Is It Idiopathic Pulmonary Fibrosis Or Not?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Legionnaires' Disease
epi TRENDS A Monthly Bulletin on Epidemiology and Public Health Practice in Washington Legionnaires’ disease Vol. 22 No. 11 Legionellosis is a bacterial respiratory infection which can result in severe pneumonia and death. Most cases are sporadic but legionellosis is an important public health issue because outbreaks can occur in hotels, communities, healthcare facilities, and other settings. Legionellosis Legionellosis was first recognized in 1976 when an outbreak affected 11.17 more than 200 people and caused more than 30 deaths, mainly among attendees of a Legionnaires’ convention being held at a Philadelphia hotel. Legionellosis is caused by numerous different Legionella species and serogroups but most epiTRENDS P.O. Box 47812 recognized infections are due to Olympia, WA 98504-7812 L. pneumophila serogroup 1. The extent to which this is due to John Wiesman, DrPH, MPH testing bias is unclear since only Secretary of Health L. pneumophila serogroup 1 is Kathy Lofy, MD identified via commonly used State Health Officer urine antigen tests; other species Scott Lindquist, MD, MPH Legionella pneumophila multiplying and serogroups must be identified in a human lung cell State Epidemiologist, through PCR or culture, tests Communicable Disease www.cdc.gov which are less commonly ordered. Jerrod Davis, P.E. Assistant Secretary The disease involves two clinically distinct syndromes: Pontiac fever, Disease Control and Health Statistics a self-limited flu-like illness without pneumonia; and Legionnaires’ disease, a potentially fatal pneumonia with initial symptoms of fever, Sherryl Terletter Managing Editor cough, myalgias, malaise, and sometimes diarrhea progressing to symptoms of pneumonia which can be severe. Health conditions that Marcia J. -
Hypersensitivity Pneumonitis and Metalworking Fluids Contaminated by Mycobacteria
3 Mahn K, Ojo OO, Chadwick G, et al. Ca2+ homeostasis and structural 5 Arvizo RR, Miranda OR, Thompson MA, et al. Effect of nanoparticle and functional remodelling of airway smooth muscle in asthma. surface charge at the plasma membrane and beyond. Nano Lett 2010; Thorax 2010; 65: 547–552. 10: 2543–2548. 4 Meurs H, Gosens R, Zaagsma J. Airway hyperresponsiveness in asthma: lessons from in vitro model systems and animal models. Eur Respir J 2008; 32: 487–502. DOI: 10.1183/09031936.00042211 Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria To the Editors: specific challenges performed in two workers, where positive responses were seen after controlled exposure to used MWFs that We read with interest the article published by TILLIE-LEBLOND did not contain mycobacteria [3]. et al. [1] relating to hypersensitivity pneumonitis (HP) in French automobile workers exposed to metalworking fluids Although referenced by TILLIE-LEBLOND et al. [1], the detailed (MWFs). Our group was involved in the UK outbreak immunological investigation performed on workers from a investigation referenced in their article [2, 3], and have a MWF-HP outbreak in the USA, where mycobacterial contam- clinical and research interest in this area. ination was identified [11], is not discussed in any detail. In this key study [11], in vitro secretion of interleukin-8, tumour Whilst TILLIE-LEBLOND et al. [1] are correct in stating that the a c majority of MWF-HP outbreaks have occurred in the USA, the necrosis factor- and interferon- were measured in whole UK Powertrain and French outbreaks are not the only ones to blood and from peripheral blood mononuclear cells in response have occurred in Europe. -
Pneumonia: Prevention and Care at Home
FACT SHEET FOR PATIENTS AND FAMILIES Pneumonia: Prevention and Care at Home What is it? On an x-ray, pneumonia usually shows up as Pneumonia is an infection of the lungs. The infection white areas in the affected part of your lung(s). causes the small air sacs in your lungs (called alveoli) to swell and fill up with fluid or pus. This makes it harder for you to breathe, and usually causes coughing and other symptoms that sap your energy and appetite. How common and serious is it? Pneumonia is fairly common in the United States, affecting about 4 million people a year. Although for many people infection can be mild, about 1 out of every 5 people with pneumonia needs to be in the heart