Catabolism of Organic Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Catabolism of Organic Compounds 14 Catabolism of Organic Compounds Methanogens produce natural I Fermentations 373 14.10 Methanogenesis 390 gas (methane, CH4) and are 14.1 Energetic and Redox 14.11 Proton Reduction 394 able to do so because they Considerations 373 14.12 Other Electron Acceptors 395 contain a series of unusual 14.2 Lactic and Mixed-Acid 14.13 Anoxic Hydrocarbon Oxidation coenzymes, such as the Fermentations 374 Linked to Anaerobic 14.3 Clostridial and Propionic Acid Respiration 397 green-fluorescing F420, that participate in biochemical Fermentations 377 III Aerobic Chemoorganotrophic reactions unique to these 14.4 Fermentations Lacking Substrate- Processes 400 Level Phosphorylation 379 organisms. 14.14 Molecular Oxygen as a Reactant 14.5 Syntrophy 381 and Aerobic Hydrocarbon II Anaerobic Respiration 383 Oxidation 400 14.6 Anaerobic Respiration: 14.15 Methylotrophy and General Principles 383 Methanotrophy 401 14.7 Nitrate Reduction and 14.16 Sugar and Polysaccharide Denitrification 384 Metabolism 403 14.8 Sulfate and Sulfur Reduction 386 14.17 Organic Acid Metabolism 406 14.9 Acetogenesis 388 14.18 Lipid Metabolism 406 CHAPTER 14 • Catabolism of Organic Compounds 373 n Chapter 13 we considered phototrophy and chemolithotro- Uptake Excretion Iphy, strategies for energy conservation that do not use organic compounds as electron donors. In this chapter we focus on organic compounds as electron donors and the many ways in which chemoorganotrophic microorganisms conserve energy. A Organic Fermentation major focus will be on anaerobic forms of metabolism, because compound product novel strategies for anaerobic growth are a hallmark of prokary- otic diversity. We end the chapter with a consideration of the aer- NAD+ obic catabolism of key organic compounds, primarily monomers NADH released from the degradation of macromolecules. Substrate-level Energy-rich phosphorylation Oxidized I Fermentations compound compound wo broad metabolic processes for the catabolism of organic ADP ATP Tcompounds are fermentation and respiration. These processes differ fundamentally in terms of oxidation–reduction (redox) considerations and mechanism of ATP synthesis. In respiration, Figure 14.1 The essentials of fermentation. The fermentation product whether aerobic or anaerobic, exogenous electron acceptors are is excreted from the cell, and only a relatively small amount of the original required to accept electrons generated from the oxidation of elec- organic compound is used for biosynthesis. tron donors. In fermentation, this is not the case. Thus in respira- tion but not fermentation we will see a common theme of electron transport and the generation of a proton motive force. energy-rich compounds. These are organic compounds that con- We begin our exploration of organic catabolism with fermen- tain an energy-rich phosphate bond or a molecule of coenzyme tations. Compared with respirations, fermentations are typically A; the hydrolysis of either of these is highly exergonic ( Figure UNIT 5 energetically marginal. However, we will see that a little free 4.12). Table 14.1 lists some energy-rich intermediates formed energy can go a long way and that bacterial fermentative diversity during biochemical processes. The hydrolysis of most of the D 09 = is both extensive and innovative. compounds listed can be coupled to ATP synthesis ( G -31.8 kJ/mol). In other words, if an organism can form one of 14.1 Energetic and Redox Considerations Many microbial habitats are anoxic (oxygen-free). In such envi- Energy-rich compounds involved in substrate-level ronments, decomposition of organic material occurs anaerobi- Table 14.1 phosphorylationa cally. If adequate supplies of electron acceptors such as sulfate 2- - 3+ (SO4 ), nitrate (NO3 ), ferric iron (Fe ), and others to be con- Free energy of 0 sidered later are unavailable in anoxic habitats, organic com- hydrolysis, ⌬G 9 Compound (kJ/mol)b pounds are catabolized by fermentation (Figure 14.1). In Chapter 4 we discussed some key fermentations that yield alcohol or lactic Acetyl-CoA -35.7 acid as products by way of the glycolytic pathway. There we Propionyl-CoA -35.6 emphasized how fermentations are internally balanced redox Butyryl-CoA -35.6 processes in which the fermentable substrate becomes both oxi- - dized and