Unit I 1. Explain the Architecture of 8086. 2. Explain with Examples the Addressing Modes Available in 8086

Total Page:16

File Type:pdf, Size:1020Kb

Unit I 1. Explain the Architecture of 8086. 2. Explain with Examples the Addressing Modes Available in 8086 Unit I 1. Explain the architecture of 8086. 2. Explain with examples the addressing modes available in 8086. 3. Given the segment and offset addresses, how the physical address is calculated in 8086? 4. Explain with an example pin diagram of 8086 5. String manipulation instruction of a. SCAS b. LODS 6. Programming model of 8086 through Pentium 7. Explain about Program memory addressing 8. Stack memory addressing 9. Assembler directives 10. Define addressing modes. explain data addressing modes with example 11. Protected mode memory addressing in detail 12. Explain all program control instructions with example 13. Explain PUBLIC, EXTRNdirectives 14. Explain Macros and local variable in macros 15. Explain different data movement instructions with an example 16. Determine the memory location accessed by the following instructions (D MOV AL, [0100] (ii) MOV CL, [BX+O200]. Assume CS :2300H, BX = 1000H 17. Explain the string manipulafion and processor control instructions of 8086 microprocessor with six instructions for each. 18. Explain data transfer and logical instructions of 8086 19. Interface unit and Execution unit in 8086. UNIT-II 1. Explain Stack addressing modes with an example? 2. What is stack? What is the use of stack memory? Explain the execution of push and pop instructions. 3. Explain Procedure call with Register Operands? 4. Explain Procedure call with Indirect Memory Addresses? 5. Explain ASSUME, EQU assembler directives in detail? 6. Define XCHG LAHF and SAHF instruction with an example? 7. Explain subtraction with borrow as an example? 8. Define CMP and CMPXCHG in detail? 9. Explain jumps with register operands? 10. Explain indirect jumps using an index? 11. Define Addressing Modes and Explain different types of Data Addressing Modes In detail? 12. Explain Program Memory addressing modes in details? 13. Explain Data Movement instruction with an Example? MOV, MOVSX, MOVZX, PUSH, POP, BSWAP, XCHG, XLAT? 14. Explain arithmetic instructions with examples.Explain String data transfer instructions: LODS, STOS, MOVS, INS, and OUT in detail. 15. Explain miscellaneous data transfer instructions XCHG, LAHF, SAHF, XLAT, IN, OUT in Detail. 16. Explain assembler directives with an example in detail. 17. Define Interrupt?Explain Interrupt Vector and Instructions In detail? 18. Explain shift and rotate Instruction In detail? UNIT III Using Assembly Language With C/C++ For 16-Bit DOS Applications And 32-Bit Applications 1. Does the inline assembler support assembly language macro sequences? 2. Can a byte be defined in the inline assembler by using the DB directive? Ans:No, byte must be defined. 3. How are labels defined in the inline assembler? Ans:Labels are defined in the inline assembler exactly as they are in the assembler. 4. Which registers can be used in assembly language (either inline or linked modules) without saving? Ans:EAX, EBX, ECX, EDX, ES 5. What register is used to return integer data from assembly language to the C++ language caller? Ans:EAX 6. What register is used to return floating-point data from assembler language to the C++ language caller? 7. Is it possible to use the .if statement in the inline assembler? 8. In the following Example that displays showing one word per line, explain how the mov dl,strings[si] instruction accesses strings data. 9. // Example that displays showing one word per line void main(void) { char strings[] = “This is my first test application using _asm. \n”; int sc = -1; while (strings[sc++] != 0) { _asm { push si mov si,sc ;get pointer mov dl,strings[si] ;get character cmp dl,‘ ’ ;if not space jne next mov ah,2 ;display new line mov dl,10 int 21h mov dl,13 next: mov ah,2 ;display character int 21h pop si } } } In this example why was the SI register pushed and popped? Ans:The program uses SI and SI is not saved by the inline assembler so it must be saved and restored using a PUSH and POP. 10. Notice in Example that no C++ libraries (#include) are used. Do you think that compiled code for this program is smaller than a program to accomplish the same task in C++ language? Why? Example: // Program illustrating an assembly language procedure that // displays the contents of a C data structure. // A simple data structure typedef struct records { char first_name[16]; char last_name[16]; int age; int salary; } RECORD; // Fill some records RECORD record[4] = { {“Bill” ,”Boyd” , 56, 23000}, {“Page”, “Turner”, 32, 34000}, {“Bull”, “Dozer”, 39. 