Dronedarone for Prevention of Atrial Fibrillation: an Unfulfilled Promise?

Total Page:16

File Type:pdf, Size:1020Kb

Dronedarone for Prevention of Atrial Fibrillation: an Unfulfilled Promise? Dronedarone for Prevention of Atrial Fibrillation: An Unfulfilled Promise? A. CAPUCCI, G.Q.VILLANI,D.ASCHIERI,M.PIEPOLI The prophylactic treatment for many patients with atrial fibrillation (AF) remains unsatisfactory. The ideal anti-arrhythmic drug for the prevention of recurrences of both AF after cardioversion and paroxysmal AF is still a long way off. AF has an high propensity to recur, and only one-quarter of patients who undergo successful cardioversion remain in sinus rhythm at 1 year if no additional therapy is used [1]. Since the publication of studies documenting that certain class I drugs may increase mortality in high-risk post-infarction patients, basic science and clinical studies have focused on class III anti-arrhythmic drugs. Class III agents remain the focus of drug development efforts because they lack nega- tive haemodynamic effects, affect both atrial and ventricular tissue, and can be administered as either parenteral or oral preparations. Amiodarone is one of the most effective, and is associated with a comparatively low risk of drug-induced pro-arrhythmia, probably due to its multiple pharmacological actions on cardiac ion channels and receptors. However, amiodarone is asso- ciated with significant extra-cardiac side effects, and this has driven develop- ment of amiodarone analogues [2]. Developers of newer anti-arrhythmic agents have focused on identifying anti-arrhythmic medications with the following characteristics: appropriate modification of the arrhythmia substrate, suppression of arrhythmia trig- gers, efficacy in pathological tissues and states, positive rate dependency, appropriate pharmacokinetics, equally effective oral and parenteral formula- tions of similar efficacy in arrhythmias and their surrogates, few side effects, positive frequency blocking actions, and cardiac-selective ion channel block- Cardiology Department, Guglielmo da Saliceto Hospital, Piacenza, Italy 110 A.Capucci et al. ade. New and investigational agents include azimilide, dofetilide, ersentilide, ibutilide, tedisamil, and trecetilide [3]. Dronedarone is one of a number of analogues that derive from the cur- rently most successful class III anti-arrhythmic drug, amiodarone [4]. This review describes some new studies providing insight into the mechanism of its action and the latest developments in the clinical usage of this drug. Electrophysiological Properties Dronedarone is a non-iodinated amiodarone derivative that inhibits Na+,K+, and Ca2+ currents. It is a potent inhibitor of the acetylcholine-activated K+ current from atrial and sinoatrial nodal tissue, and inhibits the rapid delayed rectifier more potently than slow and inward rectifier K+ currents and inhibits the L-type calcium current. It is also an antagonist at α- and β- adrenoceptors and, unlike amiodarone, has little effect at thyroid receptors. It is more potent than amiodarone in inhibiting arrhythmias and death in animal models of ischaemia- and reperfusion-induced arrhythmias [4]. Gautier et al. [5] studied the electrophysiological properties of dronedarone on the action potential (AP) and contraction of papillary mus- cle and on membrane ionic currents, Ca2+ transient, and shortening of ven- tricular cells of the guinea pig heart. The effects of dronedarone on AP dura- tions (APDs) at different percentages of repolarisation were not significantly changed, except for a slight decrease in APD30 and APD50 at the highest con- centration. In isolated ventricular myocytes, dronedarone inhibited rapidly + activating delayed rectifier K current (IKr), slowly activating delayed-rectifi- + er K current (IKs), and voltage-dependent and time-, frequency-, or use- independent and inward rectifier potassium current (IK1). Moreover, 2+ dronedarone blocked L-type Ca current (ICa(L)) in a use- and frequency- dependent manner. Simultaneously with these electrophysiological effects, dronedarone reduced contraction amplitudes of papillary muscle and decreased Ca2+ transient and shortening of ventricular myocytes. The results show that dronedarone is a multi-channel blocker because it decreases dV/dtmax (INa), ICa(L), IKr, IKs,and IK1 very similarly to amiodarone in cardiac ventricle, despite the absence of iodine in its molecular structure. Sun et al. [6] compared the acute and chronic electrophysiological effects of dronedarone and amiodarone in isolated rabbit atrial muscle by microelec- trode techniques. Four-week oral treatment with dronedarone or amiodarone increased the action potential duration (APD90) and effective refractory peri- od with an inverse rate dependency. In contrast to this, acute superfusion with 10 μM dronedarone or amiodarone decreased APD90, the effective refractory period, and the maximum upstroke slope of the action potential. Dronedarone for Prevention of Atrial Fibrillation: An Unfulfilled Promise? 