The Nebula About Nova Persei 1901 9

Total Page:16

File Type:pdf, Size:1020Kb

The Nebula About Nova Persei 1901 9 ASTRONOMISCHE NACHRICHTEN. IT 3771. Band 158. 3- The Nebula about Nova Persei 1901 9. By 1;: W. Very. In a letter to the Editor of the Astr. Nachr. No. 3736 *esemble those of a series of explosions produced by a dated Aug. 23, 1901, MM. Flammarion and Antoniadi an- brce of gradually waning energy. nounced the discovery of a nebulous aureole, 6' in diameter, The following considerations prove, however, that the around Nova Persei 1901. Dr. Max Wolf immediately con- nebulous streaks are not portions of spiral streams emanating firmed this observation, and, in addition, recorded a further from the star under the action of any ordinary hydrodynamic extension to a distance of 5' from the nova, at least on pressures. Great mass would be needed in this case to the south side and somewhat to the east, the nebuloiis prevent the dissipation of the star simply by the centrifugal material being excessively faint, and yet rich in structure. force of rotation. A body having a mass 1500 times as Although these early observations have been questioned on great as our sun's and a diameter of IOOOOOOO miles could the ground that the aureole may have been only an instru- rotate once in 2 hours without generating an equatorial mental effect, due to the preponderance of ultraviolet light surface -motion greater than the parabolic velocity, but some in the rays from this star, and to the use of an imperfectly such speed of rotation would be needed to produce spiral corrected telescope, the reality of the more extensive streamers by combination with the radial velocities spectro- appendage and its nebulous character have now been com- scppically observed ; for the spectrum of Nova Persei I 90 I pletely confirmed from photographs with powerful reflecting exhibited at the violet hydrogen line (HI, displacements telescopes at the Yerkes and the Lick Observatories. of 30 tenth-meters, which, if due to motion in the line of The nebula photographed by Mr. Ritchey 2) has every sight, correspond to a mean velocity of 2193 km, or 1363 appearance of being concentric with the star and an ap- miles per second. A radial movement of this amount, en- purtenance of that body. It also has a structure which is during unchanged for 210 days, from the appearance of either spiral, or composed of several annuli, or fragments the star, February 22, to the date of Ritchey's first photo- of annuli, probably lying in different planes and thus seeming graph, September 20, 1901,should carry the erupted gases to intersect. The outer parts of the nebula are strongest to an extreme distance from the star of 3.98 x (10)10 km. on the southern side where they consist of parallel or con- The radius of the nebula, as photographed by Ritchey, is centric segments about apart. On the following side, about 480", whence I" = 82900000 kilometers, and the in the September photograph, there are four concentric parallax (on these assumptions) would be 1180. Dr. Cour- segments of annulli, or perhaps of spherical shells, about voisier of Heidelberg has published meridian-circle observations xlf2' apart. (A. N. 3753) which prove that the parallax of the nova is To see if it would be possible to account for these certainly less than of a second of arc, and in the United features on the supposition that they are remnants of stellar States, Messrs. R. H. Tucker and R. G. Aitken of the Lick envelopes thrown off by periodical hydrogen eruptions, I made Observatory, and Chase of New Haven have each arrived some preliminary computations with various assumptions. at the same conclusion independently. Consequently the Father Hagen 3) has given a light-curve of the nova nebulous streamers cannot have been produced directly by from a compilation of the results of many observers, which explosive outbursts of hydrogen. To form the outer annulus indicates that at the beginning the period of luminous variation shown in Mr. Ritchey's photograph of September 20 at a may have been as short as I day, and that it afterwards distance of 7 to 8 minutes of arc, a mean radial movement increased rapidly to a mean period of about 3 days, which of I' in 4 weeks would be required. Comparison with Dr. has now further lengthened to 41l2 or 5 days. Wolf's observation indicates an outward or expansive motion The concentric structure on the outskirts of the nebula also of I' in the same time on the south side, if we assume on the southern side, which by supposition has been first that both measurements relate to the same nebulous detail. produced, is much finer, that is to say, the streaks are closer Perrine's observation of a motion at four different points together than those nearer the center, and as if pertaining in the nebula, which he has been able to identify with to operations in a more rapid sequence. The phenomena structures shown in Ritchey's first photograph, through one l) Read at the fourth annual meeting of the Astronomical and Astrophysical Society of America. Dec. 31, 1901. z, 'Astrophysical Journal, vol. 14, plates XVIn and XIX, November, 1901. s, Rev. J. G. Hagen, S. J. .Preliminary Light Curve of Nova Persei 1901. From February 22 to May 1.a Georgetown College Observatory Circular. 