hospital. Pneumonia is most serious in these people: • Young children (ages 2 years and younger) • Older adults (ages 65 and older) • People with chronic illnesses such as diabetes What are the symptoms? and heart disease Pneumonia symptoms range in severity, and often • People with lung diseases such as asthma, mimic the symptoms of a bad cold or the flu: cystic fibrosis, or emphysema • Fatigue (feeling tired and weak) • People with weakened immune systems • Cough, without or without mucus • Smokers and heavy drinkers • Fever over 100ºF or 37.8ºC If you’ve been diagnosed with pneumonia, you should • Chills, sweats, or body aches take it seriously and follow your doctor’s advice. If your • Shortness of breath doctor decides you need to be in the hospital, you will receive more information on what to expect with • Chest pain or pain with breathing hospital care. -
Crohn's Disease-Associated Interstitial Lung Disease Mimicking Sarcoidosis
Case report SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2016; 33; 288-291 © Mattioli 1885 Crohn’s disease-associated interstitial lung disease mimicking sarcoidosis: a case report and review of the literature Choua Thao1, A Amir Lagstein2, T Tadashi Allen3, Huseyin Erhan Dincer4, Hyun Joo Kim4 1Department of Internal Medicine, University of Nevada School of Medicine Las Vegas, Las Vegas, NV; 2Department of Pathology, Univer- sity of Michigan, Ann Arbor, MI; 3Department of Radiology, University of Minnesota, Minneapolis, MN; 4 Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN Abstract. Respiratory involvement in Crohn’s disease (CD) is a rare manifestation known to involve the large and small airways, lung parenchyma, and pleura. The clinical presentation is nonspecific, and diagnostic tests can mimic other pulmonary diseases, posing a diagnostic challenge and delay in treatment. We report a case of a 60-year-old female with a history of CD and psoriatic arthritis who presented with dyspnea, fever, and cough with abnormal radiological findings. Diagnostic testing revealed an elevated CD4:CD8 ratio in the bronchoal- veolar lavage fluid, and cryoprobe lung biopsy results showed non-necrotizing granulomatous inflammation. We describe here the second reported case of pulmonary involvement mimicking sarcoidosis in Crohn’s disease and a review of the literature on the approaches to making a diagnosis of CD-associated interstitial lung disease. (Sarcoidosis Vasc Diffuse Lung Dis 2016; 33: 288-291) Key words: interstitial lung disease, Crohns disease, sarcoidosis, cryoprobe lung biopsy Introduction Moreover, certain diagnostic tests such as bronchoal- veolar lavage (BAL) cell analysis and tissue biopsy Pulmonary involvement in Crohn’s disease (CD) results may mimic other granulomatous lung diseas- is relatively rare and can be difficult to diagnose. -
Obliterative Bronchiolitis, Cryptogenic Organising Pneumonitis and Bronchiolitis Obliterans Organizing Pneumonia: Three Names for Two Different Conditions
Eur Reaplr J EDITORIAL 1991, 4, 774-775 Obliterative bronchiolitis, cryptogenic organising pneumonitis and bronchiolitis obliterans organizing pneumonia: three names for two different conditions R.M. du Bois, O.M. Geddes Over the last five years, increasing confusion has has been applied to conditions in which airflow obstruc developed over the use of the terms "bronchiolitis tion is prominent and in which response to treatment is obliterans" and "bronchiolitis obliterans organizing poor. pneumonia". The confusion stems largely from the common use of the term "bronchiolitis obliterans" or "obliterative bronchiolitis" in the diagnostic labels applied "Cryptogenic organizing pneumonitis" or "bronchi· to two entities which are quite distinct clinically but which otitis obliterans organizing pneumonia" (BOOP) bear certain resemblances histologically. Cryptogenic organizing pneumonitis was first described by DAVISON et al. [7] in 1983. The clinical syndrome ObUterative bronchiolitis consisted of breathlessness, malaise, fever, high erythrocyte sedimentation rate (ESR), pneumonic In 1977, GEODES et al. [1] reported the case histories shadowing on chest radiograph with a restrictive of six patients whose clinical condition was characterized pulmonary function defect and low gas transfer coeffi by airways obliteration in association with rheumatoid cient. On histological examination of lung biopsy mate· arthritis. The striking clinical features were of rapidly rial, the typical and distinguishing feature was the progressive breathlessness and the fmding on examination presence of connective tissue within the alveoli, alveolar of a high-pitched mid-inspiratory squeak heard over the ducts and, occasionally, in respiratory bronchioles. This lung fields. Chest radiographs showed hyperinflated lungs connective tissue consisted of "loosely woven fibres of but were otherwise normal. -
