Dyspnoea, Hyperventilation and Functional Cough: a Guide to Which Tests Help Sort Them Out

Total Page:16

File Type:pdf, Size:1020Kb

Dyspnoea, Hyperventilation and Functional Cough: a Guide to Which Tests Help Sort Them Out Andrew Robson [email protected] @CoughingAndyR NHS Lothian Respiratory Physiology Service, Western General Hospital, Edinburgh, UK. Dyspnoea, hyperventilation and functional cough: a guide to which tests help sort them out Cite as: Robson A. Dyspnoea, hyperventilation and Physiology masterclass functional cough: which tests help to sort them out? Breathe 2017; 13: 45–50. Dyspnoea is a multifactorial symptom, defined been investigated and eliminated, a potential by the American Thoracic Society as “a subjective functional diagnosis can be considered. experience of breathing discomfort that consists Much of the published literature surrounding of qualitatively distinct sensations that vary in the investigation of either acute or chronic intensity” [1]. Dyspnoea is caused by a wide range hyperventilation has centred on patients with of conditions, ranging from asthma to pulmonary anxiety, depression and panic disorder but embolism, and including such nonrespiratory patients with a pre-existing respiratory condition factors such as diabetic ketoacidosis. A patient with may also experience periods of acute or chronic asthma who is aware of an increase in the muscular hyperventilation. Although most published data work of breathing during an attack, another patient refer to asthma [2], other conditions such as COPD with a pneumothorax experiencing increased and pulmonary fibrosis can also be associated with efferent nerve stimulation from pulmonary hyperventilation. stretch receptors and a third patient with type 1 This article will briefly describe methods respiratory failure would all describe themselves that can be used to investigate dyspnoea in a as “breathless”, but for very different physiological newly referred patient. Methods of assessing reasons. Identifying the exact source of the patient’s functional breathlessness and cough when other symptoms can be a lengthy process. investigations have been found to be normal, or Cough and breathlessness are two of the most where the degree of symptoms reported by the commonly reported respiratory symptoms with patient is out of proportion to any abnormalities many possible causes that may require significant found, will also be discussed. No mention will be investigation before the cause is identified. After made of the treatment of either functional cough potential organic diseases such as asthma, chronic or breathlessness. obstructive pulmonary disease (COPD), interstitial It is assumed that readers will have access lung disease and pulmonary vascular disease have to a clinical respiratory physiology laboratory @ ERSpublications Methods that can be used to investigate dyspnoea in a newly referred patient http://ow.ly/EsQW307U9hd http://doi.org/10.1183/20734735.019716 Breathe | March 2017 | Volume 13 | No 1 45 Dyspnoea, hyperventilation and functional cough that is equipped to perform spirometry, make immediately after exercise, then tests to investigate measurements of transfer factor and lung exercise-induced asthma should be considered. volumes, and carry out exercise tests, preferably a The patient should have spirometry performed cardiopulmonary exercise test. before exercise and then at regular intervals (usually every 5 min) for 20–30 min after the completion of exercise, with the first post-exercise measurements Investigation of dyspnoea made as soon as possible after completion. Any readers requiring further information on Before a diagnosis of functional breathlessness can the use of laboratory tests in the investigation be considered, other potential causes of dyspnoea of dyspnoea are referred to the publications by must be investigated and either excluded or Hughes [3] and Gibson [4] who explore this topic quantified. Spirometry can identify patients with in more detail. obstructive or restrictive disorders and assessing a patient’s response to a short-acting β2-agonist, such as terbutaline or salbutamol, can help to identify Investigation of functional patients with asthma. Flow–volume loops can also cough help to identify the location of airflow obstruction (intrathoracic or extrathoracic). Functional cough is one of the most problematic Although airflow obstruction can be identified symptoms to investigate in a general respiratory with confidence from spirometry, a restrictive clinic. The American College of Chest Physicians defect is best identified from measurement of produced