reduced. Caproyl-CoA 35.6 An organism faces two major problems when it catabolizes Succinyl-CoA -35.1 organic compounds for the purpose of energy conservation: (1) Acetyl phosphate -44.8 ATP synthesis, and (2) redox balance. In fermentations, with rare Butyryl phosphate -44.8 exception ATP is synthesized by substrate-level phosphorylation. - This is the mechanism in which energy-rich phosphate bonds 1,3-Bisphosphoglycerate 51.9 from phosphorylated organic compounds are transferred directly Carbamyl phosphate -39.3 to ADP to form ATP ( Section 4.7). The second problem, Phosphoenolpyruvate -51.6 redox balance, is solved by the production and subsequent excre- Adenosine phosphosulfate (APS) -88 tion of fermentation products generated from the original sub- N10 - strate (Figure 14.1). -Formyltetrahydrofolate 23.4 Energy of hydrolysis of ATP (ATP S ADP + Pi ) -31.8 Energy-Rich Compounds and aData from Thauer, R. K., K. Jungermann, and K. Decker, 1977. Energy conservation in Substrate-Level Phosphorylation chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180. bThe DG09 values shown here are for “standard conditions,” which are not necessarily Energy can be conserved by substrate-level phosphorylation those of cells. Including heat loss, the energy costs of making an ATP are more like from many different compounds. However, central to an under- 60 kJ than 32 kJ, and the energy of hydrolysis of the energy-rich compounds shown here is thus likely higher. But for simplicity and comparative purposes, the values in this standing of substrate-level phosphorylation is the concept of table will be taken as the actual energy released per reaction. 374 UNIT 5 • Metabolic Diversity and Commercial Biocatalyses Pyruvate (C3) Many anaerobic bacteria produce acetate as a major or minor CoA CoA fermentation product. The production of acetate and certain other fatty acids (Table 14.1) is energy conserving because it allows the organism to make ATP by substrate-level phosphory- 2 e– lation. The key intermediate generated in acetate production is Acetyl-CoA + Formate Acetyl-CoA + CO2 P acetyl-CoA (Table 14.1), an energy-rich compound. Acetyl-CoA i can be converted to acetyl phosphate (Table 14.1) and the phos- Formate Ferredoxin Acetyl~P phate group of acetyl phosphate subsequently transferred to hydrogenlyase Hydrogenase ADP ADP, yielding ATP. One of the precursors of acetyl-CoA is pyru- 2 H+ vate, a major product of glycolysis. The conversion of pyruvate to Acetate Acetate + ATP acetyl-CoA is a key oxidation reaction, and the electrons gener- CO (C2) 2 (C2) ated are used to form fermentation products or are released as + H (Figure 14.2). ATP H2 2 Figure 14.2 Production of H2 and acetate from pyruvate. At least MiniQuiz two mechanisms are known, one that produces H directly and the other 2 • What is substrate-level phosphorylation? that makes formate as an intermediate. When acetate is produced, ATP synthesis is possible (Table 14.1). • Why is acetate formation in fermentation energetically beneficial? these compounds during fermentative metabolism, it can make ATP by substrate-level phosphorylation. 14.2 Lactic and Mixed-Acid Fermentations Redox Balance, H2, and Acetate Production In any fermentation there must be atomic and redox balance; the Many fermentations are classified by either the substrate fer- total number of each type of atom and electrons in the products mented or the products formed. Table 14.2 lists some of the of the reaction must balance those in the substrates. This is major fermentations classified on the basis of products formed. obtained by the production and excretion from the cell of fer- Note some of the broad categories, such as alcohol, lactic acid, mentation products (Figure 14.1). In several fermentations, propionic acid, mixed acid, butyric acid, and acetogenic. Some redox balance is maintained by the production of molecular fermentations are described by the substrate fermented rather than the fermentation product. For instance, some endospore- hydrogen, H2. The production of H2 is associated with the activ- ity of the iron–sulfur protein ferredoxin, a very low-potential forming anaerobic bacteria (genus Clostridium) ferment amino electron carrier, and is catalyzed by the enzyme hydrogenase, as acids, whereas others ferment purines and pyrimidines. Other anaerobes ferment aromatic compounds (Table 14.3). Clearly, a