neutron source in the torus , eg 252 Cf

Last done in 1985 9, for the Fission Chambers only, Calibration extended by a succession of calculations, since then

1985/9 Method: Pull a strong calibrated neutron source round the torus in a tube. Observe response from external Fission Chambers per source neutron => calibration

How it has been set up in 1985/9

11 D. B. Syme et al, EIROForum May 2013 The JET Experiment Changing since 1983

JET 1985 JET 1991 March 2010 During Shutdown

Inside JET 1985 Inside JET 1994 2011 JET ITERLike Wall

D. B. Syme et al, EIROForum May 2013 RH Deployment Environment

Safe source storage Source loading & deployment Transport Flask TCTF Tent Operational Shield In Loading Bay

11 m Port to Port

Auxiliary Shield Mascot Oct5 Boom Tent In ISO container Contingency Provisions Normal Operations 13 D. B. Syme et al, EIROForum May 2013 JET Neutron Source Calibration 2013

Direct calibration of JET a) 40 steps round vessel in plasma centre locations neutron monitors, versus b) 1 set of radial & vertical scans at a port a standard 252Cf source c) Scan under Irradiation End – First direct calibration intorus d) Basket scan: 40 steps x 5 rings round vessel with +/ 50 cm in Z, R Deployment plan on right e) Direct Comparison of Activation and Fission Chamber methods for 252Cf

Improves old JET calibration Precursor to JET D,T Calibrations Addresses many questions relevant to ITER Calibrations

eg Corrections for – Non symmetric sources Scattering effects, eg source holder & support structure Point vs 3D calibrations Torus practicalities

14 D. B. Syme et al, EIROForum May 2013 FC Oct 6: Raw Counts: Historical Comparison to 1984 data (for the same Cf Neutron Rate) Progressive reduction of Raw FC neutrons observed per JET neutro n as JET ports regions became congested and Limiters were added

Reduction in FC rate per JET neutron X 2 in 29 years Note: this is not a calibration coefficient

Note : No information from this on the effect of recent torus inner wall changes, as there was no neutron calibration in the earlier ‘carbon wall’ period D. B. Syme et al, EIROForum May 2013 JET Neutron Profile Monitor & Gamma Camera

Two cameras: Vertical: 9 lines of sight Horizontal: 10 lines of sight Fan shaped array of remotely adjustable collimators with two apertures. Space resolution: ~8 (or ~15)cm (in the centre

Detectors: NE213 liquid scintillators (2.5 and 14 MeV ) + PSD; Plastic Bicron418 scintillators (14 MeV )

CsI(Tl ) photodiodes (Hard X rays and g emission 0.2< Eg <6 MeV ). DAQ: Recently converted from analog to digital

Neutron detectors are absolutely calibrated Covers both DD and DT regimes of operation M. Adams et al., NIM, A 329 (1993) Plasma coverage allows 2D pseudo tomography

16 D. B. Syme et al, EIROForum May 2013 JET Neutron Profile Monitor Data

KN3 Basic Data – Neutron Yield Profile as Line Emission Profiles See variations in position and peaking of the neutron emission (profile of fusion ‘burn ’)

Data can be • Used as: plasma N emission profile vs time • Compared with: models of plasma emissivity, fast ion distributions, etc. • Converted to: pseudotomographic images 14 MeV Bicron Detectors in TTE

Vertical camera has demonstrated asymmetries in the neutron emission profiles for some experiments – large orbit trapped ions can produce neutrons

S. Popovichev et al., 31st EPS Conf. on Plasma Physics, London, UK (2004). 17 D. B. Syme et al, EIROForum May 2013 Profile Monitor Recent Results Digital DAQ

#82723 (NBI = 21 MW), KN3N

Horizontal Vertical Camera Camera

Raw Data, not yet corrected for variations in detector efficiency, etc Digital DAQ by ENEA association

18 D. B. Syme et al, EIROForum May 2013 Spectrometry Principles for Neutrons

Measurement of neutron energy by transfer of momentum/energy from neutron to recoil proton a) Measurement of recoil proton momentum in dispersive magnetic spectrometer (MPR) b) Timing of recoil neutron (TOF) from scattering detector to 2nd detector (TOFOR) b’) Direct measurement of recoil proton energy from thin foil in SSD detector (not shown) c) Proton absorption by scintillator proportional conversion to light, then to an electronic signal, amplification & DAQ processes ‘compact neutron spectrometer’ Fig. Giacommeli et al, Nucl. Fusion 45 (2005)