3 35 37 I 36 and one half minutes of arc in fortyeight days, demonstrates lot less than of a second of arc, and its maximum a velocity of the same order, which is further confirmed by %stance not over 124 light-years. Its parallax ought, there- Ritchey's photograph of November I 3. bre, to be within the range of possible careful measurement. Mr. Ritchey finds that the entire southern half of the All novae that have appeared up to the present time nebula has been expanding rapidly and nearly radially. lave been associated with the Milky Way. If it be admitted Perrine's observations differ slightly. >The displacementsc ihat Nova Persei is a constituent member of the galactic he says ,agree well.. .The directions are not so consistent, jtream, we have now, and for the first time, an approximate and could perhaps be explained by irregular niotions in the dea of the distance to the Milky Way which, in the con- nebulous mass. c Mr. Ritchey's later photograph shows that stellation Perseus, cannot be more than about IZOO million careful discrimination will be needed to distinguish changes million kilometers away. of shape in minor details from general movements. It appears probable that like the tails of comets, the The fact of motion in nebulous matter is thus abund- ,urninous bodies of the gaseous nebulae require only a small antly demonstrated, but it is equally certain that this motion miass of excessively diluted material to produce their shining. is not that which we have been seeking, and due to explosive eruption of gases in large masses. It is rather to an electric repulsion of individual atoms or corpuscles, similar to that Let us now examine the evidence to be deduced from which gives the cathode rays in a Geissler's tube, or perhaps :he spectroscopic measurements. The structure of the hy- to motions initiated by that pressure of light which has now drogen bands in the spectrum of the nova has exhibited been demonstrated by the experiments of Nichols and Hull, great complexity and variability. In general, each band has that we must look for an explanation of the rapidly growing been found to consist of a broad region of absorption on and fast fading nebula. The annuli may be gigantic striae the violet side, with local intensificatibns of absorption, or similar to those seen in electrified tubes containing rarefied dark lines, which are repeated in the same order of position gases, and may be produced by chemical combination of or intensity in nearly all of the bands. The half towards different sets of atoms or corpuscles, thrown off during the red end of the spectrum is always bright, and has been alternating phases of the eruption, and electrically or lumin- commonly subdivided into from two to four or more minor ously repelled at different speeds depending on the nature bands, separated by absorption lines in the same relative of the particles; or if spiral motion should be certaidy positions in every one of the hydrogen bands, with trifling indicated, we may surmise that there has been some sort exceptions which may be explained by the superposition of of cathode discharge along, or (more accurately) around spectral lines of other substances. The displacements of magnetic lines of force. similar subdivisions, according to the measures of Campbell Professor J. J. Thomson 1) has found that the speed and Wright, are proportional to the wave-length, and are of the electric discharge, when striae are produced, approaches consequently due to motion in the line of sight; and each that of light. Although no such velocity is implied for the subdivision of a band must be attributed to light emanating atoms in vacuum tubes, it is possible that, in free space, from, or absorbed by the atoms of an individual gaseous electrified particles of less than atomic dimensions, namely, mass or stream having a particular velocity in the line of sight. those Thomsonian corpuscles which appear to constitute The gathering of the principal dark subdivisions on the very substance of static electricity, may exhibit velocities the violet side, and of the bright components on the red of this order. Assuming the velocity of light as an outside side of each band, without any exception, may all be ex- limit for the speed of particles thrown off from the nova plained as due to the presentation of successive shells of by electric repulsion, it follows that the parallax of Nova hot gas, periodically expelled from the star, and arranged Persei I 90 I , corresponding to the dimensions of the bound- concentrically around it.