guidelines in 2006 based on a literature lung volumes, either by inert gas dilution or body review of the diagnosis and management of plethysmography. Measurement of lung volumes functional cough [5]. This guideline was updated can also identify significant air trapping, which may in 2015 [6] but both papers highlighted the lack of be found in patients with more severe degrees of research in this area regarding the diagnosis and airflow obstruction. Measurements of carbon management of functional cough. monoxide transfer factor are an effective (and The European Respiratory Society produced an noninvasive) method of assessing the efficiency of excellent guideline outlining the detailed assessment the pulmonary circulation, although an abnormally of cough via specific cough challenges [7]. A cough low result does not help to identify the possible challenge can identify patients with an exceptionally cause of the impairment. sensitive cough reflex, which should be absent in a When a patient complains of dyspnoea on patient with a purely functional cough. exercise, some form of field exercise test should be As not all centres may have the facilities to carry carried out to investigate. In many patients, a walking out specific cough challenges (using citric acid or test such as a 6-min distance test or a shuttle walking hypertonic saline, for example) a suitable alternative test is the most appropriate test to use. Where a may be a bronchial challenge test, as mentioned more intense workload is required to replicate the above. All three challenge agents are known to conditions when the patient becomes symptomatic, provoke cough as well as bronchoconstriction a bicycle exercise test may be more appropriate. in patients and repeated bronchial challenges In all field exercise tests, the main factors to be could be performed in a patient to assess the investigated are oxygen desaturation and heart rate effectiveness of therapeutic interventions on a response. Any patient showing clinically significant patient’s cough. This type of investigation should desaturation (traditionally defined as a fall in oxygen be considered inferior to a formal cough challenge. saturation measured by pulse oximetry 3%) > Ambulatory cough monitors have become more requires further investigation to identify the reason common in clinical practice and they can provide for the desaturation. information on the frequency of cough, but are less Additional information can be obtained if valuable in assessing the intensity of the cough [8]. patients are asked to rate their breathlessness Cough monitoring may be useful to identify if there at rest and at the end of exercise, using either a is a periodicity to the cough or any environmental Borg score or visual analogue scale. Information triggers. Questionnaires investigating the impact on the patient’s perception of breathlessness can of cough on quality of life have been developed and be especially useful in serial exercise tests, where can provide insight into a patient’s perception of a patient reports an increase in symptoms but their cough but they are not intended to specifically with no reduction in exercise capacity or increase identify patients with functional cough [9]. in desaturation. When a patient complains of cough and dyspnoea, one potential cause could be asthma. Tests of bronchial hyperreactivity, using challenge agents such Investigation of as histamine, methacholine or mannitol, can identify hyperventilation patients with an enhanced bronchoconstrictor response, which is one of the hallmarks of asthma. An average adult at rest has a respiratory rate of If the patient only experiences symptoms during or 8–14 breaths per minute and a mean tidal volume 46 Breathe | March 2017 | Volume 13 | No 1 Dyspnoea, hyperventilation and functional cough of 500 mL per breath. This maintains the arterial Many patients who have a confirmed diagnosis carbon dioxide tension (PaCO2) between 4.6 and of asthma can score highly on the Nijmegen 6.0 kPa. Hyperventilation is traditionally defined as questionnaire [2, 14], which may relate to poor breathing more than the metabolic requirements asthma control. While this reduces the utility of of the body [10] and could be further defined as an the questionnaire, it is still a very useful way of increase in alveolar ventilation that is more than the finding out about the frequency of symptoms the level required to maintain blood gas homeostasis, patient experiences, but this must only be part of the resulting in a fall in PaCO2 and the development investigation process rather than the whole content. of respiratory alkalosis. Hyperventilation is not synonymous with tachypnoea, as patients may have an increased respiratory rate but a low tidal The hyperventilation volume, thus maintaining a normal PaCO2. provocation test The mechanisms behind hyperventilation are Investigation of hyperventilation requires some controversial, often considered to either be the method of recording respiratory rate and ETCO . result of anxiety or hypochondria [10], or due to a 2 In a patient with normal lung function, ETCO resetting of