111 However, dronedarone can not be considered a simple copy of amiodarone. Varro et al. [7] studied the electrophysiological effects of dronedarone after chronic and acute administration in dog Purkinje fibres, papillary muscle, and isolated ventricular myocytes, and compared them with those of amio- darone by applying conventional microelectrode and patch-clamp tech- niques. Chronic treatment with dronedarone, unlike chronic administration of amiodarone, did not significantly lengthen the QTc interval of the electro- cardiogram or the APD in papillary muscle. After chronic oral treatment with dronedarone, a small but significant use-dependent Vmax block was noticed, while after chronic amiodarone administration a strong use-depen- dent Vmax depression was observed. Acute superfusion of dronedarone, like that of amiodarone, moderately lengthened APD in papillary muscle but shortened it in Purkinje fibres. Both dronedarone and amiodarone superfusion reduced the incidence of early and delayed in Purkinje fibres. The authors showed that after acute adminis- tration dronedarone exhibits effects on cardiac electrical activity similar to those of amiodarone, but it lacks the ‘amiodarone-like’ chronic electrophysi- ological characteristics. Pantos et al. [8] investigated the effects of dronedarone and amiodarone administered for 2 weeks in normal and thyroxine-treated animals on plas- ma thyroid hormones and the possible consequences on the response of the heart to ischaemia. Amiodarone resulted in increased T4,T4/T3,and rT3, whereas dronedarone did not alter the thyroid hormone profile in normal animals. In thyroxine-treated animals, amiodarone increased the T4/T3 ratio but T4,T3,and rT3 levels were not altered. Baseline functional parameters and ischaemic contracture were not changed by amiodarone and/or dronedarone in either normal or thyroxine-treated hearts. Clinical Studies At present three clinical studies have demonstrated that the drug is safe and effective for the maintenance of normal sinus rhythm in patients with atrial fibrillation (AF) or atrial flutter (AFl). In the Dronedarone Atrial Fibrillation Study After Electrical Cardioversion (DAFNE), a phase IIb clinical trial, a dose of 800 mg dronedarone per day was established as effective and safe for the prevention of AF relapses after cardioversion [9]. Patients with persistent AF were randomly allocated to receive a daily dose of 800 mg, 1200 mg, or 1600 mg dronedarone or place- bo. The main analysis was conducted on 199 of 270 patients who entered the maintenance phase following pharmacological cardioversion or, if that was unsuccessful, DC cardioversion. Within a 6-month follow-up period, the time 112 A.Capucci et al. to AF relapse increased in the group receiving dronedarone 800 mg, with a median of 60 days compared to 5.3 days in the placebo group [relative risk reduction 55% (95% CI, 28 to 72%) P = 0.001]. No significant effect was seen at higher doses. Spontaneous conversion to sinus rhythm on dronedarone occurred in 6–15% of patients (P = 0.026). There were no pro- arrhythmic reactions. Drug-induced QT prolongation was only noticed in the 1600 mg group. Premature drug discontinuation affected 23% of subjects given 1600 mg dronedarone versus 4% on 800 mg and was mainly due to gastrointestinal side effects. No evidence of thyroid, ocular, or pulmonary toxicity was found. Recently the results of two phase III trials were reported at the 2004 European Society of Cardiology Congress [10]. In the European Trial In Atrial Fibrillation or Flutter Patients Receiving Dronedarone for the Maintenance of Sinus Rhythm (EURIDIS) and the American–Australian Trial With Dronedarone in Atrial Fibrillation or Flutter Patients for the Maintenance of Sinus Rhythm (ADONIS), dronedarone administered at a dose of 400 mg twice daily was effective in preventing both symptomatic and asymptomatic recurrences of AF or AFl and had a safety profile similar to that of placebo. Patients enrolled in EURIDIS and ADONIS were men and women aged > 21 years who had been in sinus rhythm for ≥ 1 h at the time of randomisation and had experienced at least one electrocardiogram (ECG)-documented episode of AF/AFl during the previous 3 months. After a screening period (pre-trial day 6 to day 1), patients in both trials were ran- domised 2:1 (dronedarone:placebo) to receive either 400 mg twice daily of dronedarone or matching placebo twice daily for 12 months. A total of 1237 patients were enrolled in both trials, 828 randomised to dronedarone and 409 to placebo. The primary endpoint of both trials – time from randomisation to first documented AF/AFl occurrence – was defined as an episode lasting ≥ / = 10 minutes as indicated
Recommended publications
  • Drug Class Review Beta Adrenergic Blockers
    Drug Class Review Beta Adrenergic Blockers Final Report Update 4 July 2009 Update 3: September 2007 Update 2: May 2005 Update 1: September 2004 Original Report: September 2003 The literature on this topic is scanned periodically. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Mark Helfand, MD, MPH Kim Peterson, MS Vivian Christensen, PhD Tracy Dana, MLS Sujata Thakurta, MPA:HA Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Oregon Health & Science University Copyright © 2009 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 4 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 6 Purpose and Limitations of Evidence Reports........................................................................................ 8 Scope and Key Questions .................................................................................................................... 10 METHODS.................................................................................................................................