D. B. Syme et al, EIROForum May 2013 Neutron Spectrometers & Lines of Sight

D,D Neutrons Time of Flight Spectrometer Vertical Line of sight Sited in Roof Laboratory above Oct 8 Range: 10 14 10 17 n/s

Diagnostics by VR association (Sweden) D. B. Syme et al, EIROForum May 2013 Neutron Spectrometers & Lines of Sight

D,T (D,D) neutrons Magnetic Proton Recoil spectrometer

Horizontal Tangential LoS, Looking from Oct 4 to Oct 7 Sited in a Separate Shield in the Torus Hall Plasma selfheated thermal peak (top) Peak width – ion temperature ICRFHeated D,T Plasma (bottom) Broadened Thermal peak Ion Temperature and High Energy Neutrons

Diagnostics by VR association (Sweden) D. B. Syme et al, EIROForum May 2013 Neutron Spectrometers & Lines of Sight

Compact Neutron Spectrometer For D,D & D,T Neutrons

Horizontal Tangential LoS, Looking from Oct 7 to Oct 2 Sited in Bunker Outside Torus Hall

Range: 10 14 10 17 n/s

CNS

D. B. Syme et al, EIROForum May 2013 NE213 CNS Spectrometer Data and Digital DAQ

Ne213 Spectrometer (left) and Stilbene Scintillators, sharing an annular neutron field in a JET bunker The NE213 response function was measured at PTB, in an ENEA project NE213 scintillator detector (BC501A) with a 207Bi γ source for long term stability monitoring & LED for shorttime PM gain corrections. PSD Digital DAQ for PSD, Pulse data Height analysis, and event time Pulse-height stamping Spectrum

D. B. Syme et al, EIROForum May 2013 NE213 CNS Spectrometer Data

Simultaneous Energy Spectra (ex Pulse Height Distributions) From 2.5 MeV Neutrons (D,D) And 14 MeV neutrons (D,T)

Unfolded broad NBIinduced neutron energy spectrum (D,D)

D. B. Syme et al, EIROForum May 2013 Summary: Current JET Neutron Diagnostics Systems

SystemsSystems JETJET CapabilitiesCapabilities NeutronNeutron DetectionDetection rangerange

Timeresolved All En: fission counters dYn/dt: Wide range, total emission 14 MeV: Si diodes, fast response, 10 10 to 10 20 n/s (rate) CVD Redundancy MHD, T Burnup, nD/n E 14 20 Timeintegrated Foil activation & Absolute N yields, 10 to >10 emission count Yield Calibration in n/s Gamma or neutron D,D & D,T

N Profile Monitor Liquid scintillators NE213 dYn/dt(R, Z), Total N yield, 10 15 to >10 17 n/s (2Dcameras) Plastic scintillators BC418 N Emission Tomography, CsI Scintillators for nD/n E, T Burnup, Gamma Camera Fast particle confinement

Spectrometers TOFOR (VR) Neutron emission Spectra, 10 14 to >10 17 n/s NE213 (and Stilbene) Ion Temperature (Ohmic), NBI Magnetic proton recoil (VR) Thermal & Beamplasma yields, Hot ions in ICRH heating,

nD/n E in D,D or nfuel /n e in D,T 25 D. B. Syme et al, EIROForum May 2013 JET Gamma Spectroscopy (Confined Fast Ions)

Fast ions occur in the plasma from fusion products : p ( 3 & 15 MeV ), T ( 1 MeV ), 3He( 0.8 MeV ), α (3.5 MeV ) ICRHaccelerated [Fuel and product] ions : H, D, T, 3He, 4He γray emission is produced by fast ion nuclear reactions with bulk ions and impurities in the plasma (mainly C, Be) Gamma ray ‘fingerprint ’ identifies fast ions > key energies, eg αparticle diagnosis at JET is based on the 9Be( α,n γ)12 C reaction Fast deuteron detection in the old JET was based on the 12 C(d,p γ)13 C reaction now Be reactions, mainly Be(d,nγ) and Be(d,pγ)

NaI & BGO detectors previously used, (plus CsI in the profile monitor)

Recent additions: LaBr 3 & HpGe

26 D. B. Syme et al, EIROForum May 2013 γγray spectrometers Lines of Sight

Original Capabilities: ( Analog DAQ)

