Nuclear Applications in Health Care Lasting Benefits by Steffen Groth

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Applications in Health Care Lasting Benefits by Steffen Groth NUCLEAR APPLICATIONS IN HEALTH CARE LASTING BENEFITS BY STEFFEN GROTH uclear applications in and well established radionuclides by using health care have a time- applications in view of new instruments like rectilinear Nhonoured record of directions that are emerging. scanners or gamma cameras. being highly cost-effective in Probably the major addressing important health MEDICAL DIAGNOSIS characteristics of in vivo nuclear problems such as malnutrition, Diagnostic applications medicine procedures is that the cancer, infectious and comprise in vivo and in vitro amount of radiopharmaceutical circulatory diseases. Today methods. The in vivo needed for in vivo diagnostic they are providing lasting applications are characterized by studies is very tiny and always in benefits for patients, the administration of a the range of physiological physicians, medical researchers, radiopharmaceutical to the quantities. For instance, for a and health care practitioners patient and usually subsequent thyroid scintigraphy, the amount throughout the world. external detection with a gamma of radioactive iodine employed is Many nuclear applications camera or some other detector. over a thousand-fold less than have become so well- The in vitro applications involve the amount of iodine daily taken established and documented analysis of samples taken from up with food. It therefore has that they are preferred to other the patient, most often blood no measurable interference with methods. This is because they samples. thyroid function and no side 33 frequently provide unique In vivo Applications. In vivo effects. medical information, or are applications are a major Also, the radioactive dose among the least expensive nuclear medicine technology. received by the patient for approaches to a problem. The principal role of these scintigraphies is, in most cases, Some applications -- originally procedures is the assessment of negligible. As a rule of thumb, introduced as nuclear techniques organ function. Radionuclides it approximates the dose -- have developed into or compounds that are labelled received from one year of applications that have no with radionuclides are natural background radiation “nuclear” component as such. administered to the patients to per examination. (For example, many routine allow specific organ function to The in vivo method provides radioimmunoassays, or RIAs, be evaluated by tracing the for studying a number of have later developed into dynamic biodistribution of organs and systems. The major enzyme-linked immunoassay, or such a compound in specific fields of application are ELISA methods.) This organs. Tracing of the oncology, endocrinology, development often occurred for compound is achieved by cardiology, and nephro- reasons of high-speed external detection of the urology. The most widely automation and/or simplicity. At photon emitted from the applied instruments and in the same time, however, robustness and precision often Mr. Groth is Director of the IAEA Division of Human Health. were sacrificed. Contributors to the article were Mr. Ajit Padhy, Head of the Nuclear applications in Division’s Nuclear Medicine Section; Mr. Victor Levin, Head of the health care can be roughly Division’s Radiation Biology & Therapy Section; Mr. Venkatesh divided into diagnostic, Iyengar, Head of the Division’s Nutrition, Health, & Environmental therapeutic, and preventive Studies Section; Mr. Pedro Andreo, Head of the Dosimetry & Medical applications. This article Radiation Physics Section, and Ms. Baldip Khan and Mr. Soo Ling describes a series of successful Ch’ng, staff members of the Division. IAEA BULLETIN, 42/1/2000 blood pressure, diabetes or PET is available only in a kidney stones. limited number of developing ■Thyroid scanning is countries since the technology commonly used for the is expensive and the screening of hyperthyroidism radiopharmaceuticals difficult and searching for possible to produce. It is envisaged, malignant thyroid tumours in however, that following the patients with nodular goitre. current clinical success, the ■ Brain scanning provides technology will continue to be important information in made widely available, vivo technologies for nuclear patients with stroke, epilepsy especially in oncology, medicine diagnostics constitute and Alzheimer’s disease. neurology, and cardiology. a formidable list. (See box, pages ■ Perfusion lung scanning, The receptor ligand 38 & 39.) in combination with radiopharmaceuticals bind ■ Bone scanning is probably ventilation lung scanning, is selectively to specific cells or the technique most commonly the most efficient technique tissues. They bear the unique performed. This is a very for the study of pulmonary feature of allowing in vivo efficient approach to look at embolism. This is a dangerous identification of the presence the function of the bones: any condition originating from of specific types of tissue whose significant injury to the bone blood clots that requires early presence is suspected (such as will cause an increase in bone intensive treatment. infected tissue.) metabolism that can be Diagnostic procedures in Also being developed is a detected by the bone scan. inflammatory or infection series of new tumour seeking The method is the most diseases play an increasingly radiopharmaceuticals. By a efficient way to search for bone important role in nuclear single injection of the relevant metastases in many types of medicine. In most cases radiopharmaceutical, the entire 34 tumours. It is also used in inflammation can be diagnosed body can be scanned for the orthopaedics for the study of by clinical examination and presence of tumour cells. For fractures, osteomyelitis or joint routine laboratory analysis. Not certain kinds of tumours called replacements. infrequently, however, nuclear neuroendocrine tumours, these ■ Myocardial perfusion medicine techniques are required techniques are already scanning is another frequently to confirm and evaluate the dramatically changing the performed nuclear medicine presence, the extent, and the diagnostic approach to the technique. This test informs severity of the process. patient. about the presence of heart Emerging Directions. Nuclear In vitro Applications. These infarction. If a patient suffers techniques developed applications include: from chest pain, the test will particularly over the past ■ Radioimmunoasssay (RIA). help clarify whether it relates decade hold great potential for Immunoassays in a variety of to reduced blood flow to the future applications. These forms have gained widespread coronaries (arteries of the include an explosion in the usage in both nuclear medicine myocardium). use of positron emission and clinical pathology. Four ■ Renal scintigraphy tomography (PET) and the main attributes account for their provides a detailed description development of receptor ligand successful application in of renal function, from blood radiopharmaceuticals. diagnostic services, these being supply to urine formation and PET allows a more accurate their sensitivity, specificity, excretion. It is very useful for visualization of the organ precision, and convenience. The the study of kidney function in under study than can be first three are inherent patients suffering from elevated obtained with the usual consequences of the gamma camera. It can also fundamental properties of the Photo: Nuclear imaging provide information on interactions between antibodies techniques provide key metabolic functions that is and their ligands which form information for diagnosing a wide impossible to obtain with other the basis of immunoassay IAEA BULLETIN, 42/1/2000 range of illnesses. (Credit: IAEA) techniques. For the time being, systems. Immunoassay is an analytical technique for quantification of the biomolecule at picogram/femtogram concentration. RIA is used to detect and quantify drugs, intermediate metabolites, steroids, peptide hormones, enzymes, cancer markers, viral antigens, cellular receptors and deoxyribo nucleic acid (DNA) molecules for early clinical laboratory diagnosis of new data, and evidence-based PCR is also being used for diseases or recurrence of RIA. detecting sub-species variation previous pathologies. In ■ Molecular Biology which can be important in the monoclonal antibody work, it Techniques using Radionuclide prognosis of cervical cancer is the most sensitive and cost Methods. Over the past several and of Hepatitis B & C. effective method for screening years, the development and The efficacy of treatment can hybridoma cell line which application of molecular be effectively monitored produces the antibody. diagnostic techniques has through quantitative PCR in Currently it is one of the initiated a revolution in the hepatitis. Direct detection of preferred conventional diagnosis and monitoring of mutations responsible for drug methods used in diseases. Polymerase chain resistance in malaria and pharmaceutical work on new reaction (PCR) is one of the tuberculosis is being carried drug development. best and most commonly out using mutation specific Since it is an isotopic assay, the applied examples of clinical PCR, and PCR coupled with radioactive signal of the probe is applications of molecular what is known as Dot-Blot 35 not subjected to usual techniques in human health. hybridization, respectively. interference; for example, by The heart of the technology Diagnosis of genetic defects -- water impurity, enzyme poisons relies on the repeated for example, in thalassemia and and other unforeseen side enzymatic
