Novel Methods for Learning and Adaptation in Chemical Reaction Networks

Total Page:16

File Type:pdf, Size:1020Kb

Novel Methods for Learning and Adaptation in Chemical Reaction Networks Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 6-2-2015 Novel Methods for Learning and Adaptation in Chemical Reaction Networks Peter Banda Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Other Computer Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Banda, Peter, "Novel Methods for Learning and Adaptation in Chemical Reaction Networks" (2015). Dissertations and Theses. Paper 2329. https://doi.org/10.15760/etd.2326 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Novel Methods for Learning and Adaptation in Chemical Reaction Networks by Peter Banda A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Dissertation Committee: Christof Teuscher, Chair Melanie Mitchell Bart Massey Niles Lehman Michael Bartlett Portland State University 2015 c 2015 Peter Banda ABSTRACT State-of-the-art biochemical systems for medical applications and chemical computing are application-specific and cannot be re-programmed or trained once fabricated. The implementation of adaptive biochemical systems that would offer flexibility through pro- grammability and autonomous adaptation faces major challenges because of the large number of required chemical species as well as the timing-sensitive feedback loops re- quired for learning. Currently, biochemistry lacks a systems vision on how the user- level programming interface and abstraction with a subsequent translation to chemistry should look like. By developing adaptation in chemistry, we could replace multiple hard- wired systems with a single programmable template that can be (re)trained to match a desired input-output profile benefiting smart drug delivery, pattern recognition, and chem- ical computing. I aimed to address these challenges by proposing several approaches to learning and adaptation in Chemical Reaction Networks (CRNs), a type of simulated chemistry, where species are unstructured, i.e., they are identified by symbols rather than molecular struc- ture, and their dynamics or concentration evolution are driven by reactions and reaction rates that follow mass-action and Michaelis-Menten kinetics. Several CRN and experimental DNA-based models of neural networks exist. How- ever, these models successfully implement only the forward-pass, i.e., the input-weight in- tegration part of a perceptron model. Learning is delegated to a non-chemical system that i computes the weights before converting them to molecular concentrations. Autonomous learning, i.e., learning implemented fully inside chemistry has been absent from both theoretical and experimental research. The research in this thesis offers the first constructive evidence that learning in CRNs is, in fact, possible. I have introduced the original concept of a chemical binary perceptron that can learn all 14 linearly-separable logic functions and is robust to the perturbation of rate constants. That shows learning is universal and substrate-free. To simplify the model I later proposed and applied the “asymmetric” chemical arithmetic providing a compact solution for representing negative numbers in chemistry. To tackle more difficult tasks and to serve more complicated biochemical applica- tions, I introduced several key modular building blocks, each addressing certain aspects of chemical information processing and learning. These parts organically combined into gradually more complex systems. First, instead of simple static Boolean functions, I tackled analog time-series learning and signal processing by modeling an analog chem- ical perceptron. To store past input concentrations as a sliding window I implemented a chemical delay line, which feeds the values to the underlying chemical perceptron. That allows the system to learn, e.g., the linear moving-average and to some degree predict a highly nonlinear NARMA benchmark series. Another important contribution to the area of chemical learning, which I have helped to shape, is the composability of perceptrons into larger multi-compartment networks. Each compartment hosts a single chemical perceptron and compartments communicate with each other through a channel-mediated exchange of molecular species. Besides the feedforward pass, I implemented the chemical error backpropagation analogous to that of feedforward neural networks. Also, after applying mass-action kinetics for the catalytic reactions, I succeeded to systematically analyze the ODEs of my models and derive the ii closed exact and approximative formulas for both the input-weight integration and the weight update with a learning rate annealing. I proved mathematically that the formulas of certain chemical perceptrons equal the formal linear and sigmoid neurons, essentially bridging neural networks and adaptive CRNs. For all my models the basic methodology was to first design species and reactions, and then set the rate constants either ”empirically” by hand, automatically by a standard genetic algorithm (GA), or analytically if possible. I performed all simulations in my COEL framework, which is the first cloud-based chemistry modeling tool, accessible at coel-sim.org. I minimized the amount of required molecular species and reactions to make wet chemical implementation possible. I applied an automatized mapping technique, Solove- ichik’s CRN-to-DNA-strand-displacement transformation, to the chemical linear percep- tron and the manual signalling delay line and obtained their full DNA-strand specified implementations. As an alternative DNA-based substrate, I mapped these two models also to deoxyribozyme-mediated cleavage reactions reducing the size of the displacement variant to a third. Both DNA-based incarnations could directly serve as blue-prints for wet biochemicals. Besides an actual synthesis of my models and conducting an experiment in a bio- chemical laboratory, the most promising future work is to employ so-called reservoir computing (RC), which is a novel machine learning method based on recurrent neural