Recommended publications
  • A Novel Method for Studying Airway Hyperresponsiveness in Allergic Guinea Pigs in Vivo Using the Preciseinhale System for Delivery of Dry Powder Aerosols
    Drug Delivery and Translational Research https://doi.org/10.1007/s13346-018-0490-z ORIGINAL ARTICLE A novel method for studying airway hyperresponsiveness in allergic guinea pigs in vivo using the PreciseInhale system for delivery of dry powder aerosols A. J. Lexmond1,2,3 & S. Keir1,2 & W. Terakosolphan1 & C. P. Page1,2 & B. Forbes1 # The Author(s) 2018. This article is an open access publication Abstract Inhaled adenosine receptor agonists induce bronchoconstriction and inflammation in asthma and are used as bronchial challenge agents for the diagnosis of asthma and in respiratory drug development. Recently developed dry powder aerosols of adenosine have several advantages over nebulised adenosine 5′-monophosphate (AMP) as bronchial challenge agents. However, reverse translation of this bronchial challenge technique to pre-clinical drug development is limited by the difficulty of administering powder aerosols to animals. The aim of the current study was to develop methods for delivering powder aerosols of adenosine receptor agonists to sensitised guinea pigs (as a model of allergic asthma) and evaluate their effect as challenge agents for the measurement of airway responsiveness. The PreciseInhale system delivered micronised AMP and adenosine powders, with mass median aerodynamic diameters of 1.81 and 3.21 μm and deposition fractions of 31 and 48% in the lungs, respectively. Bronchoconstrictor responses in passively sensitised, anaesthetised, spontaneously breathing guinea pigs were compared to responses to nebulised and intravenously administered AMP and adenosine. AMP- and adenosine-induced bronchoconstriction following all routes of administration with the magnitude of response ranking intravenous > dry powder > nebulisation, probably reflecting differences in exposure to the adenosine agonists delivered by the different routes.
    [Show full text]
  • Respiratory Mechanics in Ventilated Preterm Infants: Early Determinants and Outcome
    CHAPTER 7 Neonatal respiratory mechanics and development of bronchial hyperresponsiveness in preterm infants Yvonne Snepvangers Peter de Winter Huibert Burger Hens Brouwers Kors van der Ent Submitted Chapter 7 ___________________________________________________________________ 7.1. Abstract Background: In preterm ventilated infants, irreversible damage to the airway mucosa in the neonatal period might be related to the development of bronchial hyperresponsiveness (BHR) in subsequent years. Aims: To evaluate whether neonatal indicators of long-term respiratory morbidity, respiratory system compliance (Crs) and resistance (Rrs), were causally related to bronchial responsiveness at the age of two and whether these relationships were affected by other factors. Study design: Mean neonatal Crs and Rrs of the first 3 days of life were assessed using the single breath occlusion technique. Bronchial challenge tests were performed at 2 years of age. When wheezing occurred during chest auscultation or oxygen saturation decreased below 90 per cent, the provocative concentration of methacholine was recorded. Subjects: Forty-five preterm infants of <37 weeks gestation, being mechanically ventilated within 24 hours after birth. Results: Decreased neonatal Crs was related to BHR (β per ml/kPa, 0.061; 95% confidence interval, 0.019 to 0.103; p=0.006). Correction was required for radiological gradation of respiratory distress syndrome, the maximal peak inspiratory pressure required during mechanical ventilation and postnatal corticosteroid therapy. Neonatal
    [Show full text]
  • A Guide to Aerosol Delivery Devices for Respiratory Therapists 4Th Edition
