Regulation of Fluid & Electrolyte Balance

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Fluid & Electrolyte Balance REGULATION OF FLUID & ELECTROLYTE BALANCE 1 REGULATION OF FLUID & ELECTROLYTE BALANCE The kidney is the primary organ that maintains the total volume, pH, and osmolarity of the extracellular fluid within narrow limits. The kidney accomplishes this by altering urine volume and osmolarity. The kidney, in turn, is regulated by neural, hormonal, and local factors. In today’s lab we will study how the kidney responds to changes in the composition of the extracellular fluid. OBJECTIVES: After completing this activity, students will be able to: 1. define fluid and electrolyte balance and to discuss the kidney’s role in its regulation. 2. understand the role of antidiuretic hormone (ADH), aldosterone, renin, and atrial natriuretic peptide (ANP) in regulating fluid and electrolyte balance and in maintaining homeostasis. 3. predict how changes in blood volume and osmolarity will alter urine composition (color, transparency, volume, specific gravity, and chloride concentration.) 4. analyze the results of case studies and explain the hormonal regulation occurring in each condition. 5. prepare and interpret graphs 6. use flow charts to model physiological changes that occur in response to disturbances in osmolarity or plasma volume. 7. use principles from chemistry (concentration and osmolarity), physics (specific gravity, density, transparency), mathematics (graphs, means), and physiology to explain the body’s responses to perturbations in fluid and electrolyte balance. 8. collaborate with team members to evaluate case studies. 9. communicate conclusions generated from the case studies during a class presentation 10. relate the changes in plasma osmolarity and volume that occur in these case studies to real world situations that may occur. REGULATION OF FLUID AND ELECTROLYTE BALANCE Have you ever noticed the need for a drink after eating that large bucket of popcorn at the movies? Or on television, patients entering the ER with substantial blood loss are immediately given intravenous fluids (an IV)? Both scenarios relate to fluid and electrolyte balance. What do these terms mean? Fluid refers to water. For water balance to occur, water intake through 2 ingested liquids and foods and cellular metabolism must equal water output via sweating, urine, feces, and breathing. Water balance is essential for the body to be properly hydrated, avoiding both dehydration and over-hydration. Electrolytes are inorganic compounds that dissociate in water to form ions. They get their name because they can conduct an electrical current in solution. Sodium is the most abundant ion of the extracellular fluid and is the main contributor to the osmolarity or solute concentration of blood. One of the key tasks of the kidneys is to regulate fluid and electrolyte balance by controlling the volume and composition of the urine. These adjustments are essential because the osmolarity of body fluids must be around 300 milliosmols/liter. There are three hormones that play key roles in regulating fluid and electrolyte balance: 1) antidiuretic hormone, released from the posterior pituitary; 2) aldosterone, secreted from the adrenal cortex; and 3) atrial natriuretic peptide, produced by the heart. We will consider the role of each in turn. Antidiuretic Hormone (ADH) is a hormone that prevents fluid loss and promotes the conservation of body water. The term antidiuretic is derived from anti, meaning against, and diuresis, which refers to fluid loss. The primary stimulus for ADH release from the posterior pituitary gland is an increase in blood osmolarity (that is, increased solute concentration and decreased water concentration). The elevation in blood osmolarity is detected in the hypothalamus by specialized neurons called osmoreceptors. ADH acts by increasing the reabsorption of water in the distal convoluted tubules and collecting ducts of the nephrons in the kidney. The net result of this mechanism is that water is conserved. Under these conditions a small volume of highly concentrated (hypertonic) urine is excreted. Another action of ADH is to stimulate thirst. This results in an increase in water intake, which lowers blood osmolarity and helps to restore homeostasis. If ADH is absent, as occurs in the disorder called diabetes insipidus, water reabsorption in the kidney is decreased dramatically and large volumes of dilute urine are excreted, up to 25 liters per day! Aldosterone is a hormone that regulates blood sodium levels. Aldosterone specifically increases sodium reabsorption in the distal convoluted tubule and collecting duct of the nephrons in the kidneys. The result of this mechanism is to conserve sodium. Because “water follows salt,” this may also lead to water retention when ADH is