illustrated in Figure 14.2. H2 can also be produced from the C1 wide variety of organic compounds can be fermented. Certain fatty acid formate. Either way, the H2 is then made available for use by other organisms. fermentations are carried out by only a very restricted group of anaerobes; in some cases this may be only a single known Table 14.2 Common bacterial fermentations and some of the organisms carrying them out Type Reaction Organisms Alcoholic Hexose S 2 ethanol + 2 CO2 Yeast, Zymomonas Homolactic Hexose S 2 lactate- + 2 H+ Streptococcus, some Lactobacillus - + Heterolactic Hexose S lactate + ethanol + CO2 + H Leuconostoc, some Lactobacillus - - - Propionic acid 3 Lactate S 2 propionate + acetate + CO2 + H2O Propionibacterium, Clostridium propionicum Mixed acida,b Hexose S ethanol + 2,3-butanediol + succinate2- + lactate- + Enteric bacteria including Escherichia, Salmonella, - -
Recommended publications
  • Amphibolic Nature of Krebs Cycle
    Amphibolic nature of Krebs Cycle How what we are is what we eat • In aerobic organisms, the citric acid cycle is an amphibolic pathway, one that serves in both catabolic and anabolic processes. • Since the citric acid does both synthesis (anabolic) and breakdown (catabolic) activities, it is called an amphibolic pathway • The citric acid cycle is amphibolic (i.e it is both anabolic and catabolic in its function). • It is said to be an AMPHIBOLIC pathway, because it functions in both degradative or catabolic and biosynthetic or anabolic reactions (amphi = both) A central metabolic pathway or amphibolic pathway is a set of reactions which permit the interconversion of several metabolites, and represents the end of the catabolism and the beginning of anabolism • The KREBS CYCLE or citric acid cycle is a series of reactions that degrades acetyl CoA to yield carbon dioxide, and energy, which is used to produce NADH, H+ and FADH. • The KREBS CYCLE connects the catabolic pathways that begin with the digestion and degradation of foods in stages 1 and 2 with the oxidation of substrates in stage 3 that generates most of the energy for ATP synthesis. • The citric acid cycle is the final common pathway in the oxidation of fuel molecules. In stage 3 of metabolism, citric acid is a final common catabolic intermediate in the form of acetylCoA. • This is why the citric acid cycle is called a central metabolic pathway. Anaplerosis and Cataplerosis Anaplerosis is a series of enzymatic reactions in which metabolic intermediates enter the citric acid cycle from the cytosol. Cataplerosis is the opposite, a process where intermediates leave the citric acid cycle and enter the cytosol.
    [Show full text]
  • The Citric Acid Cycle the Catabolism of Acetyl-Coa
    Al-Sham Private University Faculty Of Pharmacy The Citric Acid Cycle The Catabolism of Acetyl-CoA Lecturer Prof. Abboud Al-Saleh 1 Prof.Abboud AL-Saleh 10/1/2018 BIOMEDICAL IMPORTANCE • The citric acid cycle (Krebs cycle, tricarboxylic acid cycle) is a series of reactions in mitochondria that oxidize acetyl residues (as acetyl-CoA) and reduce coenzymes that upon reoxidation are linked to the formation of ATP. • TCA is the final common pathway for the aerobic oxidation of carbohydrate, lipid, and protein because glucose, fatty acids, and most amino acids are metabolized to acetyl-CoA or intermediates of the cycle. 2 Prof.Abboud AL-Saleh 10/1/2018 • TCA also has a central role in gluconeogenesis, lipogenesis, and interconversion of amino acids. Many of these processes occur in most tissues, but the liver is the only tissue in which all occur to a significant extent. • The repercussions are therefore profound when, for example, large numbers of hepatic cells are damaged as in acute hepatitis or as in cirrhosis. • Very few, if any, genetic abnormalities of TCA enzymes have been reported; such abnormalities would be incompatible with life or normal development 3 Prof.Abboud AL-Saleh 10/1/2018 Summary • The cycle starts with reaction between the acetyl moiety of acetyl-CoA and the four-carbon dicarboxylic acid oxaloacetate, forming a six-carbon tricarboxylic acid, citrate. • In the subsequent reactions, two molecules of CO2 are released and oxaloacetate is regenerated (Figure). • Only a small quantity of oxaloacetate is needed for the oxidation of a large quantity of acetyl-CoA. • oxaloacetate may be considered to play a catalytic role.