    A Guide To Aerosol Delivery Devices for Respiratory Therapists 4th Edition Douglas S. Gardenhire, EdD, RRT-NPS, FAARC Dave Burnett, PhD, RRT, AE-C Shawna Strickland, PhD, RRT-NPS, RRT-ACCS, AE-C, FAARC Timothy R. Myers, MBA, RRT-NPS, FAARC Platinum Sponsor Copyright ©2017 by the American Association for Respiratory Care A Guide to Aerosol Delivery Devices for Respiratory Therapists, 4th Edition Douglas S. Gardenhire, EdD, RRT-NPS, FAARC Dave Burnett, PhD, RRT, AE-C Shawna Strickland, PhD, RRT-NPS, RRT-ACCS, AE-C, FAARC Timothy R. Myers, MBA, RRT-NPS, FAARC With a Foreword by Timothy R. Myers, MBA, RRT-NPS, FAARC Chief Business Officer American Association for Respiratory Care DISCLOSURE Douglas S. Gardenhire, EdD, RRT-NPS, FAARC has served as a consultant for the following companies: Westmed, Inc. and Boehringer Ingelheim. Produced by the American Association for Respiratory Care 2 A Guide to Aerosol Delivery Devices for Respiratory Therapists, 4th Edition American Association for Respiratory Care, © 2017 Foreward Aerosol therapy is considered to be one of the corner- any) benefit from their prescribed metered-dose inhalers, stones of respiratory therapy that exemplifies the nuances dry-powder inhalers, and nebulizers simply because they are of both the art and science of 21st century medicine. As not adequately trained or evaluated on their proper use. respiratory therapists are the only health care providers The combination of the right medication and the most who receive extensive formal education and who are tested optimal delivery device with the patient’s cognitive and for competency in aerosol therapy, the ability to manage physical abilities is the critical juncture where science inter- patients with both acute and chronic respiratory disease as sects with art.
    [Show full text]
  • ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing
    ERJ Express. Published on October 25, 2018 as doi: 10.1183/13993003.01033-2018 Early View Task force report ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing Teal S. Hallstrand, Joerg D. Leuppi, Guy Joos, Graham L. Hall, Kai-Håkon Carlsen, David A. Kaminsky, Allan L. Coates, Donald W. Cockcroft, Bruce H. Culver, Zuzana Diamant, Gail M. Gauvreau, Ildiko Horvath, F. H. C. de Jongh, Beth L. Laube, P. J. Sterk, Jack Wanger Please cite this article as: Hallstrand TS, Leuppi JD, Joos G, et al. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Eur Respir J 2018; in press (https://doi.org/10.1183/13993003.01033-2018). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2018 Copyright 2018 by the European Respiratory Society. ERS Technical Standard on Bronchial Challenge Testing: Pathophysiology and Methodology of Indirect Airway Challenge Testing. Teal S. Hallstrand1, Joerg D. Leuppi2, Guy Joos3, Graham L. Hall4, Kai-Håkon Carlsen5, David A. Kaminsky6, Allan L. Coates7, Donald W. Cockcroft8, Bruce H. Culver1, Zuzana Diamant9,10, Gail M. Gauvreau11, Ildiko Horvath12, F.H.C. de Jongh13,
    [Show full text]
  • Accuracy of Spirometry for Detection of Asthma: a Cross-Sectional Study | ORIGINAL ARTICLE
    ORIGINAL ARTICLE DOI: 10.1590/1516-3180.2017.0041250517 Accuracy of spirometry for detection of asthma: a cross- sectional study Andréa Cristina MeneghiniI, Ana Carolina Botto PaulinoII, Luciano Penha PereiraIII, Elcio Oliveira ViannaIV University Hospital, Universidade de São Paulo (USP), Ribeirão Preto (SP), Brazil ABSTRACT IMSc. Doctoral Student, Department of Social BACKGROUND: Asthma is a chronic inflammatory disease with airway hyperresponsiveness. Spirometry is Medicine, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), the most commonly used test among asthmatic patients. Another functional test used for diagnosing Ribeirão Preto (SP), Brazil. asthma is the bronchial challenge test. The aim of this study was to analyze the accuracy of spirometry for IIMSc. Nurse, Department of Social Medicine, detecting asthma in the general population. Faculdade de Medicina de Ribeirão Preto DESIGN AND SETTING: Cross-sectional study with data analysis to evaluate the accuracy of spirometry (FMRP), Universidade de São Paulo (USP), through calculating sensitivity, specificity and predictive values and through the kappa agreement test. Ribeirão Preto (SP), Brazil. METHODS: Subjects who constituted a birth cohort were enrolled at the age of 23 to 25 years. Spirometric IIIMD, MSc. Preceptor of Internship, Pneumology abnormality was defined as reduced forced expiratory volume in one second, i.e. lower than 80% of the Service, Hospital Santa Casa de Ribeirão Preto, predicted value. Measurement of bronchial responsiveness was performed by means of the bronchial Ribeirão Preto (SP), Brazil. challenge test with methacholine. The gold-standard diagnosis of asthma was defined as the presence of IVMD, PhD. Associate Professor, Department of bronchial hyperresponsiveness in association with respiratory symptoms.