22000}, {“Hy”, “Society”, 48, 62000} }; // Program void main(void) { int pnt = -1; while (pnt++ < 3) { Str(record[pnt].last_name); Str(record[pnt].first_name); Numb(record[pnt].age); Numb(record[pnt].salary); Crlf(); } } Str (char *string_adr[]) { _asm { mov bx,string_adr mov ah,2 top: mov dl,[bx] inc bx cmp al,0 je bot int 21h jmp top bot: mov al,20h int 21h } } Crlf() { _asm { mov ah,2 mov dl,13 int 21h mov dl,10 int 21h } } Numb (int temp) { _asm { mov ax,temp mov bx,10 push bx L1: mov dx,0 div bx push dx cmp ax,0 jne L1 L2: pop dx cmp dl,bl je L3 mov ah,2 add dl,30h int 21h jmp L2 L3: mov dl,20h int 21h } } Ans: without the header file, it would be much smaller 11. What is the main difference between the 16-bit and 32-bit versions of C/C++ when using the inline assembler? 12. Can the INT 21H instruction, used to access DOS functions, be used in a program using the 32-bit version of the C/C++ compiler? Explain your answer. 13. What is the #include <conio.h> C/C++ library used for in a program? 14. Write a short C/C++ program that uses the _getche() function to read a key and the _putch()function to display the key. The program must end if an ‘@’ is typed. Ans: int _tmain( int argc, _TCHAR* argv[]) { char a=0; while (a!=?@?) { a=_getche(); _putch(a); } return 0; } 15. Would an embedded application that is not written for the PC ever use the conio.h library? 16. In Example 7–7, what is the purpose of the sequence of instructions _punch(10); followed by _punch(13);? 17. In Example 7–7, explain how a number is displayed in any number base. Ans: The disp procedure divides by the number base and saves the remainders to generate a number in any number base 18. Which is more flexible in its application, the inline assembler or assembly language modules that are linked to C++? Ans: separate assembly modules are the most flexible 19. What is the purpose of a PUBLIC statement in an assembly code module? Ans: The PUBLIC statement identifies a label as being available outside of the module. 20. How is an assembly code module prepared for use with C++ language? Ans: MODEL FLAT, C and the functions must be defined public. 21. In a C++ language program, the extern void GetIt(int); statement indicates what about function GetIt? 22. How is a 16-bit word of data defined in C++? Ans: A 16-bit word is defined with the short directive 23. What is a control in a C++ Visual program and where is it obtained? Ans: A control is usually some visible object that is obtained from the tool box in most cases. UNIT IV 1. What are the basic modes of operation of 8255? 2. Write the features of mode 0 in 8255? 3. What are the features used mode 1 in 8255? 4. What are the signals used in input control signal & output control signal? 5. What are the features used mode 2 in 8255? 6. Explain in detail, the programming and operating modes of 8255 PPI in detail. 7. What is DMA? Explain the DMA based data transfer using 8237 DMA controller 8. What are the modes of operation of 8237? 9. Write the BSR control word of 8255 to set bit 0 of port C. 10. Specify the bit of a control word for the 8255.Which differentiates between I/O mode and BSR mode? 11. Draw and explain Intel Pentium architecture. 12. What are the operating modes of 8255? 13. Explain the architecture diagram to Pentium pro processor 14. Explain the introduction to Pentium processor UNIT V 1. Explain the Architecture of 8051.What are the blocks in Microcontroller. 2. Explain the Pin Diagram of 8051. 3. Explain the Instruction set with examples. 4. Explain the block diagram of 8051 Microcontroller. 5. 5.Explain the bit addresses for I/O of 8051. 6. Explain TMOD and TCON registers. 7. Explain bit addresses for RAM. 8. Explain the steps to program the timer 1 in mode 2. 