Recommended publications
  • Binocular Universe: You're My Hero! December 2010
    Binocular Universe: You're My Hero! December 2010 Phil Harrington on't you just love a happy ending? I know I do. Picture this. Princess Andromeda, a helpless damsel in distress, chained to a rock as a ferocious D sea monster loomed nearby. Just when all appeared lost, our hero -- Perseus! -- plunges out of the sky, kills the monster, and sweeps up our maiden in his arms. Together, they fly off into the sunset on his winged horse to live happily ever after. Such is the stuff of myths and legends. That story, the legend of Perseus and Andromeda, was recounted in last month's column when we visited some binocular targets within the constellation Cassiopeia. In mythology, Queen Cassiopeia was Andromeda's mother, and the cause for her peril in the first place. Left: Autumn star map from Star Watch by Phil Harrington Above: Finder chart for this month's Binocular Universe. Chart adapted from Touring the Universe through Binoculars Atlas (TUBA), www.philharrington.net/tuba.htm This month, we return to the scene of the rescue, to our hero, Perseus. He stands in our sky to the east of Cassiopeia and Andromeda, should the Queen's bragging get her daughter into hot water again. The constellation's brightest star, Mirfak (Alpha [α] Persei), lies about two-thirds of the way along a line that stretches from Pegasus to the bright star Capella in Auriga. Shining at magnitude +1.8, Mirfak is classified as a class F5 white supergiant. It radiates some 5,000 times the energy of our Sun and has a diameter 62 times larger.
    [Show full text]
  • Keck Spectra of Brown Dwarf Candidates and a Precise
    TABLE 1 Summary of Optical Imaging for Alpha Persei Telescope Area Covered Limiting Magnitude (sq.degrees) (R/I) CWRU Schmidt 3.2 21.5/20.5 MHO 1.2m 1.1 22.0/20.7 KPNO 0.9m 0.5 21.5/20.5 KPNO 4.0m 1.3 22.4/21.0 KPNO 4.0m a (2.5) ≈ 24/≈ 23 aBouvier et al. (1999) TABLE 2 Photometry of Alpha Persei Stars Star α(J2000) δ(J2000) Ic R − Ic K Ic − K AP300 3 17 27.6 49 36 53.0 17.85 2.18 14.62 3.23 AP301 3 18 09.2 49 25 19.0 17.75 2.22 14.14 3.61 AP302 3 19 08.4 48 43 48.5 17.63 2.08 ······ AP303 3 19 10.9 48 42 20.0 16.98 1.88 ······ AP304 3 19 13.2 48 31 55.0 18.83 2.40 ······ AP305 3 19 21.7 49 23 32.0 18.48 2.34 ······ AP306 3 19 41.8 50 30 42.0 18.40 2.34 14.9 3.5 AP307 3 20 20.9 48 01 05.0 17.08 2.01 ······ AP308 3 20 59.7 48 18 37.0 16.71 1.89 ······ AP309 3 22 40.6 48 00 36.0 16.57 1.88 ······ AP275 a 3 23 03.3 48 53 07.0 17.25 2.20 ······ AP310 3 23 04.7 48 16 13.0 17.80 2.33 14.55 3.25 AP311 3 23 08.4 48 04 52.5 17.70 2.12 14.30 3.40 AP312 3 23 14.8 48 11 56.0 18.60 2.41 15.21 3.39 AP313 3 24 08.1 48 48 30.0 17.55 2.13 ······ AP314 3 25 19.6 49 17 58.0 18.20 2.26 15.15 3.05 AP315 3 26 34.5 49 07 46.0 18.20 2.34 14.80 3.40 arXiv:astro-ph/9909207v2 15 Sep 1999 AP316 3 27 01.3 49 14 40.0 17.75 2.18 14.48 3.27 AP317 3 28 06.0 48 45 13.5 17.85 2.29 15.0 2.85 AP318 3 30 42.5 48 21 27.0 17.45 2.16 14.10 3.35 AP319 3 31 03.2 49 02 58.0 16.89 1.95 ······ AP320 3 31 25.3 49 02 52.0 16.79 1.90 ······ AP321 3 32 18.7 49 32 18.0 17.75 2.20 ······ AP322 3 33 08.3 49 37 56.5 17.60 2.14 14.57 3.03 AP323 3 33 20.7 48 45 51.0 17.50 2.13 14.33 3.17 AP324 3 33 48.2 48 52 30.5 18.10 2.36 14.68 3.42 AP325 3 35 47.2 49 17 43.0 17.65 2.30 14.14 3.51 AP326 3 38 55.2 48 57 31.0 18.70 2.40 15.09 3.61 aAP275 is from Prosser (1994).