    [Show full text]
  • Global Strategy for Asthma Management and Prevention, 2019. Available From
    DISTRIBUTE OR COPY NOT DO MATERIAL- COPYRIGHTED ASTHMA MANAGEMENT AND PREVENTION GLOBAL STRATEGY FOR Updated 2019 9 Global Strategy for Asthma Management and Prevention (2019 update) DISTRIBUTE OR COPY NOT DO The reader acknowledges that this reportMATERIAL- is intended as an evidence-based asthma management strategy, for the use of health professionals and policy-makers. It is based, to the best of our knowledge, on current best evidence and medical knowledge and practice at the date of publication. When assessing and treating patients, health professionals are strongly advised to use their own professional judgment, and to take into account local or national regulations and guidelines. GINA cannot be held liable or responsible for inappropriate healthcare associated with the use of this document, including any use which is not in accordance with applicable local or national regulations or COPYRIGHTEDguidelines. This document should be cited as: Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2019. Available from: www.ginasthma.org 1 Table of contents Tables and figures ............................................................................................................................................................... 5 Preface ................................................................................................................................................................................. 7 Members of GINA committees (2018) ................................................................................................................................
    [Show full text]
  • FEV1/FVC: the Ratio of the FEV1 to the FVC
    Spirometry and Interpretation of Spirometry Chicago Asthma Consortium June 21, 2017 William Clapp MD, FCCP Medical Director Pulmonary Physiology Laboratories Cook County Health and Hospital Systems Disclosures Definitions (working definitions) • Spirometer: a device that measures the volume of air exhaled or inhaled out of/in to a person’s lungs • Spirometry: the measurement of the volume of air exhaled from a person’s lungs • Spirogram: a graphic depiction of the volume of air exhaled from a person’s lungs over a period of time • VC (vital capacity): the amount of air that can be expelled from the lungs after a person’s deepest breath • FVC (forced vital capacity): the amount of air that can be forcibly expelled from the deepest breath • FEV1 (forced expiratory volume in 1 second): the amount of air that can be exhaled in 1 second with a forced exhalation • FEV1/FVC: the ratio of the FEV1 to the FVC. • FEF 25-75 (“midlflow”): average airflow middle of FVC maneuver • Flow-volume loop: flow of exhaled air plotted against volume Spirometer Spirogram https://www.studyblue.com/#flashcard/vie w/11665032 (accessed 6/2/17) Water Seal Spirometer volume-time curve (spirogram) Volume (liters) Volume Time (seconds) Spirogram Forced Vital Capacity (FVC) FVC FVC = 4.0 L Forced Expiratory Volume at 1 second (FEV1) FVC FEV1 FVC = 4.0 L FEV1 = 3.3 L FEV1/FVC ratio FVC FEV1 FVC = 4.0 L FEV1 = 3.3 L FEV1 ÷ FVC = 3.3/4.0=0.83 (83%) Forced Expiratory Flow 25-75% (FEF 25-75%) FVC FVC = 4.0 0.75(FVC) = 3.0 0.25(FVC) = 1.0 Flow Spirometers (pneumotachometer)
    [Show full text]
  • Respiratory Guidelines
    RESPIRATORY GUIDELINES Medicines Used in Respiratory Diseases Introduction This chapter contains brief summaries of the major drugs used in the management of respiratory disease and are recommended in these guidelines. The summaries do not contain comprehensive accounts of the pharmacology of these compounds. The reader is advised to consult standard textbooks and/or the industry product information for more details. It is important to consider the risks and benefits of drugs (particularly corticosteroids) that are used to treat respiratory diseases. As a general principle, the lowest drug doses that achieve best control should be used. For example: Patient adherence to asthma treatment is better if regimens have: fewer devices and drugs fewer adverse effects been understood and agreed between patient and health care professional. Beta2 receptor stimulating drugs (Beta2 agonists) Introduction Stimulation of beta2-receptors on airway smooth muscle relaxes the muscle resulting in bronchodilation. All beta2 agonists may also stimulate beta1-receptors; however, the