9. Explain in detail about the programming of 8051 timers. 10. Explain the various modes of timer operation with diagram. 11. Explain the baud rates of serial communication in 8051. 12. Explain the interrupts of 8051. 13. Explain about the serial port programming. 14. 14.Draw the diagram to interface a stepper motor with 8051 microcontroller and explain. Write an 8051-assembly language program to run the stepper motor in both forward and reverse direction with delay. 15. Draw the pin diagram of 8051 and explain in detail, the function of each pin. 16. Draw the bit pattern of Program Status Word of 8051 and explain the significance of each bit with examples. (8) 17. List out the special function registers of 8051 microcontrollersand explain their functions 18. Explain the memory organization of 8051 microcontrollers. 19. Explain the architecture of 8051 microcontrollers with neat diagram 20. Write an assembly language program for 8051 to create a square wave of 66 % duty cycle on bit 3 of port 1.
Recommended publications
  • AMD Athlon™ Processor X86 Code Optimization Guide
    AMD AthlonTM Processor x86 Code Optimization Guide © 2000 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other applica- tion in which the failure of AMD’s product could create a situation where per- sonal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD logo, AMD Athlon, K6, 3DNow!, and combinations thereof, AMD-751, K86, and Super7 are trademarks, and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc. Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation.
    [Show full text]
  • Lecture Notes in Assembly Language
    Lecture Notes in Assembly Language Short introduction to low-level programming Piotr Fulmański Łódź, 12 czerwca 2015 Spis treści Spis treści iii 1 Before we begin1 1.1 Simple assembler.................................... 1 1.1.1 Excercise 1 ................................... 2 1.1.2 Excercise 2 ................................... 3 1.1.3 Excercise 3 ................................... 3 1.1.4 Excercise 4 ................................... 5 1.1.5 Excercise 5 ................................... 6 1.2 Improvements, part I: addressing........................... 8 1.2.1 Excercise 6 ................................... 11 1.3 Improvements, part II: indirect addressing...................... 11 1.4 Improvements, part III: labels............................. 18 1.4.1 Excercise 7: find substring in a string .................... 19 1.4.2 Excercise 8: improved polynomial....................... 21 1.5 Improvements, part IV: flag register ......................... 23 1.6 Improvements, part V: the stack ........................... 24 1.6.1 Excercise 12................................... 26 1.7 Improvements, part VI – function stack frame.................... 29 1.8 Finall excercises..................................... 34 1.8.1 Excercise 13................................... 34 1.8.2 Excercise 14................................... 34 1.8.3 Excercise 15................................... 34 1.8.4 Excercise 16................................... 34 iii iv SPIS TREŚCI 1.8.5 Excercise 17................................... 34 2 First program 37 2.1 Compiling,
    [Show full text]
  • Targeting Embedded Powerpc
    Freescale Semiconductor, Inc. EPPC.book Page 1 Monday, March 28, 2005 9:22 AM CodeWarrior™ Development Studio PowerPC™ ISA Communications Processors Edition Targeting Manual Revised: 28 March 2005 For More Information: www.freescale.com Freescale Semiconductor, Inc. EPPC.book Page 2 Monday, March 28, 2005 9:22 AM Metrowerks, the Metrowerks logo, and CodeWarrior are trademarks or registered trademarks of Metrowerks Corpora- tion in the United States and/or other countries. All other trade names and trademarks are the property of their respective owners. Copyright © 2005 by Metrowerks, a Freescale Semiconductor company. All rights reserved. No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me- chanical, without prior written permission from Metrowerks. Use of this document and related materials are governed by the license agreement that accompanied the product to which this manual pertains. This document may be printed for non-commercial personal use only in accordance with the aforementioned license agreement. If you do not have a copy of the license agreement, contact your Metrowerks representative or call 1-800-377- 5416 (if outside the U.S., call +1-512-996-5300). Metrowerks reserves the right to make changes to any product described or referred to in this document without further notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod- ucts for any particular purpose, nor does Metrowerks assume any liability arising