    [Show full text]
  • Download Article (PDF)
    Open Life Sci. 2018; 13: 335–339 Mini-Review Zhe An, Guang Yang, Xuanxuan Liu, Zhongfan Zhang, Guohui Liu* New progress in understanding the cellular mechanisms of anti-arrhythmic drugs https://doi.org/10.1515/biol-2018-0041 arrhythmia still require drugs to terminate the episode; Received May 4, 2018; accepted June 8, 2018 some symptomatic supraventricular and ventricular Abstract: Antiarrhythmic drugs are widely used, however, premature beats need to be controlled with drugs and to their efficacy is moderate and they can have serious prevent recurrence. In addition, some patients cannot be side effects. Even if catheter ablation is effective for the placed on ICDs or have radiofrequency ablation performed treatment of atrial fibrillation and ventricular tachycardia, due to economic limitation. To enable clinicians and antiarrhythmic drugs are still important tools for the pharmacists to rationally evaluate antiarrhythmic drugs, treatment of arrhythmia. Despite efforts, the development various antiarrhythmic drugs are briefly discussed. of antiarrhythmic drugs is still slow due to the limited Furthermore, we reviewed emerging antiarrhythmic drugs understanding of the role of various ionic currents. This currently undergoing clinical investigation or already review summarizes the new targets and mechanisms of approved for clinical use. antiarrhythmic drugs. Keywords: Antiarrhythmic drugs; New targets; 2 Classification of anti-arrhythmic Mechanism drugs According to the electrophysiology and mechanism of action of Purkinje fiber in vitro, antiarrhythmic drugs can 1 Introduction generally be divided into four categories: Class I sodium channel blockers, including three subclasses of A, B, Arrhythmia is a common and dangerous cardiovascular C. Type IA is a modest blockade of sodium channels, disease [1].
    [Show full text]
  • ANTIARRHYTHMIC DRUGS Geoffrey W
    Chapter 24 ANTIARRHYTHMIC DRUGS Geoffrey W. Abbott and Roberto Levi HISTORICAL PERSPECTIVE BASIC PHARMACOLOGY Singh-Vaughan Williams Classification of Antiarrhythmic Drugs HISTORICAL PERSPECTIVE Sodium Channels and Class I Antiarrhythmic Drugs β Receptors and Class II Antiarrhythmics Potassium Channels and Class III Antiarrhythmic Drugs The heart, and more specifically the heartbeat, has through- Calcium Channels and Class IV Antiarrhythmics out history served as an indicator of well-being and disease, CLINICAL PHARMACOLOGY both to the physician and to the patient. Through one’s own Categories of Arrhythmogenic Mechanisms heartbeat, one can feel the physiologic manifestations of joy, CLINICAL APPLICATION thrills, fear, and passion; the rigors of a sprint or long- Class I—Sodium Channel Blockers distance run; the instantaneous effects of medications, recre- Class II—β Blockers ational drugs, or toxins; the adrenaline of a rollercoaster ride Class III—Potassium Channel Blockers or a penalty shootout in a World Cup final. Although the Class IV—Calcium Channel Blockers complexities of the heart continue to humble the scientists EMERGING DEVELOPMENTS and physicians who study it, the heart is unique in that, Molecular Genetics of Arrhythmias despite the complexity of its physiology and the richness of hERG Drug Interactions both visceral and romantic imagery associated with it, its Gene Therapy Guided by Molecular Genetics of Inherited function can be distilled down to that of a simple pump, the Arrhythmias function and dysfunction of which
    [Show full text]