effects of beta1-receptor stimulation (eg tachycardia) are more likely to occur following systemic absorption or following inhalation of relatively large doses. Under almost all circumstances, the preferred route of administration for beta2 agonists is by inhalation. Administration by inhalation causes bronchodilation with low doses thus minimising systemic adverse effects. Adverse effects: Dose-limiting adverse effects of the beta2 agonists are most commonly tachycardia (which can also lead to paroxysmal tachyarrhythmias, such as atrial fibrillation or paroxysmal supraventricular tachycardia), tremor, headaches, muscle cramps, insomnia, and a feeling of anxiety and nervousness. In high doses (eg tablets,intravenous and emergency nebulisation) all beta2 agonists can cause hypokalaemia and hyperglycaemia.
    [Show full text]
  • Measurement of Tidal Breathing Flows in Infants Using Impedance Pneumography
    ORIGINAL ARTICLE PAEDIATRIC PULMONOLOGY Measurement of tidal breathing flows in infants using impedance pneumography Leo Pekka Malmberg1, Ville-Pekka Seppä2, Anne Kotaniemi-Syrjänen1, Kristiina Malmström1, Merja Kajosaari3, Anna S. Pelkonen1, Jari Viik2 and Mika J. Mäkelä1 Affiliations: 1Skin and Allergy Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. 2Dept of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, Tampere, Finland. 3Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. Correspondence: Leo Pekka Malmberg, Dept of Allergology, Helsinki University Hospital, PO Box 160, 00029 HUS, Helsinki, Finland. E-mail: [email protected] @ERSpublications Impedance pneumography is a novel noninvasive option for tidal flow profile and lung function monitoring in infants http://ow.ly/7RId305Oj80 Cite this article as: Malmberg LP, Seppä V-P, Kotaniemi-Syrjänen A, et al. Measurement of tidal breathing flows in infants using impedance pneumography. Eur Respir J 2017; 49: 1600926 [https://doi.org/10.1183/ 13993003.00926-2016]. ABSTRACT Tidal breathing flow volume (TBFV) profiles have been used to characterise altered lung function. Impedance pneumography (IP) is a novel option for assessing TBFV curves noninvasively. The aim of this study was to extend the application of IP for infants and to estimate the agreement between IP and direct pneumotachograph (PNT) measurements in assessing tidal airflow and flow-derived indices. Tidal flow profiles were recorded for 1 min simultaneously with PNT and uncalibrated IP at baseline in 44 symptomatic infants, and after methacholine-induced bronchoconstriction in a subgroup (n=20). The agreement expressed as the mean deviation from linearity ranged between 3.9 and 4.3% of tidal peak inspiratory flow, but was associated with specific airway conductance (p=0.002) and maximal flow at functional residual capacity (V′maxFRC) (p=0.004) at baseline.
    [Show full text]
  • 2001 HMO Giant
    Certificate of Coverage Sparrow PHP Silver 4000 Exclusive Individual Policy SNN04400-RX08E520 TABLE OF CONTENTS TABLE OF CONTENTS .................................................................................................. 2 INDIVIDUAL POLICY ...................................................................................................... 5 Individual Policy. .......................................................................................................... 5 Changes to the Document. .......................................................................................... 5 Right to Cancel Coverage. ........................................................................................... 5 Other Information You Should Have. ........................................................................... 5 Execution of Contract. .................................................................................................. 5 Meaningful Access. ...................................................................................................... 6 INTRODUCTION ............................................................................................................. 8 How to Use this Document. .......................................................................................... 8 Defined Terms. ............................................................................................................ 8 How to Contact Us. .....................................................................................................