Air Trapping on Computed Tomography: Regional Versus Diffuse
EDITORIAL | SMOKING Air trapping on computed tomography: regional versus diffuse Firdaus A. Mohamed Hoesein and Pim A. de Jong Affiliation: Dept of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands. Correspondence: Firdaus A. Mohamed Hoesein, University Medical Center Utrecht, Department of Radiology, Heidelberglaan 100, PO box 855000, 3508 GA, Utrecht, The Netherlands. E-mail: [email protected] @ERSpublications Future studies on the distribution of air trapping in the lungs of COPD patients are needed http://ow.ly/86hc304JiIK Cite this article as: Mohamed Hoesein FA, de Jong PA. Air trapping on computed tomography: regional versus diffuse. Eur Respir J 2017; 49: 1601791 [https://doi.org/10.1183/13993003.01791-2016]. Chronic obstructive pulmonary disease (COPD) is diagnosed and classified by spirometry, assessing the presence of airflow obstruction and extent of forced expiratory flow deterioration. Spirometry, however, is unsuitable for characterising and quantifying the underlying pulmonary pathology of COPD, including alveolar destruction (emphysema) and airway remodelling (large- and small-airway disease). Accurate diagnosis of the pulmonary pathologies underlying COPD is seen as an important step towards better understanding its biology and “personalised” treatment. Computed tomography (CT) of the lungs provides an excellent opportunity to assess COPD in vivo and quantify its macroscopic pathology [1–3]. Emphysema and airway remodelling can be visually assessed and automatically quantified, and several studies have shown associations with morbidity and mortality [4–7]. In addition, CT can provide information on the spatial distribution of disease. In this issue of the European Respiratory Journal,KARIMI et al. [8] hypothesise that regional air trapping maybe a new imaging marker, in addition to emphysema, large-airway remodelling and diffuse air trapping. -
Clinical Diagnosis of Patients Subjected to Surgical Lung Biopsy
Tibana et al. BMC Pulmonary Medicine (2020) 20:299 https://doi.org/10.1186/s12890-020-01339-9 RESEARCH ARTICLE Open Access Clinical diagnosis of patients subjected to surgical lung biopsy with a probable usual interstitial pneumonia pattern on high- resolution computed tomography Regina Celia Carlos Tibana1* , Maria Raquel Soares1, Karin Mueller Storrer1, Gustavo de Souza Portes Meirelles2, Katia Hidemi Nishiyama3, Israel Missrie3, Ester Nei Aparecida Martins Coletta4, Rimarcs Gomes Ferreira4 and Carlos Alberto de Castro Pereira1 Abstract Background: Usual interstitial pneumonia can present with a probable pattern on high-resolution computed tomography (HRCT), but the probability of identifying usual interstitial pneumonia by surgical lung biopsy in such cases remains controversial. We aimed to determine the final clinical diagnosis in patients with a probable usual interstitial pneumonia pattern on HRCT who were subjected to surgical lung biopsy. Methods: HRCT images were assessed and categorized by three radiologists, and tissue slides were evaluated by two pathologists, all of whom were blinded to the clinical findings. The final clinical diagnosis was accomplished via a multidisciplinary discussion. Patients with a single layer of honeycombing located outside of the lower lobes on HRCT were not excluded. Results: A total of 50 patients were evaluated. The most common final clinical diagnosis was fibrotic hypersensitivity pneumonitis (38.0%) followed by idiopathic pulmonary fibrosis (24.0%), interstitial lung disease ascribed to gastroesophageal reflux disease (12.0%) and familial interstitial lung disease (10.0%). In the group without environmental exposure (n =22),10 patients had a final clinical diagnosis of idiopathic pulmonary fibrosis (45.5%). Irrespective of the final clinical diagnosis, by multivariate Cox analysis, patients with honeycombing, dyspnoea and fibroblastic focionsurgicallungbiopsyhadahighrisk of death. -