    [Show full text]
  • Deep-Sky Objects - Autumn Collection an Addition To: Explore the Universe Observing Certificate Third Edition RASC NW Cons Object Mag
    Deep-Sky Objects - Autumn Collection An addition to: Explore the Universe Observing Certificate Third Edition RASC NW Cons Object Mag. PSA Observation Notes: Chart RA Dec Chart 1) Date Time 2 Equipment) 3) Notes # Observing Notes # Sgr M24 The Sagittarias Star Cloud 1. Mag 4.60 RA 18:16.5 Dec -18:50 Distance: 10.0 2. (kly)Star cloud, 95’ x 35’, Small Sagittarius star cloud 3. lies a little over 7 degrees north of teapot lid. Look for 7,8 dark Lanes! Wealth of stars. M24 has dark nebula 67 (interstellar dust – often visible in the infrared (cooler radiation)). Barnard 92 – near the edge northwest – oval in shape. Ref: Celestial Sampler Floating on Cloud 24, p.112 Sgr M18 - 1. RA 18 19.9, Dec -17.08 Distance: 4.9 (kly) 2. Lies less than 1deg above the northern edge of M24. 3 8 Often bypassed by showy neighbours, it is visible as a 67 small hazy patch. Note it's much closer (1/2 the distance) as compared to M24 (10kly) Sgr M17 (Swan Nebula) and M16 – HII region 1. Nebula and Open Clusters 2. 8 67 M17 Wikipedia 3. Ref: Celestial Sampler p. 113 Sct M11 Wild Duck Cluster 5.80 1. 18:51.1 -06:16 Distance: 6.0 (kly) 2. Open cluster, 13’, You can find the “wild duck” cluster, 3. as Admiral Smyth called it, nearly three degrees west of 67 8 Aquila’s beak lying in one of the densest parts of the summer Milky Way: the Scutum Star Cloud. 9 64 10 Vul M27 Dumbbell Nebula 1.