present. Another action of aldosterone is to increase the secretion of potassium by the kidney resulting in its decrease in the blood and increase in the urine. Aldosterone release from the adrenal cortex is triggered directly by an increase in potassium (primarily) or a decrease in sodium in the blood reaching the adrenal cortex. Aldosterone release is also stimulated by the activation of the renin-angiotensin system. In this mechanism, the juxtaglomerular cells of the kidneys release renin in response to a decrease in blood volume, a reduction in blood pressure, or stimulation by the sympathetic nervous system. Renin is an enzyme that converts a plasma protein called angiotensinogen to angiotensin I. Angiotensin I is in turn acted upon by angiotensin converting enzyme (ACE) to form Angiotensin II. Angiotensin II has two major actions: 1) it stimulates aldosterone release from the adrenal cortex, which increases sodium reabsorption and results in sodium conservation; and 2) it causes vasoconstriction, which elevates blood pressure. As a result of 3 these mechanisms, homeostasis is restored. Atrial natriuretic peptide (ANP) is a hormone that promotes both fluid and sodium loss by the kidneys. The name natriuretic actually means “salt excreting.” ANP release from the atria is stimulated when blood volume and pressure are elevated. ANP has three major effects: 1) it decreases aldosterone release, resulting in a decrease in sodium reabsorption and increased sodium loss in the urine; 2) it decreases ADH release, which decreases water reabsorption and increases water loss to lower blood volume and pressure; and 3) it decreases thirst. A practice table to help you summarize these hormones and their actions is located on page 15. BLOOD VOLUME AND OSMOLARITY AFFECT THE VOLUME AND COMPOSITION OF URINE The volume and composition of urine reflect one's state of hydration. For example, if Phil Physiology has a low fluid intake and becomes dehydrated, he will excrete a small volume of concentrated urine. His body is trying to conserve water. Concentrated urine has a high specific gravity. Specific gravity is the ratio of the weight of a substance to the weight of an equal volume of water. Water has a specific gravity of 1.000, since equal volumes of water have equal weights at equal temperatures. The specific gravity of normal urine ranges from 1.001 to 1.035 and depends on the amount of solutes. The greater the concentration of solutes, the higher the specific gravity will be. At the other extreme, Anna Anatomy has a high fluid intake and is over-hydrated. She will excrete a large volume of dilute urine having a low specific gravity. Let’s explore four specific cases in which blood volume and/or blood osmolarity has been perturbed. Use your understanding of the factors that regulate hormone release and the subsequent actions of the hormones to predict the effects of these perturbations on urine volume and osmolarity. ACTIVITY: For each case, work with your team to predict how the parameters listed would be altered (increased, decreased, or not changed.) Put an , , or nc (no change) on each line. The information in the introduction to this lab will be helpful! 4 CASE I: BLOOD VOLUME EXPANSION / NO CHANGE IN BLOOD OSMOLARITY Can you think of a situation in which blood volume would be increased and blood osmolarity would be unchanged? ___________________________________________________________________________ SITUATION: Blood volume: Ý Blood osmolarity: no change Ý Blood volume ___ Blood pressure Y ___ Atrial naturetic peptide (ANP) ___ ADH ___ Thirst ___ Aldosterone ___ water reabsorption in ___ sodium reabsorption DCT and CD ___ blood volume after in DCT and CD drinking water ___ blood volume and ___ sodium excretion in pressure the urine ___ water in urine CASE II: Blood Volume Expansion and Decrease in Osmolarity Can you think of a situation in which blood volume would be increased and blood osmolarity would be decreased? ___________________________________________________________________________ 5 SITUATION: Blood volume: ñ ò Blood volume Blood osmolarity: ò ò Blood sodium ___ ADH ___ Aldosterone release ___ water reabsorption in DCT and CD ___ sodium reabsorption in DCT and CD ___ urine volume and pressure ___ sodium excretion in (dilute or concentrated?) the urine CASE III: Blood Volume Unchanged and Increase in Osmolarity Can you think of a situation in which blood volume is unchanged and blood osmolarity would be increased? ___________________________________________________________________________ SITUATION: Blood volume: no change ñ Blood osmolarity Blood osmolarity: ñ (hi blood sodium) ___ Aldosterone release ___ Osmoreceptors in hypothalamus ___ ADH release from posterior pituitary ___ thirst ___ water reabsorption in DCT and CD ___ urine volume and pressure (dilute or concentrated?)