Neurosarcoidosis
CHAPTER 11 Neurosarcoidosis E. Hoitsma*,#, O.P. Sharma} *Dept of Neurology and #Sarcoidosis Management Centre, University Hospital Maastricht, Maastricht, The Netherlands, and }Dept of Pulmonary and Critical Care Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA. Correspondence: O.P. Sharma, Room 11-900, LACzUSC Medical Center, 1200 North State Street, Los Angeles, CA 90033, USA. Fax: 1 3232262728; E-mail: [email protected] Sarcoidosis is an inflammatory multisystemic disorder. Its cause is not known. The disease may involve any part of the nervous system. The incidence of clinical involvement of the nervous system in a sarcoidosis population is estimated to be y5–15% [1, 2]. However, the incidence of subclinical neurosarcoidosis may be much higher [3, 4]. Necropsy studies suggest that ante mortem diagnosis is made in only 50% of patients with nervous system involvement [5]. As neurosarcoidosis may manifest itself in many different ways, diagnosis may be complicated [2, 3, 6–10]. It may appear in an acute explosive fashion or as a slow chronic illness. Furthermore, any part of the nervous system can be attacked by sarcoidosis, but the cranial nerves, hypothalamus and pituitary gland are more commonly involved [1]. Sarcoid granulomas can affect the meninges, parenchyma of the brain, hypothalamus, brainstem, subependymal layer of the ventricular system, choroid plexuses and peripheral nerves, and also the blood vessels supplying the nervous structures [11, 12]. One-third of neurosarcoidosis patients show multiple neurological lesions. If neurological syndromes develop in a patient with biopsy- proven active systemic sarcoidosis, the diagnosis is usually easy. However, without biopsy evidence of sarcoidosis at other sites, nervous system sarcoidosis remains a difficult diagnosis [13]. -
Imaging of Small Airways Disease
SYMPOSIA Imaging of Small Airways Disease Gerald F. Abbott, MD,* Melissa L. Rosado-de-Christenson, MD,w zy Santiago E. Rossi, MD,J and Saul Suster, MDz SECONDARY PULMONARY LOBULE Abstract: Small airways disease includes a spectrum of inflammatory The secondary pulmonary lobule (SPL) is a key and fibrotic pulmonary diseases centered on the small conducting structure in the lung anatomy and is distinguished as the airways. High-resolution computed tomography plays a key role in the detection and classification of small airways disease and, when smallest functioning subunit of lung that is bound by combined with relevant clinical and pathologic findings, leads to a connective tissue septa, supplied by a lobular bronchiole more accurate diagnosis. The imaging manifestations of small airways and arteriole, and drained by veins and lymphatics in the disease on high-resolution computed tomography may be direct or interlobular septa. Each SPL measures 1 to 2.5 cm and indirect signs of small airway involvement and include centrilobular contains 3 to 12 acini. The SPL are better formed and more nodules and branching nodular (tree-in-bud) opacities, or the easily recognized in the peripheral subpleural lung and demonstration of mosaic attenuation that is typically exaggerated on are smaller and less regular in the central lung. The SPL are expiratory computed tomography. This article reviews the normal not normally visible on radiography or computed tomo- anatomy and histology of bronchioles and the clinical, pathologic, and graphy (CT)/HRCT (Fig. 1). -
Clarifying the Diagnosis of Post-Inflammatory Pulmonary Fibrosis: a Population-Based Study
AGORA | RESEARCH LETTER Clarifying the diagnosis of post- inflammatory pulmonary fibrosis: a population-based study To the Editor: Epidemiological studies are important in defining the distribution and burden of diseases in a population. A common method of studying interstitial lung disease (ILD) epidemiology has been the analysis of insurance and billing claims databases, such as the Commercial Claims and Encounters Database and the Medicare Supplemental and Coordination of Benefits Database. These studies rely on the accuracy of International Statistical Classification of Diseases (ICD) codes to identify a patient population of interest. Several studies have described the incidence and prevalence of ILD by methodically searching ICD codes related to ILD or by using code-based algorithms [1–6]. Post-inflammatory pulmonary fibrosis (PPF) (ICD-9-CM 515) has been categorised as a general diagnostic code used by providers for IPF, an ILD characterised by progressive parenchymal fibrosis [1, 7]. Cases of PPF have been variably included in studies of IPF epidemiology. The prevalence of PPF may be comparable or higher to that of IPF. For example, COULTAS et al. [2] reported PPF to represent 16.7% of prevalent cases of ILDs while IPF comprised 22.5% in a population-based registry. RAGHU et al.