Mechanistic Insights on the Mode of Action of an Antiproliferative
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Screening for Possible Novel
11 M060072591U NORTH-WEST UNIVERSITY tilt• YUNIBESITI YA BOKONE•BOPHIRIMA NOOROVVE S-UNIVERSITEIT PHYLOGENETIC SCREENING FOR POSSIBLE NOVEL ANTIBIOTIC PRODUCING ACTINOMYCETES FROM RHIZOSPHERIC SOIL SAMPLES COLLECTED FROM NGAKA MODIRI MOLEMA DISTRICT IN NORTH WEST PROVINCE, SOUTH AFRICA I BY MOBOLAJI FELICIA ADEGBOYE A thesis submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY (BIOLOGY) DEPARTMENT OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE, AGRICULTURE AND TECHNOLOGY NORTH-WEST UNIVERSITY, MAFIKENG CAMPUS SOUTH AFRICA Supervisor: Professor Olubukola 0. Babalola 2014 LIBRARY o MAFIKENG CAMPUS CALL NO.: 2021 -02- 0 4 DECLARATION I, the undersigned, declare that this thesis submitted to the North-West University for the degree of Doctor of Philosophy in Biology in the Faculty of Science, Agriculture and Technology, School of Environmental and Health Sciences, and the work contained herein is my original work with exemption to the citations and that this work has not been submitted at any other University in partial or entirely for the award of any degree. Name: Mobolaji Felicia Adegboye Signature: .....~ •·· ··· ····· ·· .. ··············· ..... Date: .... ~S.. .. ....a~ ·1·· ·'.}Q~i; ... ............ .... DEDICATION This work is dedicated to Almighty God for His faithfulness over my life and for making my helpers to be many. ii ACKNOWLEDGEMENTS I would like to express my deepest thanks, gratitude and appreciation to my supervisor and mentor, Prof. Olubukola 0. Babalola for giving me the opportunity to pursue my doctoral degree under her supervision and for her encouragement, help and kind support. Her invaluable advice, suggestions, discussions and guidance were a real support to me. I acknowledge with honour and gratitude the International Foundation for Science (IFS) for research grant (F/5330-1 ), Connect Africa Scholarship Award, H3ABioNet/SANBio Scholarship and North-West University for offering me bursary/scholarship award to pursue the PhD degree. -
Exosomes Confer Chemoresistance to Pancreatic Cancer Cells By
FULL PAPER British Journal of Cancer (2017) 116, 609–619 | doi: 10.1038/bjc.2017.18 Keywords: chemoresistance; exosomes; pancreatic cancer; ROS; microRNA Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK Girijesh Kumar Patel1, Mohammad Aslam Khan1, Arun Bhardwaj1, Sanjeev K Srivastava1, Haseeb Zubair1, Mary C Patton1, Seema Singh1,2, Moh’d Khushman3 and Ajay P Singh*,1,2 1Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; 2Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA and 3Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA Background: Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells. Methods: Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 30-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay. Results: Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction. -
Download Download
MM Matin et al. Medical Research Archives vol 8 issue 7. Medical Research Archives RESEARCH ARTICLE 2e`1 PASS Predication, Antiviral, in vitro Antimicrobial, and ADMET Studies of Rhamnopyranoside Esters Authors Mohammed M Matin1, Mohammad HO Roshid2, Sreebash C Bhattacharjee3 and Abul KMS Azad4 Affiliations 1 Bioorganic & Medicinal Chemistry Laboratory, Department of Chemistry, University of Chittagong, Chattogram-4331, Bangladesh 2 Department of Anaesthesia and Intensive Care Medicine, Chattogram Medical College, Chattogram- 4203, Bangladesh 3 Chemical Research Division, Bangladesh Council of Scientific & Industrial Research (BCSIR) Laboratories, Chattogram-4220, Bangladesh 4 Department of Chemistry, Chattogram Govt. College, Chattogram-4203, Bangladesh Corresponding Author: MM Matin E-mail address: [email protected] Tel.: +88 01716 839689. Abstract Sugar derived esters (SEs) with potential antimicrobial activity were found to be a better choice to solve the multidrug resistant (MDR) pathogens due to improved