Recommended publications
  • Detection of Continuous Erythropoietin Receptor Activator in Blood And
    Letters to the Editor 5 A Pugliese-Ciaccio, Catanzaro; Dipartimento di Oncologia, 1.0 Biologia e Genetica Università degli Studi di Genova, Italy. Funding: supported from Associazione Italiana Ricerca sul Cancro 0.8 (AIRC) (to FM and MF) and Fondazione ‘Amelia Scorza’ β2-mneg Onlus, Cosenza, Italy. 0.6 Acknowledgments: we would like to acknowledge Dr. Vincenzo not treated Callea, Prof Luca Baldini, Dr Ugo Consoli and Dr Serena Matis 0.4 for their contribution and useful suggestions.We thank Laura Veroni and Brigida Gulino for precious secretarial assistance. Proportion 0.2 p=0.002 pos β β2-m Key words: 2-microglobulin, CD38, IgVH mutational status, CLL, prognosis. 0.0 Correspondence: Fortunato Morabito, Unità Operativa Complessa di Ematologia, Dipartimento di Medicina Interna, 0 3 6 9 12 15 Azienda Ospedaliera di Cosenza, Viale della Repubblica, years 87100 Cosenza, Italy. Phone: international +39.0984.681329. B Fax: international +39.0984.791751. Univariate analysis E-mail: [email protected] Risk categories HR (95% C.I., p value) Citation: Gentile M, Cutrona G, Neri A, Molica S, Ferrarini M, No factor 1 and Morabito F. Predictive value of B2-microglobulin (B2-m) levels One factor 1,5 (0.7-3.4, p=ns) in chronic lymphocytic leukemia since Binet A stages. Two factor 5.0 (2.5-10.2, p<0.0001) Haematologica 2009; 94:887-888. Three factors 15.4 (7.3-32.5, p<0.0001) doi:10.3324/haematol.2009.005561 C 1.0 References 0.8 1. Rossi D, Zucchetto A, Rossi FM, Capello D, Cerri M, no factor Deambrogi C, et al.
    [Show full text]
  • Mixing Alcohol with Your Diabetes You Can Drink If Your Blood Sugar Is Well Controlled – and You Take the Right Steps to Be Safe
    Diabetes Education – #16 Mixing Alcohol with Your Diabetes You can drink if your blood sugar is well controlled – and you take the right steps to be safe. If you have diabetes, you may think that drinking is off limits. Not so! Keeping an eye on how much and what you drink can help you drink more safely. You can avoid the alcohol-related pitfalls: • low blood sugar • weight gain • high blood pressure. Before you have a drink, ask yourself the 3 questions below. The ADA (American Diabetes Association) suggests these: • Is my diabetes in good control? • Does my health care team agree that I can have alcohol? • Do I know how alcohol can affect me and my blood sugar? If you can answer "yes" to all 3 questions, it is likely OK to have a drink. But make sure you know the potential effects of drinking. And, make sure you know your personal limits. What happens when you drink? Between meals and while you sleep, the liver makes new glucose (sugar). The liver then sends this sugar into the bloodstream. Here, it helps to prevent or slow down a low blood sugar reaction. When you drink, it disrupts the process. Substances form when alcohol breaks down in the liver. These substances block the liver from making new glucose. Blood sugars fall and you can quickly become too low. Diabetes Education – #16 Treat hypoglycemia quickly Drinking can affect your blood sugar for up to 12 hours. So test your blood sugar before going to bed. If it is in the 100 – 140 mg/dL range, you may be fine.