  • New Antiarrhythmic Agents for Atrial Fibrillation
    REVIEW New antiarrhythmic agents for atrial fibrillation Anirban Choudhury2 Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical and Gregory YH Lip†1 practice, with an incidence that increases twofold every decade after 55 years of age. †Author for correspondence Despite recent advances in our understanding of the mechanisms of AF, effective treatment †1University Department of Medicine, City Hospital, remains difficult in many patients. Pharmacotherapy remains the mainstay of treatment and Birmingham, B18 7QH, UK includes ventricular rate control as well as restoration and maintenance of sinus rhythm. In Tel.: +44 121 5075080 the light of studies demonstrating safety concerns with class IC agents, class III agents such Fax: +44 121 554 4083 [email protected] as sotalol and amiodarone have become the preferred and most commonly used drugs. 2University Department Unfortunately, a plethora of side effects often limits the long-term use of amiodarone. of Medicine, City Hospital, Thus, there have been many recent developments in antiarrhythmic drug therapy for AF Birmingham, B18 7QH, UK that have gained more interest, particularly with the recent debate over rate versus rhythm Tel.: +44 121 5075080 Fax: +44 121 554 4083 control. It is hoped that the availability of the newer agents will at least provide a greater choice of therapies and improve our management of this common arrhythmia. Atrial fibrillation (AF) is the most common many existing ones have significant side effects arrhythmia encountered in clinical practice [1]. It and limitations of efficacy. affects 5% of the population above the age of 65 years and 10% above 75 years [2].
    [Show full text]
  • TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub
    US 20200187851A1TE INI (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No .: US 2020/0187851 A1 Offenbacher et al. (43 ) Pub . Date : Jun . 18 , 2020 ( 54 ) PERIODONTAL DISEASE STRATIFICATION (52 ) U.S. CI. AND USES THEREOF CPC A61B 5/4552 (2013.01 ) ; G16H 20/10 ( 71) Applicant: The University of North Carolina at ( 2018.01) ; A61B 5/7275 ( 2013.01) ; A61B Chapel Hill , Chapel Hill , NC (US ) 5/7264 ( 2013.01 ) ( 72 ) Inventors: Steven Offenbacher, Chapel Hill , NC (US ) ; Thiago Morelli , Durham , NC ( 57 ) ABSTRACT (US ) ; Kevin Lee Moss, Graham , NC ( US ) ; James Douglas Beck , Chapel Described herein are methods of classifying periodontal Hill , NC (US ) patients and individual teeth . For example , disclosed is a method of diagnosing periodontal disease and / or risk of ( 21) Appl. No .: 16 /713,874 tooth loss in a subject that involves classifying teeth into one of 7 classes of periodontal disease. The method can include ( 22 ) Filed : Dec. 13 , 2019 the step of performing a dental examination on a patient and Related U.S. Application Data determining a periodontal profile class ( PPC ) . The method can further include the step of determining for each tooth a ( 60 ) Provisional application No.62 / 780,675 , filed on Dec. Tooth Profile Class ( TPC ) . The PPC and TPC can be used 17 , 2018 together to generate a composite risk score for an individual, which is referred to herein as the Index of Periodontal Risk Publication Classification ( IPR ) . In some embodiments , each stage of the disclosed (51 ) Int. Cl. PPC system is characterized by unique single nucleotide A61B 5/00 ( 2006.01 ) polymorphisms (SNPs ) associated with unique pathways , G16H 20/10 ( 2006.01 ) identifying unique druggable targets for each stage .