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL, 525:420È433, 1999 November 1 ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. ULTRAVIOLET AND OPTICAL LINE PROFILE VARIATIONS IN THE SPECTRUM OF v PERSEI D. R. GIES,1 E. KAMBE,2 T. S. JOSEPHS,W.G.BAGNUOLO,JR., Y. J. CHOI,D.GUDEHUS,K.M.GUYTON,3 W. I. HARTKOPF,4,5 J. L. HILDEBRAND,A.B.KAYE,6 B. D. MASON,4,5 R. L. RIDDLE,J.W.SOWERS, N. H. TURNER,7 J. W. WILSON, AND Y. XIONG Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303; gies=chara.gsu.edu, kambe=cc.nda.ac.jp, tammy=chara.gsu.edu, bagnuolo=chara.gsu.edu, phyyjcx=panther.gsu.edu, gudehus=chara.gsu.edu, uskmg=emory.edu, hartkopf=chara.gsu.edu, jlh=chara.gsu.edu, kaye=lanl.gov, bdm=draco.usno.navy.mil, riddle=chara.gsu.edu, sowers=chara.gsu.edu, nils=chara.gsu.edu, wilson=chara.gsu.edu, ying=chara.gsu.edu Received 1998 October 27; accepted 1999 June 17 ABSTRACT The rapid variable star, v Per (B0.5 IVÈIII), displays the largest amplitude proÐle Ñuctuations known among the growing number of massive, spectrum-variable stars. Here we present an analysis of a contin- uous 5 day run of IUE UV spectroscopy, and we show for the Ðrst time that the systematic, blue-to-red moving patterns observed in high-quality optical spectra are also present in the UV photospheric lines. We present cross-correlation functions of the individual spectra with that of a narrow-lined standard that produce a high signal-to-noise ratio representation of the blue-to-red moving bump patterns found in individual lines.
    [Show full text]
  • Supernova Star Maps
    Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova.
    [Show full text]
  • Algol As Horus in the Cairo Calendar: the Possible Means and the Motives of the Observations
    Open Astron. 2018; 27: 232–263 Research Article Sebastian Porceddu*, Lauri Jetsu, Tapio Markkanen, Joonas Lyytinen, Perttu Kajatkari, Jyri Lehtinen, and Jaana Toivari-Viitala Algol as Horus in the Cairo Calendar: the possible means and the motives of the observations https://doi.org/10.1515/astro-2018-0033 Received Feb 15, 2018; accepted May 04, 2018 Abstract: An ancient Egyptian Calendar of Lucky and Unlucky Days, the Cairo Calendar (CC), assigns luck with the period of 2.850 days. Previous astronomical, astrophysical and statistical analyses of CC support the idea that this was the period of the eclipsing binary Algol three millennia ago. However, next to nothing is known about who recorded Algol’s period into CC and especially how. Here, we show that the ancient Egyptian scribes had the possible means and the motives for such astronomical observations. Their principles of describing celestial phenomena as activity of gods reveal why Algol received the title of Horus Keywords: Algol, Horus, ancient Egyptian Astronomy, variable stars, the Cairo Calendar, hemerologies 1 Introduction ies (Porceddu et al., 2008; Jetsu et al., 2013; Jetsu and Porceddu, 2015), we use only the best preserved continuous calendar which is found on pages recto III-XXX and verso The ancient Egyptian texts known as the Calendars of I-IX of papyrus Cairo 86637.The other texts and fragments Lucky and Unlucky Days, or hemerologies, are literary contained in the same papyrus are ignored from this analy- works that assign prognoses to each day of the Egyp- sis because the connection of these fragments to the main tian year (Wells, 2001a, p117-118), (Leitz, 1994, p1-2) (Bacs, calendar is not apparent and we do not know what year 1990, p41-45) (Troy, 1989, p127-147) and (Helck et al., 1975– they describe, so combining any data points from these 1992, p156).