    [Show full text]
  • Extracellular Volume in the Brain- the Relevance of the Chloride Space
    Pediat. Res. 12: 635-645 (1978) A Review: Extracellular Volume in the Brain- The Relevance of the Chloride Space DONALD B. CHEEK(lZ2'AND A. BARRY HOLT Royal Children's Hospital Research Foundation, Parkville, Victoria, Australia By simultaneous infusion of anions into the blood and into the concerning brain water and the chloride space (C1 space) as a ventriculocisternal area it is possible to define two compart- measure of extracellular volume (ECV) . ments, one of blood plus brain and one of cerebrospinal fluid The rhesus monkey (Macaca mulatta) is a useful experimental (CSF) plus brain, with a zone of slow equilibration within the model. Comparisons of the macaque brain with the human brain brain where the two components meet. It would appear that during can prove rewarding. Our work on the growth of halogens (Br- and I-) have a much more remarkable and rapid the macaque brain and the distribution of C1- and H,O extends entrance into brain tissue from blood and, with increasing blood from midgestation (80 days) to term (165 days) and well into concentration, penetrate the second compartment significantly. the postnatal period (120 days after birth). The results of this Chloride is more strongly transported across the choroid plexus work have been documented in a recent publication (21). from blood to CSF (in comparison with I- or Br-). Chloride should resemble Br- and I- in diffusing rapidly through the intercellular canals back into the blood. However, knowledge I. CSF CIRCULATION AND ITS BARRIERS concerning C1- distribution dynamics is meager. The dynamics of chloride distribution, diffusion, and transport Homeostasis and the constancy of Claude Bernard's "Milieu using, for example, 36Cl-, 38Cl-, and stable C1-, have not been Interne" is essential for normal function of the central nervous studied sufficiently (in the two compartments), but circumstan- system (CNS).
    [Show full text]
  • Managing a High Output Ostomy: for Patients with an Ileostomy Or Jejunostomy
    Form: D-8844 Managing a High Output Ostomy: For patients with an ileostomy or jejunostomy Read this brochure to learn: • what is a high output ostomy • why is a high output ostomy a problem • what foods and drinks can help you manage it What is a high output ostomy? A high output ostomy is when your ostomy output (the amount of waste coming out of your stoma) is more than 1.2 litres (about 5 cups) in a day. Signs of a high output ostomy include: • having to empty your stoma bag more than 8 times a day • having watery output Why is it a problem? You may become dehydrated (your body does not get enough water) if you have too much output. Your body may not absorb fluids well when you have a high output ostomy. Signs of dehydration are: • feeling thirsty • peeing less than usual • having dark yellow pee • losing weight • having dry lips and mouth • having a headache, dizziness or fatigue 2 How can I manage a high output ostomy? Making some changes to how you eat and drink can help manage a high output ostomy. Your health care team may also give you medicine to help manage a high output ostomy. 9 Have a small meal every 2 to 3 hours. This helps your body absorb food better and meet your nutrition needs. 9 Chew your food very well. This makes it easier for your body to break down and use the food you eat. 9 Do not drink fluids while you eat. Wait 30 minutes before and after a meal before drinking fluids.
    [Show full text]
  • Medicines That Affect Fluid Balance in the Body
    the bulk of stools by getting them to retain liquid, which encourages the Medicines that affect fluid bowels to push them out. balance in the body Osmotic laxatives e.g. Lactulose, Macrogol - these soften stools by increasing the amount of water released into the bowels, making them easier to pass. Older people are at higher risk of dehydration due to body changes in the ageing process. The risk of dehydration can be increased further when Stimulant laxatives e.g. Senna, Bisacodyl - these stimulate the bowels elderly patients are prescribed medicines for chronic conditions due to old speeding up bowel movements and so less water is absorbed from the age. stool as it passes through the bowels. Some medicines can affect fluid balance in the body and this may result in more water being lost through the kidneys as urine. Stool softener laxatives e.g. Docusate - These can cause more water to The medicines that can increase risk of dehydration are be reabsorbed from the bowel, making the stools softer. listed below. ANTACIDS Antacids are also known to cause dehydration because of the moisture DIURETICS they require when being absorbed by your body. Drinking plenty of water Diuretics are sometimes called 'water tablets' because they can cause you can reduce the dry mouth, stomach cramps and dry skin that is sometimes to pass more urine than usual. They work on the kidneys by increasing the associated with antacids. amount of salt and water that comes out through the urine. Diuretics are often prescribed for heart failure patients and sometimes for patients with The major side effect of antacids containing magnesium is diarrhoea and high blood pressure.