    [Show full text]
  • Catabolism Iii
    Nitrogen Catabolism Glycogenolysis Protein Fat catabolism Catabolism Fatty Acid Amino-acid GlycolysisDegradation catabolism Pyruvate Oxidation Krebs' Cycle Phosphorylation Oxidative CATABOLISM III: Digestion and Utilization of Proteins • Protein degradation • Protein turnover – The ubiquitin pathway – Protein turnover is tightly regulated • Elimination of nitrogen – By fish, flesh and fowl – How is the N of amino acids liberated and eliminated? • How are amino acids oxidized for energy 1 Protein Catabolism Sources of AMINO ACIDS: •Dietary amino acids that exceed body’s protein synthesis needs •Excess amino acids from protein turnover (e.g., proteolysis and regeneration of proteins) •Proteins in the body can be broken down (muscle wasting) to supply amino acids for energy when carbohydrates are scarce (starvation, diabetes mellitus). •Carnivores use amino acids for energy more than herbivores, plants, and most microorganisms Protein Catabolism The Digestion Pathway • Pro-enzymes are secreted (zymogens) and the environment activates them by specific proteolysis. • Pepsin hydrolyzes protein into peptides in the stomach. • Trypsin and chymotrypsin hydrolyze proteins and larger peptides into smaller peptides in the small intestine. • Aminopeptidase and carboxypeptidases A and B degrade peptides into amino acids in the small intestine. 2 Protein Catabolism The Lysosomal Pathway • Endocytosis, either receptor-mediated, phagocytosis, or pinocytosis engulfs extra- cellular proteins into vesicles. • These internal vesicles fuse as an early endosome. • This early endosome is acidified by the KFERQ Substrates vATPase (“v” for vesicular). • Components that are recycled, like receptors, HSPA8 are sequestered in smaller vesicles to create Co-chaperones the multivesicular body (MVB), sometimes called a late endosome. • If set for degradation, it will fuse with a KFERQ primary lysosome (red) which contains many cathepsin-type proteases.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • Chemical Name Federal P Code CAS Registry Number Acutely
    Acutely / Extremely Hazardous Waste List Federal P CAS Registry Acutely / Extremely Chemical Name Code Number Hazardous 4,7-Methano-1H-indene, 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro- P059 76-44-8 Acutely Hazardous 6,9-Methano-2,4,3-benzodioxathiepin, 6,7,8,9,10,10- hexachloro-1,5,5a,6,9,9a-hexahydro-, 3-oxide P050 115-29-7 Acutely Hazardous Methanimidamide, N,N-dimethyl-N'-[2-methyl-4-[[(methylamino)carbonyl]oxy]phenyl]- P197 17702-57-7 Acutely Hazardous 1-(o-Chlorophenyl)thiourea P026 5344-82-1 Acutely Hazardous 1-(o-Chlorophenyl)thiourea 5344-82-1 Extremely Hazardous 1,1,1-Trichloro-2, -bis(p-methoxyphenyl)ethane Extremely Hazardous 1,1a,2,2,3,3a,4,5,5,5a,5b,6-Dodecachlorooctahydro-1,3,4-metheno-1H-cyclobuta (cd) pentalene, Dechlorane Extremely Hazardous 1,1a,3,3a,4,5,5,5a,5b,6-Decachloro--octahydro-1,2,4-metheno-2H-cyclobuta (cd) pentalen-2- one, chlorecone Extremely Hazardous 1,1-Dimethylhydrazine 57-14-7 Extremely Hazardous 1,2,3,4,10,10-Hexachloro-6,7-epoxy-1,4,4,4a,5,6,7,8,8a-octahydro-1,4-endo-endo-5,8- dimethanonaph-thalene Extremely Hazardous 1,2,3-Propanetriol, trinitrate P081 55-63-0 Acutely Hazardous 1,2,3-Propanetriol, trinitrate 55-63-0 Extremely Hazardous 1,2,4,5,6,7,8,8-Octachloro-4,7-methano-3a,4,7,7a-tetra- hydro- indane Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]- 51-43-4 Extremely Hazardous 1,2-Benzenediol, 4-[1-hydroxy-2-(methylamino)ethyl]-, P042 51-43-4 Acutely Hazardous 1,2-Dibromo-3-chloropropane 96-12-8 Extremely Hazardous 1,2-Propylenimine P067 75-55-8 Acutely Hazardous 1,2-Propylenimine 75-55-8 Extremely Hazardous 1,3,4,5,6,7,8,8-Octachloro-1,3,3a,4,7,7a-hexahydro-4,7-methanoisobenzofuran Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime 26419-73-8 Extremely Hazardous 1,3-Dithiolane-2-carboxaldehyde, 2,4-dimethyl-, O- [(methylamino)-carbonyl]oxime.