BGO, NaI(Tl), LaBr 3, HpGe NaI(Tl ): energy resolution, E/E ≈ 8% Slow: decay time ~ 250 ns a link to Recent RF DAQ system allows up to 1 results MHz Pulse Height Analysis with BGO: energy resolution, E/E ≈ 12% carbon Best detection efficiency! wall Slow: decay time ~ 300 ns ⇒ 1MHz PHA

Recent Upgrades: CNR & IST led

BGO • HpGe : E/E ≈ 0.1%, DAQ to1 MHz Neutron Sensitive specific tasks

• LaBr 3 (or BrilLanCe): E/E ≈ 3%, Decay times < 20 ns DAQ allows up to 2 MHz PHA • Quasi -tangential BGO -spectrometer: front and rear collimators to improve S/B ratio • Gamma Camera: 19 LoS indicated: Energy Windows, now Spectrometers • DAQ: Upgraded from Analog - Digital 27 D. B. Syme et al, EIROForum May 2013 Gamma Ray Spectrometers Vertical LoS

3 Detectors and 2 neutron filters on sliders Choose 1 & switch into the N/G beam

(a) G Specs Roof TOFOR laboratory JG09.419-3a NaI(Tl) Concrete LaBr3 shielding

Precollimator HpGe Upper vertical diagnostic port

Coils Horizontal diagnostic port Sliders Support structure and radiation shielding Neutron Divertor region attenuators

BGO or LaBr3 above 6LiH Filter in 2nd vertical path (not shown)

28 D. B. Syme et al, EIROForum May 2013 JET Gamma Spectroscopy & Gamma Emission Profiles

3rd IC harmonic 4Hebeam ion acceleration experiments Kiptily V.G. et al 2002 Nucl. Fusion 42 999 Alpha Diagnostics Kiptily V.G. et al 45 (2005) L21

29 D. B. Syme et al, EIROForum May 2013 γray emission profile from Gamma Camera

(From spectroscopic data obtained with the new digital DAQ)

NBI phase ICRH phase

700 Gammaray background count rates 250 600 during NBI heating phase #81852 in ## 81852,81853, 81855 & 81857 200 500

400 150

300 Counts

Counts 100

200 50 100 horizontal vertical 0 0 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 Channel number Channel number Beprofile is needed to obtain the spatial distribution of energetic ions Digital DAQ by IST Association

D. B. Syme et al, EIROForum May 2013 γray spectrum from HpGe detector: Doppler broadening

4He acceleration experiments

400 9 12 4 60 Be( α,n γ) C 3.089 MeV Hebeam ions was accelerated 4.439 MeV 12 13 350 C(d,p γ) C by ICRF in the 4He plasma 40 The Doppler broadening due to 300 dN / dn dN / nuclear reactions between 4He 20 250 and Be impurity has been

1700 1750 1800 1850 measured for assessment of 200 Channel number effective “temperature” : dN / dNdn / 150 E ≈ E (V /c ) cos θ 9Be( α,n γ)12 C γ γ0 R 100 4.439 MeV VR – recoil velocity which is depend on the 4Heion 50 velocity 0 200 400 600 800 1000 1200 1400 1600 1800 2000 channel number Kiptily et al NF 50 (2010) 084001

D. B. Syme et al, EIROForum May 2013 γγγray spectrum from HpGe detector : fast aparticle beam

Spectrometer

4MeV α

2MeV α E* = 6 MeV Eα = 3 MeV

Shape does change with E*

Limited by statistics LOS ICRH R

kp in agreement with values found from analysis of peaks from 12 C(d,pγγγ)13 C

M. Tardocchi et al, proceeding of EPS conference, Dublin, June 2010 M. Nocente et al, Nuclear Fusion 52 (2012)022001 32 D. B. Syme et al, EIROForum May 2013 Fast Ion Loss Detectors (1) Faraday Cups

Faraday Multilfoil Faraday Cups Cups with energy resolution for lost alphas at 5 poloidal positions (promising 4He results) USA (PPPL, CSM), JOC

Darrow et al. RSI 77 (2006) 10E701

33 D. B. Syme et al, EIROForum May 2013 Fast Ion loss Detectors (1) Faraday Cups

Faraday Cups array provides good poloidal and time resolution • Time resolution: 1 kHz • Multiple poloidal positions (5) • Multiple radial locations (max 3) • BUT, no pitch angle resolution

Also

Moderate Energy Resolution (max 8 bins)