    [Show full text]
  • Pathophysiology of Acid Base Balance: the Theory Practice Relationship
    Intensive and Critical Care Nursing (2008) 24, 28—40 ORIGINAL ARTICLE Pathophysiology of acid base balance: The theory practice relationship Sharon L. Edwards ∗ Buckinghamshire Chilterns University College, Chalfont Campus, Newland Park, Gorelands Lane, Chalfont St. Giles, Buckinghamshire HP8 4AD, United Kingdom Accepted 13 May 2007 KEYWORDS Summary There are many disorders/diseases that lead to changes in acid base Acid base balance; balance. These conditions are not rare or uncommon in clinical practice, but every- Arterial blood gases; day occurrences on the ward or in critical care. Conditions such as asthma, chronic Acidosis; obstructive pulmonary disease (bronchitis or emphasaemia), diabetic ketoacidosis, Alkalosis renal disease or failure, any type of shock (sepsis, anaphylaxsis, neurogenic, cardio- genic, hypovolaemia), stress or anxiety which can lead to hyperventilation, and some drugs (sedatives, opoids) leading to reduced ventilation. In addition, some symptoms of disease can cause vomiting and diarrhoea, which effects acid base balance. It is imperative that critical care nurses are aware of changes that occur in relation to altered physiology, leading to an understanding of the changes in patients’ condition that are observed, and why the administration of some immediate therapies such as oxygen is imperative. © 2007 Elsevier Ltd. All rights reserved. Introduction the essential concepts of acid base physiology is necessary so that quick and correct diagnosis can The implications for practice with regards to be determined and appropriate treatment imple- acid base physiology are separated into respi- mented. ratory acidosis and alkalosis, metabolic acidosis The homeostatic imbalances of acid base are and alkalosis, observed in patients with differing examined as the body attempts to maintain pH bal- aetiologies.
    [Show full text]
  • GFR (Glomerular Filtration Rate) a Key to Understanding How Well Your Kidneys Are Working
    GFR (Glomerular Filtration Rate) A Key to Understanding How Well Your Kidneys Are Working www.kidney.org About the Information in this Booklet Did you know that the National Kidney Foundation (NKF) offers guidelines and commentaries that help your healthcare provider make decisions about your medical treatment? The information in this booklet is based on those recommended guidelines. Stages of Kidney Disease There are five stages of kidney disease. They are shown in the table below. Your healthcare provider determines your stage of kidney disease, based on the presence of kidney damage and your glomerular filtration rate (GFR), which is a measure of your kidney function. Your treatment is based on your stage of kidney disease. Speak to your healthcare provider if you have any questions about your stage of kidney disease or your treatment. STAGES OF KIDNEY DISEASE Glomerular Stage Description Filtration Rate (GFR)* Kidney damage (e.g., protein 1 90 or above in the urine) with normal GFR Kidney damage with mild 2 60 to 89 decrease in GFR 3 Moderate decrease in GFR 30 to 59 4 Severe reduction in GFR 15 to 29 5 Kidney failure Less than 15 *Your GFR number tells your healthcare provider how much kidney function you have. As chronic kidney disease progresses, your GFR number decreases. 2 NATIONAL KIDNEY FOUNDATION Why is GFR Important? Most people are aware that their blood pressure and cholesterol numbers are important in knowing their risk for heart and blood vessel disease. Yet few know about glomerular filtration rate (GFR), one of the numbers that tells them about the health of their kidneys.