    [Show full text]
  • Enhanced Extraction of Heavy Metals in the Two-Step Process with the Mixed Culture of Lactobacillus Bulgaricus and Streptococcus Thermophilus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Muroran-IT Academic Resource Archive Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus 著者 CHANG Young-Cheol, CHOI DuBok, KIKUCHI Shintaro journal or Bioresource Technology publication title volume 103 number 1 page range 477-480 year 2012-01 URL http://hdl.handle.net/10258/665 doi: info:doi/10.1016/j.biortech.2011.09.059 Enhanced extraction of heavy metals in the two-step process with the mixed culture of Lactobacillus bulgaricus and Streptococcus thermophilus 著者 CHANG Young-Cheol, CHOI DuBok, KIKUCHI Shintaro journal or Bioresource Technology publication title volume 103 number 1 page range 477-480 year 2012-01 URL http://hdl.handle.net/10258/665 doi: info:doi/10.1016/j.biortech.2011.09.059 Enhanced Extraction of Heavy Metals in the Two-Step Process with the Mixed Culture of Lactobacillus bulgaricus and Streptococcus thermophilus Young-Cheol Chang1, DuBok Choi2*, and Shintaro Kikuchi1 1Division of Applied Sciences, College of Environmental Technology, Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto, Muroran 050-8585, Hokkaido, Japan, 2 Biotechnology Lab, BK Company R&D Center, Gunsan 579-879, and Department of Pharmacy, College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea. *Corresponding author: DuBok Choi E-mail: [email protected] 1 Abstract For biological extraction of heavy metals from chromated copper arsenate (CCA) treated wood, different bacteria were investigated. The extraction rates of heavy metals using Lactobacillus bulgaricus and Streptococcus thermophilus were highest.
    [Show full text]
  • European Patent Office
    (19) *EP003643305A1* (11) EP 3 643 305 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 29.04.2020 Bulletin 2020/18 A61K 31/196 (2006.01) A61K 31/403 (2006.01) A61K 31/405 (2006.01) A61K 31/616 (2006.01) (2006.01) (21) Application number: 18202657.5 A61P 35/00 (22) Date of filing: 25.10.2018 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • LAEMMERMANN, Ingo GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 1170 Wien (AT) PL PT RO RS SE SI SK SM TR • GRILLARI, Johannes Designated Extension States: 2102 Bisamberg (AT) BA ME • PILS, Vera Designated Validation States: 1160 Wien (AT) KH MA MD TN • GRUBER, Florian 1050 Wien (AT) (71) Applicants: • NARZT, Marie-Sophie • Universität für Bodenkultur Wien 1140 Wien (AT) 1180 Wien (AT) • Medizinische Universität Wien (74) Representative: Loidl, Manuela Bettina et al 1090 Wien (AT) REDL Life Science Patent Attorneys Donau-City-Straße 11 1220 Wien (AT) (54) COMPOSITIONS FOR THE ELIMINATION OF SENESCENT CELLS (57) The invention relates to a composition compris- ing senescent cells. The invention further relates to an ing one or more inhibitors capable of inhibiting at least in vitro method of identifying senescent cells in a subject two of cyclooxygenase-1 (COX-1), cyclooxygenase-2 and to a method of identifying candidate compounds for (COX-2) and lipoxygenase for use in selectively eliminat- the selective elimination of senescent cells. EP 3 643 305 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 3 643 305 A1 2 Description al.