networks. The RC approach is relevant because for time-series prediction it is clearly superior to classical recurrent networks. It can also be implemented in various ways, such as electrical circuits, physical systems, such as a colony of Escherichia Coli, and water. RC’s loose structural assumptions therefore suggest that it could be expressed in a chemical form as well. This could further enhance the expressivity and capabilities of iii chemically-embedded learning. My chemical learning systems may have applications in the area of medical diagno- sis and smart medication, e.g., concentration signal processing and monitoring, and the detection of harmful species, such as chemicals produced by cancer cells in a host (can- cer miRNAs) or the detection of a severe event, defined as a linear or nonlinear temporal concentration pattern. My approach could replace hard-coded solutions and would allow to specify, train, and reuse chemical systems without redesigning them. With time-series integration, biochemical computers could keep a record of changing biological systems and act as diagnostic aids and tools in preventative and highly personalized medicine. iv DEDICATION To my father—a biochemist, my first teacher, and the source of my scientific and moral inspiration. v ACKNOWLEDGMENTS First of all, I would like to thank my advisor Christof Teuscher for his continuous support, guidance, and encouragement. Step by step Christof led me forward and pushed me to fulfill my potential. He taught me the virtues of precision and diligence. He showed tremendous understanding to my ever-changing situation. Indeed it has been a wild ride. He greatly influenced my decision to pursue an academic career. Many indispensable discussions with Drew Blount have helped to shape this work. This collaboration was fruitful and of far-reaching importance for me. Alireza Goudarzi has always expanded my narrow scientific view and asked fundamental, analytic ques- tions a lot of people would consider overly ambitious. In my eyes he is a true scholar. I also express my appreciation to Josh Moles, who helped me to formulate the idea of chemically implemented delay line, and with whom I share passion for (fancy) new tech- nologies and frameworks. I deeply appreciated being a part of Teuscher Lab, one the most productive collectives at PSU. I would like to thank my colleagues, especially Jens Burger¨ for his friendship and to be always there to discuss the everyday scientific and personal struggles in a very open fashion. I wish to extend my thanks to NSF project “Computing with Biomolecules: From Net- work Motifs to Complex and Adaptive Systems” for generous support, which made my research possible. I would like to acknowledge all the members of the project, especially vi Darko Stefanovic, who even being at a different university factually became my second advisor, Milan Stojanovic, Carl Brown, Matt Lakin, and Steven Graves, for expanding my knowledge of biochemistry and for being patient explaining very basic concepts. I consider myself very fortunate to have been given an opportunity to attend Portland State University. The remainder of my support was from the Computer Science and Elec- trical Engineering Departments. A special credit goes to the CAT team
Recommended publications
  • List of Glossary Terms
    List of Glossary Terms A Ageofaclusterorfuzzyrule 1054 A correlated equilibrium 3064 Agent 58, 76, 105, 1767, 2578, 3004 Amechanism 1837 Agent architecture 105 Anearestneighbor 790 Agent based models 2940 A social choice function 1837 Agent (or software agent) 2999 A stochastic game 3064 Agent-based computational models 2898 Astrategy 3064 Agent-based model 58 Abelian group 2780 Agent-based modeling 1767 Absolute temperature 940 Agent-based modeling (ABM) 39 Absorbing state 1080 Agent-based simulation 18, 88 Abstract game 675 Aggregation 862 Abstract game of network formation with respect to Aggregation operators 122 irreflexive dominance 2044 Aging 2564, 2611 Abstract game of network formation with respect to path Algebra 2925 dominance 2044 Algebraic models 2898 Accuracy 161, 827 Algorithm 2496 Accuracy (rate) 862 Algorithmic complexity of object x 132 Achievable mate 3235 Algorithmic self-assembly of DNA tiles 1894 Action profile 3023 Allowable set of partners 3234 Action set 3023 Almost equicontinuous CA 914, 3212 Action type 2656 Alphabet of a cellular automaton 1 Activation function 813 ˛-Level set and support 1240 Activator 622 Alternating independent-2-paths 2953 Active membranes 1851 Alternating k-stars 2953 Actors 2029 Alternating k-triangles 2953 Adaptation 39 Amorphous computer 147 Adaptive system 1619 Analog 3187 Additive cellular automata 1 Analog circuit 3260 Additively separable preferences 3235 Ancilla qubits 2478 Adiabatic switching 1998 Anisotropic elements 754 Adjacency matrix 1746, 3114 Annealed law 2564 Adjacent 2864,
    [Show full text]
  • Programmability of Chemical Reaction Networks
    Programmability of Chemical Reaction Networks Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck Abstract Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a for- mal model that considers a set of chemical reactions acting on a finite num- ber of molecules in a well-stirred solution according to standard chemical kinet- ics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between de- cidable and undecidable questions about SCRN behavior. 1 Introduction Stochastic chemical reaction networks (SCRNs) are among the most fundamental models used in chemistry, biochemistry, and most recently, computational biology. Traditionally, analysis has focused on mass action kinetics, where reactions are as- sumed to involve sufficiently many molecules that the state of the system can be accurately represented by continuous molecular concentrations with the dynamics given by deterministic differential equations. However, analyzing the kinetics of small-scale chemical processes involving a finite number of molecules, such as oc- curs within cells, requires stochastic dynamics that explicitly track the exact num- ber of each molecular species [1–3].