    [Show full text]
  • L7-Renal Regulation of Body Fluid [PDF]
    Iden8fy and describe the role of the Sensors and Objectives Effectors in the Abbreviations renal regulaon of body fluid volume ADH An8diurec hormone & osmolality ECF Extracellular fluid ECV Effec8ve Circulang Iden8fy the site and Volume describe the Describe the role of ANF Atrial natriure8c factor influence of the kidney in aldosterone on regulaon of body ANP ATRIAL NATRIURETIC PEPTIDE reabsorp8on of Na+ fluid volume & in the late distal osmolality tubules. PCT Proximal convoluted tubules AVP arginine vasopressin Understand the role of ADH in the reabsorp8on of water and urea Mind map Blood volume remains exactly constant despite extreme changes in daily fluid intake and the reason for that is : 1- slight change in blood volume ! Renal regulaNon of marked change in Extra Cellular cardiac output Volume Is a reflex 2- a slight change mechanism in RegulaNon of ECF Thus, regulaon of in cardiac output which variables volume = Na+ also dependent !large change in reflecng total RegulaNon of body upon blood pressure body sodium and Na+= RegulaNon BP baroreceptors. 3-slight change in ECV are monitor by blood pressure ! appropriate sensor large change in (receptors) URINE OUTPUT . Con. Blood Volume regulation : Sensors Effectors Affecng 1- Rennin angiotensin, aldosterone. 1- Caro8d sinus Urinary Na excre8on. 2- ADH ( the result will cause a change in NA+ and water excre8on either 3- Renal sympathe8c nerve by increasing it or 2- Volume receptors decreasing it ) . (large vein, atria, intrarenalartery) 4- ANP Con. Blood Volume regulation : Cardiac atria Low pressure receptors Pulmonary vasculature Central vascular sensors Carod sinus Sensors in the CNS High pressure receptors AorNc arch Juxtaglomerular apparatus (renal afferent arteriole) Sensors in the liver ECF volume Receptors Con.
    [Show full text]
  • Water Requirements, Impinging Factors, and Recommended Intakes
    Rolling Revision of the WHO Guidelines for Drinking-Water Quality Draft for review and comments (Not for citation) Water Requirements, Impinging Factors, and Recommended Intakes By A. Grandjean World Health Organization August 2004 2 Introduction Water is an essential nutrient for all known forms of life and the mechanisms by which fluid and electrolyte homeostasis is maintained in humans are well understood. Until recently, our exploration of water requirements has been guided by the need to avoid adverse events such as dehydration. Our increasing appreciation for the impinging factors that must be considered when attempting to establish recommendations of water intake presents us with new and challenging questions. This paper, for the most part, will concentrate on water requirements, adverse consequences of inadequate intakes, and factors that affect fluid requirements. Other pertinent issues will also be mentioned. For example, what are the common sources of dietary water and how do they vary by culture, geography, personal preference, and availability, and is there an optimal fluid intake beyond that needed for water balance? Adverse consequences of inadequate water intake, requirements for water, and factors that affect requirements Adverse Consequences Dehydration is the adverse consequence of inadequate water intake. The symptoms of acute dehydration vary with the degree of water deficit (1). For example, fluid loss at 1% of body weight impairs thermoregulation and, thirst occurs at this level of dehydration. Thirst increases at 2%, with dry mouth appearing at approximately 3%. Vague discomfort and loss of appetite appear at 2%. The threshold for impaired exercise thermoregulation is 1% dehydration, and at 4% decrements of 20-30% is seen in work capacity.
    [Show full text]
  • How Do You Look After a Vomiting Drunk Friend?
    Alcohol and Young People How do you look after a vomiting drunk friend? Vomiting can be life-threatening even when The police do not routinely attend an ambulance alcohol is not involved. If a vomiting person call, even if there are illegal drugs involved. The has been drinking alcohol, it can cause them to only reason the police will usually attend is if the lose a natural response called the ‘gag reflex’. paramedics ask them to be there. This is usually With no gag reflex, a person is in danger of due to another crime taking place or the threat of choking on their own vomit, particularly if they violence. lose consciousness. Helping a drunk friend can be difficult and potentially Whether you are drinking alcohol or not, there dangerous. Often, the person may be aggressive are some simple things you can do to look after a and uncooperative. While it is important to try to vomiting, drunk friend: keep your friend safe, the first priority must always stay with them and monitor them closely be your personal safety. Never be afraid to pass the problem over to someone else, particularly if they keep them as upright as possible and never become violent. If in doubt, call 000. lay them down give them a plastic bucket or bowl and make ALWAYS REMEMBER, YOU ARE A FRIEND, sure they are somewhere safe where they NOT A DOCTOR can be watched get them to rinse their mouth out regularly keep them warm reassure them if in doubt, call 000 immediately What causes vomiting? sheet ‘Alcohol Poisoning’).