    [Show full text]
  • Amino Acid Catabolism: Urea Cycle the Urea Bi-Cycle Two Issues
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Urea Cycle – dealing with the nitrogen Protein turnover Ubiquitin Feeding the Urea Cycle Activation-E1 Glucose-Alanine Cycle Conjugation-E2 Free Ammonia Ligation-E3 Proteosome Glutamine Amino-Acid Degradation Glutamate dehydrogenase Ammonia Overall energetics free Dealing with the carbon transamination-mechanism to know Seven Families Urea Cycle – dealing with the nitrogen 1. ADENQ 5 Steps 2. RPH Carbamoyl-phosphate synthetase oxidase Ornithine transcarbamylase one-carbon metabolism Arginino-succinate synthetase THF Arginino-succinase SAM Arginase 3. GSC Energetics PLP uses Urea Bi-cycle 4. MT – one carbon metabolism 5. FY – oxidases Amino Acid Catabolism: Urea Cycle The Urea Bi-Cycle Two issues: 1) What to do with the fumarate? 2) What are the sources of the free ammonia? a-ketoglutarate a-amino acid Aspartate transaminase transaminase a-keto acid Glutamate 1 Amino Acid Catabolism: Urea Cycle The Glucose-Alanine Cycle • Vigorously working muscles operate nearly anaerobically and rely on glycolysis for energy. a-Keto acids • Glycolysis yields pyruvate. – If not eliminated (converted to acetyl- CoA), lactic acid will build up. • If amino acids have become a fuel source, this lactate is converted back to pyruvate, then converted to alanine for transport into the liver. Excess Glutamate is Metabolized in the Mitochondria of Hepatocytes Amino Acid Catabolism: Urea Cycle Excess glutamine is processed in the intestines, kidneys, and liver. (deaminating) (N,Q,H,S,T,G,M,W) OAA à Asp Glutamine Synthetase This costs another ATP, bringing it closer to 5 (N,Q,H,S,T,G,M,W) 29 N 2 Amino Acid Catabolism: Urea Cycle Excess glutamine is processed in the intestines, kidneys, and liver.
    [Show full text]
  • Lecture 9: Citric Acid Cycle/Fatty Acid Catabolism
    Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY Bryan Krantz: University of California, Berkeley MCB 102, Spring 2008, Metabolism Lecture 9 Reading: Ch. 16 & 17 of Principles of Biochemistry, “The Citric Acid Cycle” & “Fatty Acid Catabolism.” Symmetric Citrate. The left and right half are the same, having mirror image acetyl groups (-CH2COOH). Radio-label Experiment. The Krebs Cycle was tested by 14C radio- labeling experiments. In 1941, 14C-Acetyl-CoA was used with normal oxaloacetate, labeling only the right side of drawing. But none of the label was released as CO2. Always the left carboxyl group is instead released as CO2, i.e., that from oxaloacetate. This was interpreted as proof that citrate is not in the 14 cycle at all the labels would have been scrambled, and half of the CO2 would have been C. Prochiral Citrate. In a two-minute thought experiment, Alexander Ogston in 1948 (Nature, 162: 963) argued that citrate has the potential to be treated as chiral. In chemistry, prochiral molecules can be converted from achiral to chiral in a single step. The trick is an asymmetric enzyme surface (i.e. aconitase) can act on citrate as through it were chiral. As a consequence the left and right acetyl groups are not treated equivalently. “On the contrary, it is possible that an asymmetric enzyme which attacks a symmetrical compound can distinguish between its identical groups.” Metabolism Lecture 9 — CITRIC ACID CYCLE/FATTY ACID CATABOLISM — Restricted for students enrolled in MCB102, UC Berkeley, Spring 2008 ONLY [STEP 4] α-Keto Glutarate Dehydrogenase.