    [Show full text]
  • R.A.L.E. Reference Collection Updated November 2007 1. Beck, R
    R.A.L.E. Reference Collection updated November 2007 1. Beck, R., N. Elias, S. Shoval, N. Tov, G. Talmon, S. Godfrey, and L. Bentur. 2007. Computerized acoustic assessment of treatment efficacy of nebulized epinephrine and albuterol in RSV bronchiolitis. BMC.Pediatr. 7:22.:22. Abstract: AIM: We evaluated the use of computerized quantification of wheezing and crackles compared to a clinical score in assessing the effect of inhaled albuterol or inhaled epinephrine in infants with RSV bronchiolitis. METHODS: Computerized lung sounds analysis with quantification of wheezing and crackles and a clinical score were used during a double blind, randomized, controlled nebulized treatment pilot study. Infants were randomized to receive a single dose of 1 mgr nebulized l-epinephrine or 2.5 mgr nebulized albuterol. Computerized quantification of wheezing and crackles (PulmoTrack) and a clinical score were performed prior to, 10 minutes post and 30 minutes post treatment. Results were analyzed with Student's t-test for independent samples, Mann-Whitney U test and Wilcoxon test. RESULTS: 15 children received albuterol, 12 received epinephrine. The groups were identical at baseline. Satisfactory lung sounds recording and analysis was achieved in all subjects. There was no significant change in objective quantification of wheezes and crackles or in the total clinical scores either within the groups or between the groups. There was also no difference in oxygen saturation and respiratory distress. CONCLUSION: Computerized lung sound analysis is feasible in young infants with RSV bronchiolitis and provides a non-invasive, quantitative measure of wheezing and crackles in these infants 2. Beeton, R. J., I.
    [Show full text]
  • 10515181 Respiratory/Cardio Diagnostics Course Outcome Summary
    Western Technical College 10515181 Respiratory/Cardio Diagnostics Course Outcome Summary Course Information Description Advanced invasive and noninvasive diagnostic cardiopulmonary procedures including pulmonary function, hemodynamics and rescue medicine. Emphasis is placed on promotion of evidence-based practice using established clinical practice guidelines and published research for its relevance to patient care. Career Human Services Cluster Instructional Associate Degree Courses Level Total Credits 3 Total Hours 72 Textbooks Egan's Fundamentals of Respiratory Care. 11th Edition. Copyright 2017. Kacmarek, Robert M., James K. Stoller and Albert J. Heuer. Publisher: Elsevier Science. ISBN-13: 978-0-323-34136-3. Required. Comprehensive Respiratory Therapist’s Exam Review – w/ Access. 6th Edition. Copyright 2016. Sills, James R. Publisher: Elsevier Science. ISBN-13: 978-0-323-24134-2. Required. Success Abilities 1. Apply mathematical concepts. 2. Demonstrate ability to think critically. 3. Demonstrate ability to value self and work ethically with others in a diverse population. 4. Make decisions that incorporate the importance of sustainability. 5. Transfer social and natural science theories into practical applications. 6. Use effective communication skills. 7. Use technology effectively. Program Outcomes 1. Apply respiratory therapy concepts to patient care situations 2. Demonstrate technical proficiency required to fulfill the role of a Respiratory Therapist Course Competencies Course Outcome Summary - Page 1 of 4 Monday, January 07, 2019 12:55 PM 1. Interpret data from invasive and noninvasive procedures to assess oxygenation and ventilation Assessment Strategies 1.1. through a skill demonstration 1.2. by collecting analyzing and reporting data related to procedures to assess oxygenation and ventilation 1.3. by preparing a written or oral response Criteria You will know you are successful when 1.1.
    [Show full text]