Recommended publications
  • Design of Neutron and Gamma Ray Diagnostics for the Start-Up Phase of the DTT Tokamak
    46th EPS Conference on Plasma Physics P5.1105 Design of neutron and gamma ray diagnostics for the start-up phase of the DTT tokamak M. Angelone 1, D. Rigamonti 2, M Tardocchi 2, F. Causa 2, S. Fiore 1, L. C. Giacomelli 2, G. Gorini 3,2 , F. Moro 1, M. Nocente 3,2 , M. Osipenko 4, M. Pillon 1, , M. Ripani 4, R. Villari 1 1ENEA, Centro Ricerche Frascati, Frascati, Italy 2Istituto per la Scienza e Tecnologia dei Plasmi, CNR, Milan, Italy 3Dipart. di Fisica “G. Occhialini”, Università degli Studi di Milano-Bicocca, Milano, Italy 4Istituto Nazionale di Fisica Nucleare, Genova, Italy e-mail : [email protected] Abstract The Divertor Tokamak Test (DTT) facility, which is under design for construction in Frascati (Italy), will produce neutron yield up to 1.3*10 17 n/s at full power (H-mode scenario). This calls for an accurate design and selection of the 2.5 MeV neutron diagnostic systems and detectors which can give the comprehensive exploitation of the high neutron fluxes. Measurements of 14 MeV neutrons (which are about 1% of the total neutron yield) coming from the triton burn-up will also be performed. DTT will reach its best performances after a preliminary phase , needed to assess and improve the machine parameters. Here we present the neutron and gamma-ray diagnostics systems which are under design for the initial start-up phase of DTT. The design work benefits from the experience gathered by the community on high power tokamak such as JET. These systems, also called day-1 diagnostics, are: i) Neutron flux monitors which measure the 2.5 and 14 MeV neutron yield s, ii) Neutron/Gamma camera for the reconstruction of the neutron and gamma ray emission profile of the plasma , iii) Hard x-ray monitors for measurements of the bremsstrahlung radiation produced by runway electrons in the 1-40 MeV energy range 1.0 Introduction The Divertor Tokamak Test (DTT) facility, which is under design for construction in Frascati (Italy), will produce neutron yield up to 1.3*10 17 n/s at full power (H-mode scenario).
    [Show full text]
  • Radiation Quick Reference Guide Recommend Contacting Your State Fusion Center
    Domestic Nuclear Detection Office If you encounter something suspicious follow your specific local protocols. Radiation Quick Reference Guide Recommend contacting your state fusion center. DNDO is available 24/7 to assist at 1-877-DNDO-JAC / 1-877-363-6522 JAC Information Line 202-254-7179 Email: [email protected] Nuclear Concerns/ Threats 1. Nuclear Weapon - a device that releases nuclear energy in an ex- Isotopes of Concern for use in RDDs - with common uses plosive manner. Uses Highly Enriched Uranium (HEU) and/or 1. Cobalt-60 – cancer treatment, level/ Plutonium. density gauge, teletherapy, radiography, 2. Improvised Nuclear Device (IND) - a nuclear weapon fabricated food sterilization/irradiation, by a terrorist organization or rogue nation. brachytherapy 2. Iridium-192 – Radiography/non- destructive testing, flaw detection, brachy- therapy “cancer seed”, skin cancer Cobalt 60 sources Uranium “superficial” brachytherapy Plutonium 3. Uranium a. Uranium exists naturally in the earth’s crust. Of the different “isotopes” of uranium, U-235 is the one required to produce a Iridium sentinel and nuclear weapon. gamma camera b. Natural uranium contains a small amount of U-235 (<1%) which Cesium Seeds must be separated in complex extraction processes to create HEU. The predominant uranium isotope is U-238. 3. Cesium-137 - Gauge/level gauge, industrial radiography, brachyther- c. Highly Enriched Uranium (HEU) refers to uranium usable in weap- apy/teletherapy, well logging/density gauges ons due to its enrichment in U-235. 4. Strontium-90 – Radioisotope thermoelectric generator (RTG), fis- d. Approximately 25 kg of HEU is required for a nuclear weapon. sion product, industrial gauges, medical treatment e.