    [Show full text]
  • Cellular Respiration Cellular
    BIOLOGY Chapter 8: pp. 133-149 10th Edition Sylvia S. Sylvia Cellular Respiration Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Mader e– NADH NADH e– Insert figure 8.2 here e– e– NADH and Cytoplasm e– FADH 2 Mitochondrion e– – e Glycolysis Electron transport Preparatory reaction Citric acid chain and glucose pyruvate cycle chemiosmosis 2 ADP 2 ADP 4 ADP 4 ATP total 2 ATP net gain 2 ADP 2 ATP 32 ADP 32 ATP or 34 or 34 PowerPoint® Lecture Slides are prepared by Dr. Isaac Barjis, Biology Instructor 1 Copyright © The McGraw Hill Companies Inc. Permission required for reproduction or display Outline Cellular Respiration NAD+ and FAD Phases of Cellular Respiration Glycolysis Fermentation Preparatory Reaction Citric Acid Cycle Electron Transport System Metabolic Pool Catabolism Anabolism 2 Cellular Respiration A cellular process that breaks down carbohydrates and other metabolites with the concomitant buildup of ATP Consumes oxygen and produces carbon dioxide (CO2) Cellular respiration is aerobic process. Usually involves breakdown of glucose to CO2 and water Energy extracted from glucose molecule: Released step-wise Allows ATP to be produced efficiently Oxidation-reduction enzymes include NAD+ and FAD as coenzymes 3 Glucose Breakdown: Summary Reaction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Oxidation C6H12O6 + 6O2 6CO2 + 6HCO2 + energy glucose Reduction Electrons are removed from substrates and received by oxygen, which combines
    [Show full text]
  • Ap® Biology 2015 Scoring Guidelines
    AP® BIOLOGY 2015 SCORING GUIDELINES Question 2 Figure 1. Glycolysis and pyruvate oxidation Figure 2. Krebs cycle Figure 3. Electron transport chain Cellular respiration includes the metabolic pathways of glycolysis, the Krebs cycle, and the electron transport chain, as represented in the figures. In cellular respiration, carbohydrates and other metabolites are oxidized, and the resulting energy-transfer reactions support the synthesis of ATP. (a) Using the information above, describe ONE contribution of each of the following in ATP synthesis. • Catabolism of glucose in glycolysis and pyruvate oxidation • Oxidation of intermediates in the Krebs cycle • Formation of a proton gradient by the electron transport chain Description Process (1 point each box; 3 points maximum) Catabolism of glucose in glycolysis and • Produces NADH for use in ETC pyruvate oxidation • Produces acetyl-CoA for entry into Krebs cycle • Provides energy for (substrate level) phosphorylation of ADP Oxidation of intermediates in the Krebs • Produces NADH or FADH2 for use in ETC cycle • Releases high energy electrons for use in ETC • Provides energy to pump protons against their concentration gradient • Produces GTP for (substrate level) phosphorylation of ADP Formation of a proton gradient by the • The flow of protons through membrane-bound ATP electron transport chain synthase generates ATP • Provides energy for (oxidative) phosphorylation of ADP © 2015 The College Board. Visit the College Board on the Web: www.collegeboard.org. AP® BIOLOGY 2015 SCORING GUIDELINES Question 2 (continued) (b) Use each of the following observations to justify the claim that glycolysis first occurred in a common ancestor of all living organisms. • Nearly all existing organisms perform glycolysis.
    [Show full text]
  • Fatty Acid Catabolism Part II
    Topic: Fatty acid Catabolism Part II B.Sc (H) Zoology Sem IV Paper: Biochemistry of Metabolic Processes Teacher: Dr. Renu Solanki Oxidation of Fatty acids • Fatty acid oxidation takes place in three steps: Stages of fatty acid oxidation. Stage 1: A long-chain fatty acid is oxidized to yield acetyl residues in the form of acetyl-CoA. This process is called beta oxidation. Stage 2: The acetyl groups are oxidized to CO2 via the citric acid cycle. Stage 3: Electrons derived from the oxidations of stages 1 and 2 pass to O2 via the mitochondrial respiratory chain, providing the energy for ATP synthesis by oxidative phosphorylation. • In the first stage—beta oxidation—fatty acids undergo oxidative re- moval of successive two-carbon units in the form of acetyl-CoA, starting from the carboxyl end of the fatty acyl chain. For example, the 16-carbon palmitic acid (palmitate at pH 7) undergoes seven passes through the oxidative sequence, in each pass losing two carbons as acetyl-CoA. At the end of seven cycles the last two car- bons of palmitate (originally C-15 and C-16) remain as acetyl-CoA. The overall result is the conversion of the 16-carbon chain of palmitate to eight two-carbon acetyl groups of acetyl-CoA molecules. Formation of each acetyl-CoA reQuires removal of four hydrogen atoms (two pairs of electrons and four H+) from the fatty acyl moiety by dehydrogenases. • In the second stage of fatty acid oxidation, the acetyl groups of acetyl- CoA are oxidized to CO2 in the citric acid cycle, which also takes place in the mitochondrial matrix.
    [Show full text]