• Detector composed of multiple thin metal foils separated by mica foils • Ion energy determines deposition depth • Ion current measured for each foil individually • Current vs depth gives energy distribution ( E~30–50%)

34 D. B. Syme et al, EIROForum May 2013 Fast Ion Loss Detectors (2) Scintillator Probe

Scintillator Probe

USA (PPPL, CSM), JOC

Location: Octant 4 lower limiter guide tube

35 D. B. Syme et al, EIROForum May 2013 Scintillator Probe (1) Features

Ion selection is defined by slitgeometry and field energy range selection pitchangle range selection Particle energy is linked to gyroradius of fast ions : r mE B Z ∝ ⊥ / T Observation of lost ions: particles hit surface of the scintillating material light emission allows to use fast CCD and PMT detectors 20 kHz camera, 5 kHz P.M. Entrance aperture: 1 Au foil stops Scintillator probe provides 2D lost-ion low energy ions images (pitch-angle & gyroradius) H, D < 150 keV ; He < 250 keV

36 D. B. Syme et al, EIROForum May 2013 Scintillator Probe (2) – Main project activities

D. B. Syme et al, EIROForum May 2013 Scintillator Probe (3) – Data Visualisation

38 D. B. Syme et al, EIROForum May 2013 NeutralNeutral ParticleParticle AnalyserAnalyser (Radial)(Radial)

D0 and T 0 distributions

NPA B

Z = 0.28 m A

C

D

Lowenergy NPA measures simultaneously the energy distribution function of neutral H, D and T in the energy range 5 – 740 keV .

• D / T ratio measurements in the plasma core • ICRH heating efficiency

39 D. B. Syme et al, EIROForum May 2013 NeutralNeutral ParticleParticle AnalyserAnalyser (Vertical)(Vertical)

R = 3.07 m Vertical LoS

B

A

NPA C

D

High-Energy NPA measures the energy distribution function of neutral H, D, T, 3He and 4He in the energy range 0.3 – 4 MeV.

Sidetectors now installed for better distinguishing D and α’s!

40 D. B. Syme et al, EIROForum May 2013 HowHow NPANPA worksworks

E deflection is used to select the particle

NeutralisationNeutralisation inin plasmaplasma IonisationIonisation byby carboncarbon foilfoil (~30(~30 nm)nm) B AccelerationAcceleration (horizontal)(horizontal) C foil MomentumMomentum energyenergy +HV E separationseparation (B,(B, E)E) Atoms DetectionDetection (in(in 2D2D arrayarray ofof CsICsI oror Si)Si) JET CsI(Tl) scintillator + PMT detectors DataData acquisitionacquisition

D. B. Syme et al, EIROForum May 2013 OverviewOverview ofof recentrecent NPANPA upgradeupgrade

thick thin P P F J1T Chain1 CODAS UHV Flange J P F

Detectors After 1.5 GB pulse

Preamplifiers 16 pair cable

D. B. Syme et al, EIROForum May 2013 Raw Data from the NPA Si detectors

Vertical: Energy, Horizontal: Time through JET pulse (3 conditions) Bottom 2 Plots are Power in the pulse (NBI & ICRH) and Neutron output

n only n+ions ions only

D. B. Syme et al, EIROForum May 2013 Summary: Current JET Fast Ion Diagnostics Systems

SystemsSystems JETJET DetectorDetector CapabilitiesCapabilities

Faraday cups Fast Ion losses : fast Multifoils, 5 Poloidal angles response, low E resn, Lost Ions: >300/850 keV, H,D/He Timeresolved charged particle analysers Scintillator Probe Fast Ion losses: vs E TGGreen, CCD & PM arrays range & pitch angle >300/850 keV, H,D/He

Neutral Particles: Horizontal* & Vertical Fluxes of neutrals by: Timeresolved neutral NPAs: C, ExB, CsI Energy, Species particle analysers Fast ion energy distribution BGO Confined Ions: Horizontal View: (NBI and ICRH heating) Gamma Spectrometers Vertical View: By Gamma Emission Spectra NaI, LaBr3, HpGe >50/900/1700 keV for H,D/3He/4He

Confined Ions: Gamma Camera: Fast Ion spatial Gamma Emission CsI Scintillators distributions via: Profile Monitor Gamma Emission Profiles & (2Dcameras) Tomography, EG 0.66 MeV

44 D. B. Syme et al, EIROForum May 2013 JET Neutron, Gamma & Particle Diagnostics

TheThe EndEnd

D. B. Syme et al, EIROForum May 2013