antimicrobial efficacy, biodegradability, non-toxic, and non-allergic properties. In this context, a series of benzyl -L- rhamnopyranoside esters with different chain length (C2-C18) were employed for PASS predication, antiviral, and in vitro antimicrobial activity test. The in vitro antimicrobial tests against four bacterial, and four fungal pathogens along with PASS predication indicated that these sugar esters acted as better antifungals as compared to antibacterial functionality. The study revealed that the incorporation of octanoyl (C8) and lauroyl (C12) group(s) at C-3 position of rhamnopyranoside possessed promising antimicrobial, and anti-carcinogenic potentiality with good pharmacokinetic (pkCSM), and drug likeness properties. Also, attachment of multiple ester groups enhanced various drug likeness, and medicinal chemistry friendliness conditions. Overall, the present findings might be useful for the development of rhamnopyranoside based novel MDR antimicrobial drugs. -
B-Lactams: Chemical Structure, Mode of Action and Mechanisms of Resistance
b-Lactams: chemical structure, mode of action and mechanisms of resistance Ru´ben Fernandes, Paula Amador and Cristina Prudeˆncio This synopsis summarizes the key chemical and bacteriological characteristics of b-lactams, penicillins, cephalosporins, carbanpenems, monobactams and others. Particular notice is given to first-generation to fifth-generation cephalosporins. This review also summarizes the main resistance mechanism to antibiotics, focusing particular attention to those conferring resistance to broad-spectrum cephalosporins by means of production of emerging cephalosporinases (extended-spectrum b-lactamases and AmpC b-lactamases), target alteration (penicillin-binding proteins from methicillin-resistant Staphylococcus aureus) and membrane transporters that pump b-lactams out of the bacterial cell. Keywords: b-lactams, chemical structure, mechanisms of resistance, mode of action Historical perspective Alexander Fleming first noticed the antibacterial nature of penicillin in 1928. When working with Antimicrobials must be understood as any kind of agent another bacteriological problem, Fleming observed with inhibitory or killing properties to a microorganism. a contaminated culture of Staphylococcus aureus with Antibiotic is a more restrictive term, which implies the the mold Penicillium notatum. Fleming remarkably saw natural source of the antimicrobial agent. Similarly, under- the potential of this unfortunate event. He dis- lying the term chemotherapeutic is the artificial origin of continued the work that he was dealing with and was an antimicrobial agent by chemical synthesis [1]. Initially, able to describe the compound around the mold antibiotics were considered as small molecular weight and isolates it. He named it penicillin and published organic molecules or metabolites used in response of his findings along with some applications of penicillin some microorganisms against others that inhabit the same [4]. -
Integrative Systems Biology– Renal Diseases: a Road to a Holist View of Chronic Disease Mechanism
Integrative Systems biology– Renal Diseases: A road to a holist view of chronic disease mechanism Matthias Kretzler Div. Nephrology / Internal Medicine Computational Medicine and Bioinformatics University of Michigan Medical School The challenge in chronic disease • Descriptive disease categorization with multiple pathogenetic mechanisms § Problems of ‘mixed bag’ diseases: • Unpredictable disease course and response to therapy • Nephrology as an ‘art of trial and error’ • Shift in our disease paradigms: § Mechanism based patient management • Define the disease process active in the individual patient – Base prognosis on specific disease process – Target therapy to interfere with the mechanism currently destroying endorgan function Molecular Nephrology approach Clinical outcome research Genetics Molecular Pathology Molecular Epigenetics Phenotyping Genomics Functional Clinical research Disease Genomics Biobanks Proteomics Model systems Animal models Molecular interaction In vitro tissue culture model systems Organ culture and development Tower of Babylon: Search for the universal language for the medicine of the 21st century Pieter Bruegl: 1563. Kunsthistorisches Museum Wien Molecular Nephrology approach Clinical outcome research Genetics Molecular Pathology Molecular Epigenetics Phenotyping Genomics Functional Clinical research Disease Genomics Integrative Biobanks Proteomics Biology (Physiology) Model systems Animal models Molecular interaction of renal disease In vitro tissue culture model systems Organ culture and development Systems -
Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis
REVIEW published: 03 July 2018 doi: 10.3389/fmicb.2018.01367 Challenging the Drug-Likeness Dogma for New Drug Discovery in Tuberculosis Diana Machado 1, Miriam Girardini 2, Miguel Viveiros 1* and Marco Pieroni 2* 1 Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal, 2 P4T Group, Department of Food and Drug, University of Parma, Parma, Italy The emergence of multi- and extensively drug resistant tuberculosis worldwide poses a great threat to human health and highlight the need to discover and develop new, effective and inexpensive antituberculosis agents. High-throughput screening assays Edited by: against well-validated drug targets and structure based drug design have been employed Fernando Rogerio Pavan, to discover new lead compounds. However, the great majority fail to demonstrate any Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil antimycobacterial activity when tested against Mycobacterium tuberculosis in whole-cell Reviewed by: screening assays. This is mainly due to some of the intrinsic properties of the bacilli, Pedro Almeida Silva, such as the extremely low permeability of its cell wall, slow growth, drug resistance, Fundação Universidade Federal do drug tolerance, and persistence. In this sense, understanding the pathways involved Rio Grande, Brazil Luiz Augusto Basso, in M. tuberculosis drug tolerance, persistence, and pathogenesis, may reveal new Pontifícia Universidade Católica do Rio approaches for drug development. Moreover, the need for compounds presenting a Grande do Sul, Brazil novel mode of action is of utmost importance due to the emergence of resistance not *Correspondence: Miguel Viveiros only to the currently used antituberculosis agents, but also to those in the pipeline. -
Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery
International Journal of Molecular Sciences Review Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery Qingxin Li 1,* and CongBao Kang 2,* 1 Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou 510316, China 2 Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, Chromos, #05-01, Singapore 138670, Singapore * Correspondence: [email protected] (Q.L.); [email protected] (C.K.); Tel.: +86-020-84168436 (Q.L.); +65-64070602 (C.K.) Received: 12 June 2020; Accepted: 20 July 2020; Published: 24 July 2020 Abstract: Small-molecule drugs are organic compounds affecting molecular pathways by targeting important proteins. These compounds have a low molecular weight, making them penetrate cells easily. Small-molecule drugs can be developed from leads derived from rational drug design or isolated from natural resources. A target-based drug discovery project usually includes target identification, target validation, hit identification, hit to lead and lead optimization. Understanding molecular interactions between small molecules and their targets is critical in drug discovery. Although many biophysical and biochemical methods are able to elucidate molecular interactions of small molecules with their targets, structural biology is the most powerful tool to determine the mechanisms of action for both targets and the developed compounds. Herein, we reviewed the application of structural biology to investigate binding modes of orthosteric and allosteric inhibitors. It is exemplified that structural biology provides a clear view of the binding modes of protease inhibitors and phosphatase inhibitors. -
Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer
pharmaceutics Review Polymer-Drug Conjugate, a Potential Therapeutic to Combat Breast and Lung Cancer Sibusiso Alven, Xhamla Nqoro , Buhle Buyana and Blessing A. Aderibigbe * Department of Chemistry, University of Fort Hare, Alice Eastern Cape 5700, South Africa; [email protected] (S.A.); [email protected] (X.N.); [email protected] (B.B.) * Correspondence: [email protected] Received: 24 November 2019; Accepted: 30 December 2019; Published: 29 April 2020 Abstract: Cancer is a chronic disease that is responsible for the high death rate, globally. The administration of anticancer drugs is one crucial approach that is employed for the treatment of cancer, although its therapeutic status is not presently satisfactory. The anticancer drugs are limited pharmacologically, resulting from the serious side effects, which could be life-threatening. Polymer drug conjugates, nano-based drug delivery systems can be utilized to protect normal body tissues from the adverse side effects of anticancer drugs and also to overcome drug resistance. They transport therapeutic agents to the target cell/tissue. This review article is based on the therapeutic outcomes of polymer-drug conjugates against breast and lung cancer. Keywords: breast cancer; lung cancer; chemotherapy; polymer-based carriers; polymer-drug conjugates 1. Introduction Cancer is a chronic disease that leads to great mortality around the world and cancer cases are rising continuously [1]. It is the second cause of death worldwide, followed by cardiovascular diseases [2]. It is characterized by an abnormal uncontrolled proliferation of any type of cells in the human body [3]. It is caused by external factors, such as smoking, infectious organisms, pollution, and radiation; it is also caused by internal factors, such as immune conditions, hormones, and genetic mutation [3]. -
Knockdown of RRM1 with Adenoviral Shrna Vectors to Inhibit Tumor Cell Viability and Increase Chemotherapeutic Sensitivity to Gemcitabine in Bladder Cancer Cells
International Journal of Molecular Sciences Article Knockdown of RRM1 with Adenoviral shRNA Vectors to Inhibit Tumor Cell Viability and Increase Chemotherapeutic Sensitivity to Gemcitabine in Bladder Cancer Cells Xia Zhang 1, Rikiya Taoka 1,*, Dage Liu 2, Yuki Matsuoka 1, Yoichiro Tohi 1 , Yoshiyuki Kakehi 1 and Mikio Sugimoto 1 1 Department of Urology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; [email protected] (X.Z.); [email protected] (Y.M.); [email protected] (Y.T.); [email protected] (Y.K.); [email protected] (M.S.) 2 Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-87-891-2202 Abstract: RRM1—an important DNA replication/repair enzyme—is the primary molecular gem- citabine (GEM) target. High RRM1-expression associates with gemcitabine-resistance in various cancers and RRM1 inhibition may provide novel cancer treatment approaches. Our study eluci- dates how RRM1 inhibition affects cancer cell proliferation and influences gemcitabine-resistant bladder cancer cells. Of nine bladder cancer cell lines investigated, two RRM1 highly expressed cells, 253J and RT112, were selected for further experimentation. An RRM1-targeting shRNA was Citation: Zhang, X.; Taoka, R.; Liu, cloned into adenoviral vector, Ad-shRRM1. Gene and protein expression were investigated using D.; Matsuoka, Y.; Tohi, Y.; Kakehi, Y.; real-time PCR and western blotting. -
What Is Medicinal Chemistry