    [Show full text]
  • Codewarrior® Targeting Embedded Powerpc
    CodeWarrior® Targeting Embedded PowerPC Because of last-minute changes to CodeWarrior, some of the information in this manual may be inaccurate. Please read the Release Notes on the CodeWarrior CD for the most recent information. Revised: 991129-CIB Metrowerks CodeWarrior copyright ©1993–1999 by Metrowerks Inc. and its licensors. All rights reserved. Documentation stored on the compact disk(s) may be printed by licensee for personal use. Except for the foregoing, no part of this documentation may be reproduced or trans- mitted in any form by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from Metrowerks Inc. Metrowerks, the Metrowerks logo, CodeWarrior, and Software at Work are registered trademarks of Metrowerks Inc. PowerPlant and PowerPlant Constructor are trademarks of Metrowerks Inc. All other trademarks and registered trademarks are the property of their respective owners. ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET. How to Contact Metrowerks: U.S.A. and international Metrowerks Corporation 9801 Metric Blvd., Suite 100 Austin, TX 78758 U.S.A. Canada Metrowerks Inc. 1500 du College, Suite 300 Ville St-Laurent, QC Canada H4L 5G6 Ordering Voice: (800) 377–5416 Fax: (512) 873–4901 World Wide Web http://www.metrowerks.com Registration information [email protected] Technical support [email protected] Sales, marketing, & licensing [email protected] CompuServe Goto: Metrowerks Table of Contents 1 Introduction 11 Read the Release Notes! . 11 Solaris: Host-Specific Information. 12 About This Book . 12 Where to Go from Here .
    [Show full text]
  • System Calls and Inline Assembler
    System calls and inline assembler Michal Sojka [email protected] ČVUT, FEL License: CC-BY-SA System calls ● A way for “normal” applications to invoke operating system (OS) kernel's services. ● Applications run in unprivileged CPU mode (user space, user mode) ● OS kernel runs in privileged CPU mode (kernel mode) ● System call is a way how to securely switch from user to kernel mode. What is a system call technically? ● A machine instruction that: – Increases the CPU privilege level and – Passes the control to a predefined place in the kernel. ● Arguments are (typically) passed in CPU registers. ● Instructions: – x86: int 0x80, sysenter, syscall – MIPS: syscall – ARM: swi x86 user execution environment (32 bit) Basic Program Execution Registers Address Space* 2^32 -1 Eight 32-bit General-Purpose Registers Registers General-Purpose Registers 31 16 15 8 07 16-bit 32-bit AH AL AX EAX Six 16-bit Segment Registers Registers BH BL BX EBX General-Purpose Registers 32-bits EFLAGS Register CH CL 031 CX ECX DH DL DX 32-bits EIP (Instruction Pointer Register) EAX EDX BP EBX EBP FPU Registers SI ECX ESI EDX Eight 80-bit Floating-Point DI EDI ESI Registers Data Registers 0 SP EDI ESP *The address space can be flat or segmented. Using EBP 16 bits Control Register the physical address ESP 16 bits Status Register extension mechanism, a physical address space of 16 bits Tag Register 2^36 - 1 canbeaddressed. Segment Registers Opcode Register (11-bits) 15 0 48 bits FPU Instruction Pointer Register CS 48 bits FPU Data (Operand) Pointer Register DS SS MMX
    [Show full text]
  • GCC and Assembly Language GCC and Assembly Language