    [Show full text]
  • A New Gamma Camera for Positron Emission Tomography
    INIS-mf—11552 A new gamma camera for Positron Emission Tomography NL89C0813 P. SCHOTANUS A new gamma camera for Positron Emission Tomography A new gamma camera for Positron Emission Tomography PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE TECHNISCHE UNIVERSITEIT DELFT, OP GEZAG VAN DE RECTOR MAGNIFICUS, PROF.DRS. P.A. SCHENCK, IN HET OPENBAAR TE VERDEDIGEN TEN OVERSTAAN VAN EEN COMMISSIE, AANGEWEZEN DOOR HET COLLEGE VAN DECANEN, OP DINSDAG 20 SEPTEMBER 1988TE 16.00 UUR. DOOR PAUL SCHOTANUS '$ DOCTORANDUS IN DE NATUURKUNDE GEBOREN TE EINDHOVEN Dit proefschrift is goedgekeurd door de promotor Prof.dr. A.H. Wapstra s ••I Sommige boeken schijnen geschreven te zijn.niet opdat men er iets uit zou leren, maar opdat men weten zal, dat de schrijver iets geweten heeft. Goethe Contents page 1 Introduction 1 2 Nuclear diagnostics as a tool in medical science; principles and applications 2.1 The position of nuclear diagnostics in medical science 2 2.2 The detection of radiation in nuclear diagnostics: 5 standard techniques 2.3 Positron emission tomography 7 2.4 Positron emitting isotopes 9 2.5 Examples of radiodiagnostic studies with PET 11 2.6 Comparison of PET with other diagnostic techniques 12 3 Detectors for positron emission tomography 3.1 The absorption d 5H keV annihilation radiation in solids 15 3.2 Scintillators for the detection of annihilation radiation 21 3.3 The detection of scintillation light 23 3.4 Alternative ways to detect annihilation radiation 28 3-5 Determination of the point of annihilation: detector geometry,
    [Show full text]
  • Gamma Cameras
    OECD Health Statistics 2021 Definitions, Sources and Methods Gamma cameras Number of Gamma cameras. A Gamma camera (including Single Photon Emission Computed Tomography, SPECT) is used for a nuclear medicine procedure in which the camera rotates around the patient to register gamma rays emission from an isotope injected to the patient's body. The gathered data are processed by a computer to form a tomographic (cross-sectional) image. Inclusion - SPECT-CT systems using image fusion (superposition of SPECT and CT images). Sources and Methods Australia Source of data: Department of Health. Unpublished data from Location Specific Position Number register. Reference period: Years reported are financial years 1st July to 31st June (e.g. data for 2012 are as at 30th June 2012). Coverage: Data from 2008 onwards represent the number of units approved for billing to Medicare only. Units may be removed from one location and re-registered in another location. Austria Source of data: Austrian Federal Ministry of Social Affairs, Health, Care and Consumer Protection / Gesundheit Österreich GmbH, Monitoring of medical technology development. Reference period: 31st December. Coverage: - Included are all Gamma cameras units in hospitals as defined by the Austrian Hospital Act (KAKuG) and classified as HP.1 according to the System of Health Accounts (OECD). - The ambulatory sector is included (HP.3). Belgium Source of data: Federal Service of Public Health, DGGS “Organisation of health provisions”; Ministry of the Flemish community and Ministry of the French community. Coverage: - Ambulatory care providers (HP.3): Data on high-tech equipment in cabinets of ambulatory care providers are not available.
    [Show full text]
  • State-Of-The-Art Mobile Radiation Detection Systems for Different Scenarios
    sensors Review State-of-the-Art Mobile Radiation Detection Systems for Different Scenarios Luís Marques 1,* , Alberto Vale 2 and Pedro Vaz 3 1 Centro de Investigação da Academia da Força Aérea, Academia da Força Aérea, Instituto Universitário Militar, Granja do Marquês, 2715-021 Pêro Pinheiro, Portugal 2 Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; [email protected] 3 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; [email protected] * Correspondence: [email protected] Abstract: In the last decade, the development of more compact and lightweight radiation detection systems led to their application in handheld and small unmanned systems, particularly air-based platforms. Examples of improvements are: the use of silicon photomultiplier-based scintillators, new scintillating crystals, compact dual-mode detectors (gamma/neutron), data fusion, mobile sensor net- works, cooperative detection and search. Gamma cameras and dual-particle cameras are increasingly being used for source location. This study reviews and discusses the research advancements in the field of gamma-ray and neutron measurements using mobile radiation detection systems since the Fukushima nuclear accident. Four scenarios are considered: radiological and nuclear accidents and emergencies; illicit traffic of special nuclear materials and radioactive
    [Show full text]
  • Radiation and Radionuclide Measurements at Radiological and Nuclear Emergencies
    Radiation and radionuclide measurements at radiological and nuclear emergencies. Use of instruments and methods intended for clinical radiology and nuclear medicine. Ören, Ünal 2016 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Ören, Ü. (2016). Radiation and radionuclide measurements at radiological and nuclear emergencies. Use of instruments and methods intended for clinical radiology and nuclear medicine. Lund University: Faculty of Medicine. Total number of authors: 1 Creative Commons License: Other General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Download date: 24. Sep. 2021 Radiation and radionuclide measurements at radiological and nuclear emergencies Use of instruments and methods intended for clinical radiology and nuclear medicine Ünal Ören DOCTORAL DISSERTATION by due permission of the Faculty of Medicine, Lund University, Sweden.