Unit 1 Prepared By: Neetu Sabarwal Department of Pharmaceutical Chemistry SOS Pharmaceutical Sciences Jiwaji University. Gwalior Content INTRODUCTION TO MEDICINAL CHEMISTRY • History and development of medicinal chemistry Physicochemical properties in relation to biological action • Ionization, Solubility, Partition Coefficient, Hydrogen bonding, Protein binding, Chelation, • Bioisosterism, Optical and Geometrical isomerism. Drug metabolism • Drug metabolism principles- Phase I and Phase II. • Factors affecting drug metabolism including stereo chemical aspects. CHEMISTRY What is Chemistry? • Chemistry is known as the central of science. • It is a branch of physical science that studies the composition, structure, properties and changes of matter. • MATTER = Solid / Liquid/ Gas. BRANCHES OF CHEMISTRY PHYSICAL CHEMISTRY • the branch of chemistry concerned with the application of the techniques and theories of physics to the study of chemical systems. • Branches : chemical Kinetics, Electrochemistry, spectroscopy, photochemistry. INORGANIC CHEMISTRY • deals with the synthesis and behaviour of inorganic and organometallic compounds • Branches :Bioinorganic, Cluster, Material & Nuclear Chemistry ORGANIC CHEMISTRY • study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. • Branches : Biochemistry, biophysical, Biorganic, P’ceutical, Medicinal WHAT IS MEDICINAL CHEMISTRY • It is a discipline or intersection of chemistry especially synthetic organic -
Tremblay Robinlee.Pdf
Expression and Characterisation ofa Gene Enc oding RbpD, an RNA- Bind ing Protein in Anabaena sp. strain PeC 7120 by Rob in lee Tremblay A lhesis submitted to the Scltool of Graduale Studies in partial fulfilment of the requirements fOl" the degree of Master of Science Department of BiochemistrylFacultyof Science Memorial University of Newfoundland January 2000 SI.JOM'S Newfoun dland Abs t ra ct The RNA-binding protein RbpD, from the cyano bacterium Anaba ena sp, strain Pe C 7120 was expressed in £Sch~ ric h ia coli and successfully purified using me IMPACT I system (New England Biolabs). The rbp D gene was cloned into the pCYBt expre ssion vector by using polymerase chain reaction to introduce Ndel and SapI restriction sites at the 5' end 3' ends of the gene respect ively. The 3'.-end mutagenesis also chan ged the stop codon into a cysteine codon. The resulting gene encoded a fusion protein consisting of RbpD, the Saccharomyces cerev isiae VMA intein and a chitin binding domain.. Expressi on of the fusion protein was observed in £ coli strain MCI061 but Western blot analysis using an intein-directed ant ibody indicated that significant in vivo fmeln-direcred splicing of the fusion protein occurred. We were unable to eliminate this problem; no fusion protein expression was observed in 8 other E coli strains tested. Wild -type RbpD was purified following binding of the fusion protein 10 a chitin column and overnight cleavage in the presence of a reducing agent, dlthicthrehc l. A number of modifications to the manufacturer' s purification protocol were found to be necessary for success ful purification. -
Purification and Characterisation of a Protease (Tamarillin) from Tamarillo Fruit
Purification and characterisation of a protease (tamarillin) from tamarillo fruit Item Type Article Authors Li, Zhao; Scott, Ken; Hemar, Yacine; Zhang, Huoming; Otter, Don Citation Li Z, Scott K, Hemar Y, Zhang H, Otter D (2018) Purification and characterisation of a protease (tamarillin) from tamarillo fruit. Food Chemistry. Available: http://dx.doi.org/10.1016/ j.foodchem.2018.02.091. Eprint version Post-print DOI 10.1016/j.foodchem.2018.02.091 Publisher Elsevier BV Journal Food Chemistry Rights NOTICE: this is the author’s version of a work that was accepted for publication in Food Chemistry. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Chemistry, [, , (2018-02-16)] DOI: 10.1016/j.foodchem.2018.02.091 . © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Download date 29/09/2021 23:19:14 Link to Item http://hdl.handle.net/10754/627180 Accepted Manuscript Purification and characterisation of a protease (tamarillin) from tamarillo fruit Zhao Li, Ken Scott, Yacine Hemar, Huoming Zhang, Don Otter PII: S0308-8146(18)30327-3 DOI: https://doi.org/10.1016/j.foodchem.2018.02.091 Reference: FOCH 22475 To appear in: Food Chemistry Received Date: 25 October 2017 Revised Date: 13 February 2018 Accepted Date: 16 February 2018 Please cite this article as: Li, Z., Scott, K., Hemar, Y., Zhang, H., Otter, D., Purification and characterisation of a protease (tamarillin) from tamarillo fruit, Food Chemistry (2018), doi: https://doi.org/10.1016/j.foodchem.