    [Show full text]
  • Antianginal and Anti-Ischaemic Eycacy of Tedisamil, a Potassium Channel Blocker Heart: First Published As 10.1136/Heart.83.2.167 on 1 February 2000
    Heart 2000;83:167–171 167 Antianginal and anti-ischaemic eYcacy of tedisamil, a potassium channel blocker Heart: first published as 10.1136/heart.83.2.167 on 1 February 2000. Downloaded from K M Fox, J R Henderson, J C Kaski, A Sachse, L Kuester, S Wonnacott, on behalf of the Third Clinical European Studies in Angina and Revascularisation (CESAR 3) Investigators Abstract Objective—To determine the eYcacy and safety of the potassium channel blocker tedisamil ver- sus placebo in the treatment of patients with stable angina. Design—Prospective, double blind, placebo controlled study. 203 patients first completed a seven day placebo run in. They were then randomised to receive 50 mg, 100 mg or 150 mg tedis- amil twice daily, or placebo. Treadmill exercise testing was carried out at baseline and after 14 days of double blind treatment. Main outcome measures—Primary eYcacy parameters were an increase in total exercise dura- tion and a reduction of the sum of ST segment depression using six ECG leads at maximum workload at trough (12 hours after last medication). Secondary aims included increase in exercise time to onset of 0.1 mV ST segment depression, increase in exercise time to onset of any anginal pain, and reduction in ST segment depression in any of the six specified leads at maximum work- load. These were all at trough. The same parameters were also assessed at peak concentrations (two hours after administration). Overall attacks of angina and the use of short acting nitrates were assessed from patient diaries. Results—Tedisamil led to a dose dependent prolongation of exercise duration (significant at all concentrations), an eVect that was greater at peak than at trough.
    [Show full text]
  • Comparison of the Effects of DC031050, a Class III Antiarrhythmic Agent, on Herg Channel and Three Neuronal Potassium Channels
    npg Acta Pharmacologica Sinica (2012) 33: 728–736 © 2012 CPS and SIMM All rights reserved 1671-4083/12 $32.00 www.nature.com/aps Original Article Comparison of the effects of DC031050, a class III antiarrhythmic agent, on hERG channel and three neuronal potassium channels Ping LI1, Hai-feng SUN1, Ping-zheng ZHOU1, Chao-ying MA2, Guo-yuan HU1, Hua-liang JIANG1, Min LI1, Hong LIU1, *, Zhao- bing GAO1, * 1State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; 2Life Science and Engineering College of Southwest Jiaotong University, Chengdu 610031, China Aim: This study was conducted to test the selectivity of DC031050 on cardiac and neuronal potassium channels. Methods: Human ether-à-go-go related gene (hERG), KCNQ and Kv1.2 channels were expressed in CHO cells. The delayed rectifier potassium current (IK) was recorded from dissociated hippocampal pyramidal neurons of neonatal rats. Whole-cell voltage patch clamp was used to record the voltage-activated potassium currents. Drug-containing solution was delivered using a RSC-100 Rapid Solution Changer. Results: Both DC031050 and dofetilide potently inhibited hERG currents with IC50 values of 2.3±1.0 and 17.9±1.2 nmol/L, respectively. DC031050 inhibited the IK current with an IC50 value of 2.7±1.5 μmol/L, which was >1000 times the concentration required to inhibit hERG current. DC031050 at 3 μmol/L did not significantly affect the voltage-dependence of the steady activation, steady inactivation of IK, or the rate of IK from inactivation. Intracellular application of DC031050 (5 μmol/L) was insufficient to inhibit IK.