    [Show full text]
  • Positron Emission Tomography
    Positron emission tomography A.M.J. Paans Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, The Netherlands Abstract Positron Emission Tomography (PET) is a method for measuring biochemical and physiological processes in vivo in a quantitative way by using radiopharmaceuticals labelled with positron emitting radionuclides such as 11C, 13N, 15O and 18F and by measuring the annihilation radiation using a coincidence technique. This includes also the measurement of the pharmacokinetics of labelled drugs and the measurement of the effects of drugs on metabolism. Also deviations of normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained. At present the combined PET/CT scanner is the most frequently used scanner for whole-body scanning in the field of oncology. 1 Introduction The idea of in vivo measurement of biological and/or biochemical processes was already envisaged in the 1930s when the first artificially produced radionuclides of the biological important elements carbon, nitrogen and oxygen, which decay under emission of externally detectable radiation, were discovered with help of the then recently developed cyclotron. These radionuclides decay by pure positron emission and the annihilation of positron and electron results in two 511 keV γ-quanta under a relative angle of 180o which are measured in coincidence. This idea of Positron Emission Tomography (PET) could only be realized when the inorganic scintillation detectors for the detection of γ-radiation, the electronics for coincidence measurements, and the computer capacity for data acquisition and image reconstruction became available. For this reason the technical development of PET as a functional in vivo imaging discipline started approximately 30 years ago.
    [Show full text]
  • ITER Relevant Runaway Electron Studies in the FTU Tokamak
    ITER Relevant Runaway Electron Studies in the FTU Tokamak by Zanaˇ Popovi´c A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Plasmas y Fusi´on Nuclear Universidad Carlos III de Madrid Directors: Prof Dr Jos´eRam´on Mart´ın Sol´ıs Dr Basilio Esposito Tutor: Prof Dr Jos´eRam´on Mart´ın Sol´ıs July 2019 Esta tesis se distribuye bajo licencia “Creative Commons Reconocimiento – No Comercial – Sin Obra Derivada” ii Dedication To my family, VVBM iii iv Acknowledgements I would like to thank an exceptional man, my thesis director and supervisor Prof Jos´eRam´on Mart´ın Sol´ıs. I have been lucky to be his student and am very grateful for all the help and caring guidance he has given me, for his patience and organisation throughout this work, especially during one of the most challenging years I have had. I appreciate immensely his expertise and dedication to teaching, which made this thesis possible. I would also like to thank my thesis co-director, Dr Basilio Esposito, for the invaluable mentoring and direction over the years, and for the delightful hospitality he and his family provided during my research visits in Frascati. Many thanks to the people I collaborated with as a part of the FTU team at ENEA Research Centre, especially Drs Daniele Carnevale, Daniele Marocco, Federica Causa and Mateusz Gospodarczyk, as well as the other members of the FTU team and supporting staff for creating a stimulating and cheerful work environment during long experiments. This journey was filled with interesting times spent with the people from the Department of Physics at Universidad Carlos III de Madrid.
    [Show full text]
  • Medical Nuclear Physics Performance Monitoring of Gamma Cameras
    The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized. 2018 (CSC/BOC)* ACR–AAPM TECHNICAL STANDARD FOR NUCLEAR MEDICAL PHYSICS PERFORMANCE MONITORING OF GAMMA CAMERAS PREAMBLE This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care1.