    [Show full text]
  • Programming and Simulating Chemical Reaction Networks on a Surface Royalsocietypublishing.Org/Journal/Rsif Samuel Clamons1, Lulu Qian1,2 and Erik Winfree1,2,3
    Programming and simulating chemical reaction networks on a surface royalsocietypublishing.org/journal/rsif Samuel Clamons1, Lulu Qian1,2 and Erik Winfree1,2,3 1Bioengineering, 2Computer Science, and 3Computation and Neural Systems, California Institute of Technology, Research Pasadena, CA 91125, USA SC, 0000-0002-7993-2278; LQ, 0000-0003-4115-2409; EW, 0000-0002-5899-7523 Cite this article: Clamons S, Qian L, Winfree Models of well-mixed chemical reaction networks (CRNs) have provided a solid foundation for the study of programmable molecular systems, but the E. 2020 Programming and simulating chemical importance of spatial organization in such systems has increasingly been reaction networks on a surface. J. R. Soc. recognized. In this paper, we explore an alternative chemical computing Interface 17: 20190790. model introduced by Qian & Winfree in 2014, the surface CRN, which uses http://dx.doi.org/10.1098/rsif.2019.0790 molecules attached to a surface such that each molecule only interacts with its immediate neighbours. Expanding on the constructions in that work, we first demonstrate that surface CRNs can emulate asynchronous and synchro- nous deterministic cellular automata and implement continuously active Received: 23 November 2019 Boolean logic circuits. We introduce three new techniques for enforcing syn- Accepted: 30 April 2020 chronization within local regions, each with a different trade-off in spatial and chemical complexity. We also demonstrate that surface CRNs can manu- facture complex spatial patterns from simple initial conditions and implement interesting swarm robotic behaviours using simple local rules. Throughout all example constructions of surface CRNs, we highlight the trade-off between Subject Category: the ability to precisely place molecules and the ability to precisely control mol- Life Sciences–Engineering interface ecular interactions.
    [Show full text]
  • Self-Assembled Nanostructures, Molecular Automata, and Chemical Reaction Networks
    Molecules Computing: Self-Assembled Nanostructures, Molecular Automata, and Chemical Reaction Networks Thesis by David Soloveichik In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2008 (Defended May 5, 2008) ii c 2008 David Soloveichik All Rights Reserved iii Contents Acknowledgements vi Abstract vii 1 Introduction 1 1.1 ThePromiseofBionanotechnology . ........... 1 1.2 TheMathematicsofComputerScience. ............ 2 1.3 TheCriteriaforSuccess. .......... 3 1.4 TheContributions................................ ........ 3 1.4.1 TileSelf-Assembly. ...... 3 1.4.2 RestrictionEnzymeAutomata . ........ 4 1.4.3 ChemicalReactionNetworks . ....... 4 Bibliography ....................................... ...... 6 2 Complexity of Self-Assembled Shapes 8 2.1 Abstract........................................ ..... 8 2.2 Introduction.................................... ....... 8 2.3 TheTileAssemblyModel .. .... .... ... .... .... .... ... ....... 9 2.3.1 GuaranteeingUniqueProduction. .......... 10 2.4 ArbitrarilyScaledShapesandTheirComplexity . ................. 11 2.5 Relating Tile-Complexity and Kolmogorov Complexity . .................. 12 2.6 TheProgrammableBlockConstruction . ............ 13 2.6.1 Overview...................................... .. 13 2.6.2 ArchitectureoftheBlocks . ........ 14 2.6.2.1 GrowthBlocks................................ 14 2.6.2.2 SeedBlock.................................. 17 2.6.3 TheUnpackingProcess. ...... 17 2.6.4 Programming Blocks
    [Show full text]
  • Computation with Finite Stochastic Chemical Reaction Networks
    COMPUTATION WITH FINITE STOCHASTIC CHEMICAL REACTION NETWORKS DAVID SOLOVEICHIK∗, MATTHEW COOK†, ERIK WINFREE‡ , AND JEHOSHUA BRUCK§ Abstract. A highly desired part of the synthetic biology toolbox is an embedded chemical microcontroller, capable of autonomously following a logic program specified by a set of instructions, and interacting with its cellular environment. Strategies for incorporating logic in aqueous chemistry have focused primarily on implementing components, such as logic gates, that are composed into larger circuits, with each logic gate in the circuit corresponding to one or more molecular species. With this paradigm, designing and producing new molecular species is necessary to perform larger computations. An alternative approach begins by noticing that chemical systems on the small scale are fundamentally discrete and stochastic. In particular, the exact molecular counts of each molecular species present, is an intrinsically available form of information. This might appear to be a very weak form of information, perhaps quite difficult for computations to utilize. Indeed, it has been shown that error-free Turing universal computation is impossible in this setting. Nevertheless, we show a design of a chemical computer that achieves fast and reliable Turing-universal computation using molecular counts. Our scheme uses only a small number of different molecular species to do computation of arbitrary complexity. The total probability of error of the computation can be made arbitrarily small (but not zero) by adjusting the initial molecular counts of certain species. While physical implementations would be difficult, these results demonstrate that molecular counts can be a useful form of information for small molecular systems such as those operating within cellular environments.
    [Show full text]