    [Show full text]
  • Renal Effects of Atrial Natriuretic Peptide Infusion in Young and Adult ~Ats'
    003 1-3998/88/2403-0333$02.00/0 PEDIATRIC RESEARCH Vol. 24, No. 3, 1988 Copyright O 1988 International Pediatric Research Foundation, Inc. Printed in U.S.A. Renal Effects of Atrial Natriuretic Peptide Infusion in Young and Adult ~ats' ROBERT L. CHEVALIER, R. ARIEL GOMEZ, ROBERT M. CAREY, MICHAEL J. PEACH, AND JOEL M. LINDEN WITH THE TECHNICAL ASSISTANCE OF CATHERINE E. JONES, NANCY V. RAGSDALE, AND BARBARA THORNHILL Departments of Pediatrics [R.L.C., A.R.G., C.E.J., B. T.], Internal Medicine [R.M.C., J.M. L., N. V.R.], Pharmacology [M.J.P.], and Physiology [J.M.L.], University of Virginia, School of Medicine, Charlottesville, Virginia 22908 ABSTRAm. The immature kidney appears to be less GFR, glomerular filtration rate responsive to atrial natriuretic peptide (ANP) than the MAP, mean arterial pressure mature kidney. It has been proposed that this difference UeC~pV,urinary cGMP excretion accounts for the limited ability of the young animal to UN,V, urinary sodium excretion excrete a sodium load. To delineate the effects of age on the renal response to exogenous ANP, Sprague-Dawley rats were anesthetized for study at 31-32 days of age, 35- 41 days of age, and adulthod. Synthetic rat A* was infused intravenously for 20 min at increasing doses rang- By comparison to the adult kidney, the immature kidney ing from 0.1 to 0.8 pg/kg/min, and mean arterial pressure, responds to volume expansion with a more limited diuresis and glomerular filtration rate, plasma ANP concentration, natriuresis (I). A number of factors have been implicated to urine flow rate, and urine sodium excretion were measured explain this phenomenon in the neonatal kidney, including a at each dose.
    [Show full text]
  • 1. Urine Diversion
    1. Urine diversion – hygienic risks and microbial guidelines for reuse © Caroline Schönning Department of Parasitology, Mycology and Environmental Microbiology Swedish Institute for Infectious Disease Control (SMI) SE-171 82 Solna Sweden [email protected] This chapter is based on the doctoral thesis published by the author in February 2001: Höglund, C. (2001). Evaluation of microbial health risks associated with the reuse of source separated human urine. PhD thesis, Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden. ISBN 91-7283-039-5. The full thesis (87 pages, without published papers) can be downloaded from: http://www.lib.kth.se/Sammanfattningar/hoglund010223.pdf Dr Håkan Jönsson, Swedish University for Agricultural Sciences is acknowledged for compiling Section 3, and Dr Jan-Olof Drangert, Linköping University is acknowledged for compiling Section 9. TABLE OF CONTENTS TABLE OF CONTENTS 1 1. INTRODUCTION 2 1.1 History 2 1.2 Nutrient content and volume of domestic wastewater 3 2. URINE DIVERSION 3 2.1 Urine diversion in Sweden 4 2.2 Source-separation of urine in other parts of the world 6 2.3 Ecological Sanitation 6 3. URINE AS A FERTILISER IN AGRICULTURE 7 3.1 Characteristics of diverted human urine 7 3.2 Collection and storage of the urine – developing countries 7 3.3 Urine as a fertiliser 8 3.4 Crops to fertilise 9 3.5 Dosage 9 3.6 Fertilising experiments 10 3.7 Acceptance 11 4. PATHOGENIC MICROORGANISMS IN URINE 11 5. FAECAL CONTAMINATION 13 5.1 Analysis of indicator bacteria to determine faecal contamination 14 5.2 Analysis of faecal sterols to determine faecal contamination 15 5.3 Discussion 16 6.
    [Show full text]