    [Show full text]
  • (EANM) Acceptance Testing for Nuclear Medicine Instrumentation
    Eur J Nucl Med Mol Imaging (2010) 37:672–681 DOI 10.1007/s00259-009-1348-x GUIDELINES Acceptance testing for nuclear medicine instrumentation Ellinor Busemann Sokole & Anna Płachcínska & Alan Britten & on behalf of the EANM Physics Committee Published online: 5 February 2010 # EANM 2010 Keywords Quality control . Quality assurance . requirement that acceptance testing be performed should Acceptance testing . Nuclear medicine instrumentation . be included in the purchase agreement of an instrument. Gamma camera . SPECT. PET. CT. Radionuclide calibrator. This agreement should specify responsibilities regarding Thyropid uptake probe . Nonimaging intraoperative probe . who does acceptance testing, the procedure to be followed Gamma counting system . Radiation monitors . when unsatisfactory results are obtained, and who supplies Preclinical PET the required phantoms and software. A specific time slot must be allocated for performing acceptance tests. Introduction Acceptance and reference tests These recommendations cover acceptance and reference tests that should be performed for acceptance testing of Acceptance tests are performed to verify that the instrument instrumentation used within a nuclear medicine department. performs according to its specifications. Each instrument is These tests must be performed after installation and before supplied with a set of basic specifications. These have been the instrument is put into clinical use, and before final produced by the manufacturer according to standard test payment for the device. These recommendations
    [Show full text]
  • PET Imaging: an Overview and Instrumentation
    CONTINUING EDUCATION PET Imaging: An Overview and Instrumentation Farhad Daghighian, Ronald Sumida, and Michael E. Phelps Division ofNuclear Medicine and Biophysics, Department ofRadiological Sciences; and Laboratory ofNuclear Medicine, Laboratories of Biomedical and Environmental Sciences (DOE)*, UCLA School ofMedicine, Los Angeles, California gen in many chemical compounds. None of the above This is the first article of a four-part series on positron elements have any isotope which emits a gamma ray emission tomography (PET). Upon completing the article, the suitable for imaging with a gamma camera. Hence, one reader should be able to: (1) comprehend the basic principles of the advantages of PET over SPECT is that it deals ofPET; (2) explain various technical aspects; and ( 3) identify with isotopes of those elements that are the building radiopharmaceuticals used in PET imaging. blocks of biomolecules. BRIEF HISTORY Positron emission tomography (PET) is a rapidly growing AND FUTURE OUTLOOK OF PET technique within nuclear medicine. A radiopharmaceutical Positron imaging began with the two-dimensional sodium labeled with a positron emitting isotope is administered intra­ iodide detector-based scanning devices developed in the late venously or by inhalation to the patient, and the PET scanner 1950s and 1960s by Wrenn et al. ( 4) and Brownell et al. (5). images the distribution of that radiopharmaceutical. It is the Burham and Brownell also developed a dual-headed multi­ only imaging modality capable of providing quantitative in­ detector camera that provided a limited form of"focal plane" formation about biochemical and physiologic processes (J- tomography ( 6). Robertson and Niel took a different ap­ 3). Other techniques like magnetic resonance imaging (MRI) proach and used a "blurring tomography" with a circular and x-ray computerized tomography (CT) generally image array of sodium iodide detectors ( 7).
    [Show full text]
  • Time for a Next-Generation Nuclear Medicine Gamma Camera?
    Time for a Next-Generation Nuclear Medicine Gamma Camera? I. George Zubal, PhD, Program Director for Nuclear Medicine, CT, and X-Ray, National Institute of Biomedical NEWSLINE Imaging and Bioengineering, Bethesda, MD al Anger invented the gamma camera in 1957, and it Imaging of these radiotherapy ligands has been in- is fair to say that the basic geometry and components vestigated. Two of the 6 photopeaks (113 and 208 keV) of H 177 of his camera design have remained substantially the Lu were imaged with additional energy windows set to same, while its use in general clinical applications has been subtract scatter from higher energy emissions (1). An array optimized for imaging 140-keV gamma rays. The past 60 of bremsstrahlung emissions, together with internal pair- years have seen some improvements in NaI scintillators, production annihilation radiation, was used to produce readout electronics, collimators, reconstruction algorithms, 90Y images (2). Images of 223Ra (and its daughter 219Rn) and image analysis. During a short period in the late 1990s were acquired using 3 photopeaks (85, 154, and 270 keV) and early 2000s, opposing Anger cameras were used for with 3 additional windows to deal with scattered events (3). clinically acquiring positron-emitting isotopes, and some Imaging protocols become more complicated for other a camera components were reengineered for imaging 511- emitters, including 225Ac, 211At, 212Pb, and others yet to be keV coincident photons. Not surprisingly, dedicated PET considered for therapy. These isotopes pose a challenge to cameras proved to be the better choice for imaging PET nuclear medicine camera systems because the radiations lie radiotracers.
    [Show full text]