    slide 2 slide 1 gaius gaius GCC and Assembly language GCC and Assembly language one could use an assembly language source file during the construction of an operating system kernel, define manyfunctions which: get, set registers microkernel, or embedded system it is vital to be able to access some of the microprocessor attribute unavailable in a high levellanguage this is inefficient, as it requires a call, ret to set a register cause cache misses and introduce a 3 instruction for example the operating system might need to: overhead modify a processes, stack pointer (%rsp) turn interrupts on and off manipulate the virtual memory directory processor register slide 3 slide 4 gaius gaius Consider an example (dangeous) foo.S suppose we wanted to get and set the value of the .globl foo_setsp stack pointer: rsp #void setsp (void *p) # #move the parameter, p, into $rsp # we might initially start to write an assembly file: foo_setsp: pushq %rbp foo.S which sets and gets the stack pointer movq %rsp, %rbp movq %rdi, %rsp leave ret # #void *getsp (void) # foo_getsp: movq %rsp, %rax ret slide 5 slide 6 gaius gaius Nowwrite some C code: bar.c Compile and link the code extern void foo_setsp (void *p); $ as -o foo.o foo.S $ gcc -c bar.c void someFunc (void) $ gcc foo.o bar.o { void *old = foo_getsp(); foo_setsp((void *)0x1234); } what are the problems with this code? hint examine what happens to the stack pointer slide 7 slide 8 gaius gaius Problems Writing the example the correct way the stack pointer is modified during the call and abetter technique is
    [Show full text]
  • In Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection For gcc version 6.1.0 (GCC) Richard M. Stallman and the GCC Developer Community Published by: GNU Press Website: http://www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 51 Franklin Street, Fifth Floor Tel 617-542-5942 Boston, MA 02110-1301 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988-2016 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being \Funding Free Software", the Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ::::::::::::::::::::::::::::::::::::::::::::: 1 1 Programming Languages Supported by GCC ::::::::::::::: 3 2 Language Standards Supported by GCC :::::::::::::::::: 5 3 GCC Command Options ::::::::::::::::::::::::::::::: 9 4 C Implementation-Defined Behavior :::::::::::::::::::: 373 5 C++ Implementation-Defined Behavior ::::::::::::::::: 381 6 Extensions to
    [Show full text]
  • PA Build RM.Pdf
    CodeWarrior Development Studio for Power Architecture® Processors Build Tools Reference Revised: 2 March 2012 Freescale, the Freescale logo and CodeWarrior are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their re- spective owners. © 2005-2012 Freescale Semiconductor, Inc. All rights reserved. Information in this document is provided solely to enable system and software implementers to use Freescale Semicon- ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte- grated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic- ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam- ages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including
    [Show full text]
  • ARM Cortex-A Series Programmer's Guide
    ARM® Cortex™-A Series Version: 4.0 Programmer’s Guide Copyright © 2011 – 2013 ARM. All rights reserved. ARM DEN0013D (ID012214) ARM Cortex-A Series Programmer’s Guide Copyright © 2011 – 2013 ARM. All rights reserved. Release Information The following changes have been made to this book. Change history Date Issue Confidentiality Change 25 March 2011 A Non-Confidential First release 10 August 2011 B Non-Confidential Second release. Updated to include Virtualization, Cortex-A15 processor, and LPAE. Corrected and revised throughout 25 June 2012 C Non-Confidential Updated to include Cortex-A7 processor, and big.LITTLE. Index added. Corrected and revised throughout. 22 January 2014 D Non-Confidential Updated to include Cortex-A12 processor, Cache Coherent Interconnect, expanded GIC coverage, Multi-core processors, Corrected and revised throughout. Proprietary Notice This Cortex-A Series Programmer’s Guide is protected by copyright and the practice or implementation of the information herein may be protected by one or more patents or pending applications. No part of this Cortex-A Series Programmer’s Guide may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this Cortex-A Series Programmer’s Guide. Your access to the information in this Cortex-A Series Programmer’s Guide is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations of the information herein infringe any third party patents. This Cortex-A Series Programmer’s Guide is provided “as is”.