[8] analysed a large healthcare claims database spanning the period 1996–2000 and found the prevalence of PFF to be nearly 11-fold higher than that of IPF identified by “broad case definition”. To our knowledge, however, cases designated as PPF have never been fully characterised. In particular, it is unknown to what extent PPF (ICD-9-CM 515) overlaps with the diagnosis of IPF. -
Differential Diagnosis of Granulomatous Lung Disease: Clues and Pitfalls
SERIES PATHOLOGY FOR THE CLINICIAN Differential diagnosis of granulomatous lung disease: clues and pitfalls Shinichiro Ohshimo1, Josune Guzman2, Ulrich Costabel3 and Francesco Bonella3 Number 4 in the Series “Pathology for the clinician” Edited by Peter Dorfmüller and Alberto Cavazza Affiliations: 1Dept of Emergency and Critical Care Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan. 2General and Experimental Pathology, Ruhr-University Bochum, Bochum, Germany. 3Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany. Correspondence: Francesco Bonella, Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University of Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany. E-mail: [email protected] @ERSpublications A multidisciplinary approach is crucial for the accurate differential diagnosis of granulomatous lung diseases http://ow.ly/FxsP30cebtf Cite this article as: Ohshimo S, Guzman J, Costabel U, et al. Differential diagnosis of granulomatous lung disease: clues and pitfalls. Eur Respir Rev 2017; 26: 170012 [https://doi.org/10.1183/16000617.0012-2017]. ABSTRACT Granulomatous lung diseases are a heterogeneous group of disorders that have a wide spectrum of pathologies with variable clinical manifestations and outcomes. Precise clinical evaluation, laboratory testing, pulmonary function testing, radiological imaging including high-resolution computed tomography and often histopathological assessment contribute to make -
Residual Volume and Total Lung Capacity to Assess Reversibility in Obstructive Lung Disease
Residual Volume and Total Lung Capacity to Assess Reversibility in Obstructive Lung Disease Conor T McCartney MD, Melissa N Weis MD, Gregg L Ruppel MEd RRT RPFT FAARC, and Ravi P Nayak MD BACKGROUND: Reversibility of obstructive lung disease is traditionally defined by changes in FEV1 or FVC in response to bronchodilators. These may not fully reflect changes due to a reduction in hyperinflation or air-trapping, which have important clinical implications. To date, only a handful of studies have examined bronchodilators’ effect on lung volumes. The authors sought to better characterize the response of residual volume and total lung capacity to bronchodilators. METHODS: Responsiveness of residual volume and total lung capacity to bronchodilators was assessed with a retrospective analysis of pulmonary function tests of 965 subjects with obstructive lung disease as defined by the lower limit of normal based on National Health and Nutritional Examination Survey III prediction equations. RESULTS: A statistically significant number of subjects demonstrated response to bronchodilators in their residual volume independent of re- sponse defined by FEV1 or FVC, the American Thoracic Society and European Respiratory Society criteria. Reduced residual volume weakly correlated with response to FEV1 and to FVC. No statistically significant correlation was found between total lung capacity and either FEV1 or FVC. CONCLUSIONS: A significant number of subjects classified as being nonresponsive based on spirometry have reversible residual volumes. Subjects whose residual volumes improve in response to bronchodilators represent an important subgroup of those with obstructive lung disease. The identification of this subgroup better characterizes the heterogeneity of obstructive lung disease. The clinical importance of these findings is unclear but warrants further study.