    [Show full text]
  • Download This Issue (Pdf)
    Volume 43 Number 1 JAAVSO 2015 The Journal of the American Association of Variable Star Observers The Curious Case of ASAS J174600-2321.3: an Eclipsing Symbiotic Nova in Outburst? Light curve of ASAS J174600-2321.3, based on EROS-2, ASAS-3, and APASS data. Also in this issue... • The Early-Spectral Type W UMa Contact Binary V444 And • The δ Scuti Pulsation Periods in KIC 5197256 • UXOR Hunting among Algol Variables • Early-Time Flux Measurements of SN 2014J Obtained with Small Robotic Telescopes: Extending the AAVSO Light Curve Complete table of contents inside... The American Association of Variable Star Observers 49 Bay State Road, Cambridge, MA 02138, USA The Journal of the American Association of Variable Star Observers Editor John R. Percy Edward F. Guinan Paula Szkody University of Toronto Villanova University University of Washington Toronto, Ontario, Canada Villanova, Pennsylvania Seattle, Washington Associate Editor John B. Hearnshaw Matthew R. Templeton Elizabeth O. Waagen University of Canterbury AAVSO Christchurch, New Zealand Production Editor Nikolaus Vogt Michael Saladyga Laszlo L. Kiss Universidad de Valparaiso Konkoly Observatory Valparaiso, Chile Budapest, Hungary Editorial Board Douglas L. Welch Geoffrey C. Clayton Katrien Kolenberg McMaster University Louisiana State University Universities of Antwerp Hamilton, Ontario, Canada Baton Rouge, Louisiana and of Leuven, Belgium and Harvard-Smithsonian Center David B. Williams Zhibin Dai for Astrophysics Whitestown, Indiana Yunnan Observatories Cambridge, Massachusetts Kunming City, Yunnan, China Thomas R. Williams Ulisse Munari Houston, Texas Kosmas Gazeas INAF/Astronomical Observatory University of Athens of Padua Lee Anne M. Willson Athens, Greece Asiago, Italy Iowa State University Ames, Iowa The Council of the American Association of Variable Star Observers 2014–2015 Director Arne A.
    [Show full text]
  • Phase-Resolved Infrared Spectroscopy and Photometry of V1500 Cygni, and a Search for Similar Old Classical Novae
    Phase-Resolved Infrared Spectroscopy and Photometry of V1500 Cygni, and a Search for Similar Old Classical Novae Thomas E. Harrison1;2 Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001 [email protected] Randy D. Campbell, James E. Lyke W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 [email protected], [email protected] ABSTRACT We present phase-resolved near-infrared photometry and spectroscopy of the clas- sical nova V1500 Cyg to explore whether cyclotron emission is present in this system. While the spectroscopy do not indicate the presence of discrete cyclotron harmonic emission, the light curves suggest that a sizable fraction of its near-infrared fluxes are due to this component. The light curves of V1500 Cyg appear to remain dominated by emission from the heated face of the secondary star in this system. We have used infrared spectroscopy and photometry to search for other potential magnetic systems amongst old classical novae. We have found that the infrared light curves of V1974 Cyg superficially resemble those of V1500 Cyg, suggesting a highly irradiated companion. The old novae V446 Her and QV Vul have light curves with large amplitude variations like those seen in polars, suggesting they might have magnetic primaries. We extract photometry for seventy nine old novae from the 2MASS Point Source Catalog and use those data to derive the mean, un-reddened infrared colors of quiescent novae. We also extract W ISE data for these objects and find that forty five of them were detected. Surprisingly, a number of these systems were detected in the W ISE 22 µm band.
    [Show full text]
  • 1903Aj 23 . . . 22K 22 the Asteojsomic Al
    22 THE ASTEOJSOMIC AL JOUENAL. Nos- 531-532 22K . Taking into account the smallness of the weights in- concerned. Through the use of these tables the positions . volved, the individual differences which make up the and motions of many stars not included in the present 23 groups in the preceding table agree^very well. catalogue can be brought into systematic harmony with it, and apparently without materially less accuracy for the in- dividual stars than could be reached by special compu- Tables of Systematic Correction for N2 and A. tations for these stars in conformity with the system of B. 1903AJ The results of the foregoing comparisons. have been This is