    [Show full text]
  • Learn Linux Kernel Programming, Hands-On: a Uniquely Effective Top-Down Approach
    The Linux® Kernel Primer: A Top-Down Approach for x86 and PowerPC Architectures By Claudia Salzberg Rodriguez, Gordon Fischer, Steven Smolski ............................................... Publisher: Prentice Hall PTR Pub Date: September 21, 2005 ISBN: 0-13-118163-7 Pages: 648 Table of Contents | Index Learn Linux kernel programming, hands-on: a uniquely effective top-down approach The Linux® Kernel Primer is the definitive guide to Linux kernel programming. The authors' unique top-down approach makes kernel programming easier to understand by systematically tracing functionality from user space into the kernel and carefully associating kernel internals with user-level programming fundamentals. Their approach helps you build on what you already know about Linux, gaining a deep understanding of how the kernel works and how its elements fit together. One step at a time, the authors introduce all the tools and assembly language programming techniques required to understand kernel code and control its behavior. They compare x86 and PowerPC implementations side-by-side, illuminating cryptic functionality through carefully- annotated source code examples and realistic projects. The Linux® Kernel Primer is the first book to offer in-depth coverage of the rapidly growing PowerPC Linux development platform, and the only book to thoroughly discuss kernel configuration with the Linux build system. Coverage includes Data structures x86 and PPC assembly language Viewing kernel internals Linux process model User and kernel space Interrupts and exceptions Memory allocation and tracking Tracing subsystem behavior I/O interactions Filesystems and file operations Scheduling and synchronization Kernel boot process Kernel build system Configuration options Device drivers And more... If you know C, this book teaches you all the skills and techniques you need to succeed with Linux kernel programming.
    [Show full text]
  • The Shellcoder 039 S Handbook Discovering And
    80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page iii The Shellcoder’s Handbook Discovering and Exploiting Security Holes Second Edition Chris Anley John Heasman Felix “FX” Linder Gerardo Richarte The Shellcoder’s Handbook: Discovering and Exploiting Security Holes (1st Edition) was written by Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel Mehta, and Riley Hassell. Wiley Publishing, Inc. 80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page ii 80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page i The Shellcoder’s Handbook Second Edition 80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page ii 80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page iii The Shellcoder’s Handbook Discovering and Exploiting Security Holes Second Edition Chris Anley John Heasman Felix “FX” Linder Gerardo Richarte The Shellcoder’s Handbook: Discovering and Exploiting Security Holes (1st Edition) was written by Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan Eren, Neel Mehta, and Riley Hassell. Wiley Publishing, Inc. 80238ffirs.qxd:WileyRed 7/11/07 7:22 AM Page iv The Shellcoder’s Handbook, Second Edition: Discovering and Exploiting Security Holes Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2007 by Chris Anley, John Heasman, Felix “FX” Linder, and Gerardo Richarte Published by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-08023-8 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
    [Show full text]
  • CCES 2.9.0 C/C++ Compiler Manual for SHARC Processors
    CCES 2.9.0 C/C++ Compiler Manual for SHARC Processors (Includes SHARC+ and ARM Processors) Revision 2.2, May 2019 Part Number 82-100117-01 Analog Devices, Inc. One Technology Way Norwood, MA 02062-9106 Copyright Information ©2019 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc. Printed in the USA. Disclaimer Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana- log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices, Inc. Trademark and Service Mark Notice The Analog Devices logo, Blackfin, Blackin+, CrossCore, EngineerZone, EZ-Board, EZ-KIT, EZ-KIT Lite, EZ-Ex- tender, SHARC, SHARC+, and VisualDSP++ are registered trademarks of Analog Devices, Inc. EZ-KIT Mini is a trademark of Analog Devices, Inc. All other brand and product names are trademarks or service marks of their respective owners. CCES 2.9.0 C/C++ Compiler Manual for SHARC Processors ii Contents Preface Purpose of This Manual................................................................................................................................. 1±1 Intended Audience........................................................................................................................................
    [Show full text]