    [Show full text]
  • A Abacavir Abacavirum Abakaviiri Abagovomab Abagovomabum
    A abacavir abacavirum abakaviiri abagovomab abagovomabum abagovomabi abamectin abamectinum abamektiini abametapir abametapirum abametapiiri abanoquil abanoquilum abanokiili abaperidone abaperidonum abaperidoni abarelix abarelixum abareliksi abatacept abataceptum abatasepti abciximab abciximabum absiksimabi abecarnil abecarnilum abekarniili abediterol abediterolum abediteroli abetimus abetimusum abetimuusi abexinostat abexinostatum abeksinostaatti abicipar pegol abiciparum pegolum abisipaaripegoli abiraterone abirateronum abirateroni abitesartan abitesartanum abitesartaani ablukast ablukastum ablukasti abrilumab abrilumabum abrilumabi abrineurin abrineurinum abrineuriini abunidazol abunidazolum abunidatsoli acadesine acadesinum akadesiini acamprosate acamprosatum akamprosaatti acarbose acarbosum akarboosi acebrochol acebrocholum asebrokoli aceburic acid acidum aceburicum asebuurihappo acebutolol acebutololum asebutololi acecainide acecainidum asekainidi acecarbromal acecarbromalum asekarbromaali aceclidine aceclidinum aseklidiini aceclofenac aceclofenacum aseklofenaakki acedapsone acedapsonum asedapsoni acediasulfone sodium acediasulfonum natricum asediasulfoninatrium acefluranol acefluranolum asefluranoli acefurtiamine acefurtiaminum asefurtiamiini acefylline clofibrol acefyllinum clofibrolum asefylliiniklofibroli acefylline piperazine acefyllinum piperazinum asefylliinipiperatsiini aceglatone aceglatonum aseglatoni aceglutamide aceglutamidum aseglutamidi acemannan acemannanum asemannaani acemetacin acemetacinum asemetasiini aceneuramic
    [Show full text]
  • Supplemental Data
    DMD #74179 Supplemental Data Assessing the risk of drug-induced cholestasis using unbound intrahepatic concentrations Julia Riede, Birk Poller, Jörg Huwyler, Gian Camenisch Drug Metabolism and Disposition Calculation of pharmacokinetic parameters: The absorption rate constant (ka) was calculated based on eq. 1 and 2 [1]: 푘 푙푛( 푎) 푘푒 푇푚푎푥 = (1) 푘푎−푘푒 푙푛⁡(2) 푘푒 = (2) 푇1/2 where Tmax is the time to reach the maximum plasma concentration, ke is the elimination rate constant and T1/2 is the elimination half-life. The fraction absorbed and escaping gut metabolism (Fa x Fg) was calculated based on eq. 3 and 4 [1]: 퐹 퐹푎 × 퐹 = (3) 퐹ℎ 퐶퐿ℎ 퐹ℎ = 1 − (4) 푄ℎ where F represents the oral bioavailabilty, Fh is the fraction escaping hepatic clearance, CLh is the hepatic blood clearance and Qh is the hepatic blood flow (1.45 l/min). Pharmacokinetic parameters required for the calculations and literature references for all 18 compounds are summarized in Supplemental Table 2. Human in vitro BSEP inhibition: Ki values from Hirano et al., 2005 [2] were converted to IC50 values according to eq. 5, assuming competitive inhibition [3]: [푆] 퐼퐶50 = 퐾 × (1 + ) (5) 퐾푚 where the substrate concentration of taurocholate [S] = 3 µM and Michealis-Menten constant (Km) for BSEP-mediated taurocholate transport = 4.64 µM [2]. 1 DMD #74179 SUPPLEMENTAL TABLE 1: Hepatic in vivo and in vitro Kpuu in rat in vitro in vivo Drug ECM Hepatic process clearances [4] compound class PSinf,act PSinf,pas CLint.met CLint.sec Kpuu Kpuu Kp fuliver fup fub [ml/min/kg] Atorvastatin 4 2935.3
    [Show full text]
  • Safety and Efficacy of Intravenously Administered Tedisamil for Rapid
    Journal of the American College of Cardiology Vol. 44, No. 1, 2004 © 2004 by the American College of Cardiology Foundation ISSN 0735-1097/04/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2004.03.047 Safety and Efficacy of Intravenously Administered Tedisamil for Rapid Conversion of Recent-Onset Atrial Fibrillation or Atrial Flutter Stefan H. Hohnloser, MD,* Paul Dorian, MD,† Matthias Straub, MD,‡ Katrin Beckmann,‡ Peter Kowey, MD§ Frankfurt and Hannover, Germany; Toronto, Canada; and Wynnewood, Pennsylvania OBJECTIVES The goal of the present study was to assess the efficacy and safety of intravenous tedisamil, a new antiarrhythmic compound, for conversion of recent-onset atrial fibrillation (AF) or atrial flutter (AFL) to normal sinus rhythm (NSR). BACKGROUND Tedisamil is a novel antiarrhythmic drug with predominantly class III activity. Its efficacy and safety for conversion of recent onset AF or AFL to NSR is not known. METHODS This was a multicenter, double-blind, randomized, placebo-controlled, sequential ascending dose-group trial. A total of 201 patients with symptomatic AF or AFL of 3 to 48 h duration were enrolled in a two-stage study. During stage 1, patients were randomized to receive tedisamil at 0.4 mg/kg body weight or matching placebo; during stage 2, patients received tedisamil at 0.6 mg/kg body weight or matching placebo. Treatments were given as single intravenous infusions. The primary study end point consisted of the percentage of patients converting to NSR for at least 60 s within 2.5 h. RESULTS Of 175 patients representing the intention-to-treat sample, conversion to NSR was observed in 41% (25/61) of the tedisamil 0.4 mg/kg group, 51% (27 of 53) of the tedisamil 0.6 mg/kg group, and 7% (4/59) of the placebo group (p Ͻ 0.001 for both tedisamil groups vs.