especially true of the star-places computed by utilized to form tables of systematic corrections for ISr2, An, Dr. Auwers in the catalogues, Ai and As. As will be seen Ai and As. In right-ascension no distinction is necessary by reference to the catalogue the positions and motions of between the various catalogues published by Dr. Auwers, south polar stars taken from N2 agree better with the beginning with the Fundamental-G at alo g ; but in decli- results of this investigation than do those taken from As, nation the distinction between the northern, intermediate, which, in turn, are quoted from the Cape Catalogue for and southern catalogues must be preserved, so far as is 1890. SYSTEMATIC COBEECTIOEB : CEDEE OF DECLINATIONS. Eight-Ascensions ; Cokrections, ¿las and 100z//xtf. Declinations; Corrections, Æs and IOOzZ/x^. B — ISa B —A B —N2 B —An B —Ai âas 100 â[is âas 100 âgô âSs 100
    [Show full text]
  • Explore the Universe Observing Program
    The RASC Explore the Universe Observing Program Welcome to the RASC Explore the Universe observing program, designed to provide any observer with a well-rounded introduction to the night sky visible from the Northern Hemisphere. Following EtU is an excellent way to gain knowledge and experience in amateur astronomy. You will find that a planned observing session based on EtU results in a more satisfying and interesting experience. You will learn and improve your observing skills, an excellent preparation for more challenging observing programs such as the Messier Catalogue, The Finest NGC Objects, and the two lunar programs. Those who complete the observing program and have their observations validated will earn a certificate and pin (RASC membership not required). The program covers the full range of astronomical objects. Here is a summary: Constellations Observing and Bright Deep-Sky Objective Stars The Moon Solar System Objects Double Stars Total Requirement 12 16 5 12 10 55 Available 24 32 10 24 20 110 In each category, a range of objects is provided so that you can begin the program at any time of the year. In order to earn your certificate, you need to observe a minimum of 55 of the 110 objects available. Here is a summary of some of the terms and abbreviations used in this program: Instrument (V/B/T) V—Visual (unaided eye), B—Binocular, T—Telescope* Description A brief description of the object, its common name, and other details. Con. Constellation in which an object can be found. See www.iau.org/public/themes/constellations/. Mag.
    [Show full text]
  • Beobachtete Correctionen Des Fundamental-Cataloges Von
    ASTRONOMISCHE NACHRICHTEN. NZ 3777-78. Band 158. 9-10. Beobachtete Correctionen decl Fundnmen tal-Cataloges von Anwertl in A. N. 3508 --- 09 und Ermittelung seiner Helligkeitsgleichungen. Von F. Kiistncr. In Heft Nr. 4 der >Veroffentlichungen der Kgl. Stern- und XV1I)n: in A. N. 3508-09 gegeben sind; Herr .4uwers warte zu Ronnc habe ich ausftihrlich uber Ziel und Anlage hatte die Gute gehabt, mir diese Verbesserungen noch vor einer Beobachtungsreihe berichtet, die ich vom Mai I 894 ihrer Veroffentlichung zur Verfligung zu stellen. Fur diese bis Juli I 899 am neuen sechszolligen Repsold'schen Meridian- Oerter ergaben sich aus der Bonner Reihe, bei der grossen kreise der Honner Sternwarte angestellt habe. Daselbst sind Zahl der in jeder Zone benutzten Anhaltsterne, beobachtete zugleich die beobachteten Oerter der Zonensterne zwischen individuelle Correctionen, die fur alle Zonen der eigentlichen oo und + 18~Decl. mitgetheilt, weiter in Heft Nr. 5 die- Beobachtungsreihe (Zone I bis 545, 548 und 549; die jenigen zwischen +18O und +36O Decl. und das ngchste ubrigen und folgenden Nummern beziehen sich auf eine Heft, dessen Veroffentlichung noch aussteht, wird den letzten kleine Zahl von Revisionszonen , deren Beobachtung und Giirtel von +36O bis +5 IO, an dessen Reduction zur Zeit Reduction noch nicht abgeschlossen ist) fertig abgeleitet ooch gearbeitet wird, enthalten. vorliegen und die ich deshalb schon hier zur Veroffentlichung Zum Anhalt haben durchweg gedient die neuen sehr bringen mochte. An sie knupft sich eine Untersuchung der genauen Sternorter, welche durch die B Vorlaufige Verbesserung Helligkeitsgleichungen des Fundamental - Cataloges. des Fundamental-Cataloges der Astr. Gesellschaft (Publ. XIV Beobachtete Correctionen C = (9.
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]