    [Show full text]
  • BP501T. MEDICINAL CHEMISTRY – II (Theory)
    BP501T. MEDICINAL CHEMISTRY – II (Theory) UNIT- III Notes Author Details Dr. Sidhartha Sankar Kar Assistant Professor Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha. Course Content: UNIT- III 10 Hours Study of the development of the following classes of drugs, Classification, mechanism of action, uses of drugs mentioned in the course, Structure activity relationship of selective class of drugs as specified in the course and synthesis of drugs superscripted (*) Anti-arrhythmic Drugs: Quinidine sulphate, Procainamide hydrochloride, Disopyramide phosphate*, Phenytoin sodium, Lidocaine hydrochloride, Tocainide hydrochloride, Mexiletine hydrochloride, Lorcainide hydrochloride, Amiodarone, Sotalol. Anti-hyperlipidemic agents: Clofibrate, Lovastatin, Cholesteramine and Cholestipol Coagulant & Anticoagulants: Menadione, Acetomenadione, Warfarin*, Anisindione, clopidogrel Drugs used in Congestive Heart Failure: Digoxin, Digitoxin, Nesiritide, Bosentan, Tezosentan. 1 ANTI-ARRHYTHMIC DRUGS Introduction Cardiac arrhythmias remain a major source of morbidity and mortality in developed countries. Cardiac arrhythmia is a disturbance in the conduction of impulse through the myocardial tissue. These cardiac arrhythmias may be caused from disorders in pacemaker function of the sinoatrial node thereby resulting into tachycardia, bradycardia, cardiac arrest, atrial flutter, atrial fibrillation and ventricular fibrillation. Hence, the antiarrhythmic agents are also termed as ‘antidysrhythmic drugs’ or
    [Show full text]
  • Pharmaabkommen A1 E
    Annex I - Pharmaceutical substances, which are free of duty_______________________________________________ Pharmaceutical substances which are Annex I free of duty CAS RN Name 136470-78-5 abacavir 129639-79-8 abafungin 792921-10-9 abagovomab 65195-55-3 abamectin 90402-40-7 abanoquil 183849-43-6 abaperidone 183552-38-7 abarelixe 332348-12-6 abatacept 143653-53-6 abciximab 111841-85-1 abecarnil 167362-48-3 abetimus 154229-19-3 abiraterone 137882-98-5 abitesartan 96566-25-5 ablukast 178535-93-8 abrineurin 91017-58-2 abunidazole 2627-69-2 acadesine 77337-76-9 acamprosate 55485-20-6 acaprazine 56180-94-0 acarbose 514-50-1 acebrochol 26976-72-7 aceburic acid 37517-30-9 acebutolol 32795-44-1 acecainide 77-66-7 acecarbromal 827-61-2 aceclidine 89796-99-6 aceclofenac 77-46-3 acedapsone 127-60-6 acediasulfone sodium 556-08-1 acedoben 80595-73-9 acefluranol 10072-48-7 acefurtiamine 70788-27-1 acefylline clofibrol 18428-63-2 acefylline piperazine 642-83-1 aceglatone 2490-97-3 aceglutamide 110042-95-0 acemannan 53164-05-9 acemetacin 131-48-6 aceneuramic acid 152-72-7 acenocoumarol 807-31-8 aceperone 61-00-7 acepromazine 13461-01-3 aceprometazine 42465-20-3 acequinoline 33665-90-6 acesulfame 118-57-0 acetaminosalol 97-44-9 acetarsol 59-66-5 acetazolamide 3031-48-9 acetergamine 299-89-8 acetiamine 2260-08-4 acetiromate 968-81-0 acetohexamide 546-88-3 acetohydroxamic acid 2751-68-0 acetophenazine 1 / 135 (As of: 1.4.2013) Annex I - Pharmaceutical substances, which are free of duty_______________________________________________ CAS RN Name 25333-77-1 acetorphine
    [Show full text]