Robust Signal-To-Noise Ratio Estimation Based on Waveform Amplitude Distribution Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blind Denoising Autoencoder
1 Blind Denoising Autoencoder Angshul Majumdar In recent times a handful of papers have been published on Abstract—The term ‘blind denoising’ refers to the fact that the autoencoders used for signal denoising [10-13]. These basis used for denoising is learnt from the noisy sample itself techniques learn the autoencoder model on a training set and during denoising. Dictionary learning and transform learning uses the trained model to denoise new test samples. Unlike the based formulations for blind denoising are well known. But there has been no autoencoder based solution for the said blind dictionary learning and transform learning based approaches, denoising approach. So far autoencoder based denoising the autoencoder based methods were not blind; they were not formulations have learnt the model on a separate training data learning the model from the signal at hand. and have used the learnt model to denoise test samples. Such a The main disadvantage of such an approach is that, one methodology fails when the test image (to denoise) is not of the never knows how good the learned autoencoder will same kind as the models learnt with. This will be first work, generalize on unseen data. In the aforesaid studies [10-13] where we learn the autoencoder from the noisy sample while denoising. Experimental results show that our proposed method training was performed on standard dataset of natural images performs better than dictionary learning (K-SVD), transform (image-net / CIFAR) and used to denoise natural images. Can learning, sparse stacked denoising autoencoder and the gold the learnt model be used to recover images from other standard BM3D algorithm. -
A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers
Sensors 2011, 11, 9233-9241; doi:10.3390/s111009233 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article A Comparison of Delayed Self-Heterodyne Interference Measurement of Laser Linewidth Using Mach-Zehnder and Michelson Interferometers Albert Canagasabey 1,2,*, Andrew Michie 1,2, John Canning 1, John Holdsworth 3, Simon Fleming 2, Hsiao-Chuan Wang 1,2 and Mattias L. Åslund 1 1 Interdisciplinary Photonics Laboratories (iPL), School of Chemistry, University of Sydney, 2006, NSW, Australia; E-Mails: [email protected] (A.M.); [email protected] (J.C.); [email protected] (H.-C.W.); [email protected] (M.L.Å.) 2 Institute of Photonics and Optical Science (IPOS), School of Physics, University of Sydney, 2006, NSW, Australia; E-Mail: [email protected] (S.F.) 3 SMAPS, University of Newcastle, Callaghan, NSW 2308, Australia; E-Mail: [email protected] (J.H.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-2-9351-1984. Received: 17 August 2011; in revised form: 13 September 2011 / Accepted: 23 September 2011 / Published: 27 September 2011 Abstract: Linewidth measurements of a distributed feedback (DFB) fibre laser are made using delayed self heterodyne interferometry (DHSI) with both Mach-Zehnder and Michelson interferometer configurations. Voigt fitting is used to extract and compare the Lorentzian and Gaussian linewidths and associated sources of noise. The respective measurements are wL (MZI) = (1.6 ± 0.2) kHz and wL (MI) = (1.4 ± 0.1) kHz. The Michelson with Faraday rotator mirrors gives a slightly narrower linewidth with significantly reduced error. -
Effect of Moisture Distribution on Velocity and Waveform of Ultrasonic-Wave Propagation in Mortar
materials Article Effect of Moisture Distribution on Velocity and Waveform of Ultrasonic-Wave Propagation in Mortar Shinichiro Okazaki 1,* , Hiroma Iwase 2, Hiroyuki Nakagawa 3, Hidenori Yoshida 1 and Ryosuke Hinei 4 1 Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi, Takamatsu, Kagawa 761-0396, Japan; [email protected] 2 Chuo Consultants, 2-11-23 Nakono, Nishi-ku, Nagoya, Aichi 451-0042, Japan; [email protected] 3 Shikoku Research Institute Inc., 2109-8 Yashima, Takamatsu, Kagawa 761-0113, Japan; [email protected] 4 Building Engineering Group, Civil Engineering and Construction Department, Shikoku Electric Power Co., Inc., 2-5 Marunouchi, Takamatsu, Kagawa 760-8573, Japan; [email protected] * Correspondence: [email protected] Abstract: Considering that the ultrasonic method is applied for the quality evaluation of concrete, this study experimentally and numerically investigates the effect of inhomogeneity caused by changes in the moisture content of concrete on ultrasonic wave propagation. The experimental results demonstrate that the propagation velocity and amplitude of the ultrasonic wave vary for different moisture content distributions in the specimens. In the analytical study, the characteristics obtained experimentally are reproduced by modeling a system in which the moisture content varies between the surface layer and interior of concrete. Keywords: concrete; ultrasonic; water content; elastic modulus Citation: Okazaki, S.; Iwase, H.; 1. Introduction Nakagawa, H.; Yoshida, H.; Hinei, R. Effect of Moisture Distribution on As many infrastructures deteriorate at an early stage, long-term structure management Velocity and Waveform of is required. If structural deterioration can be detected as early as possible, the scale of Ultrasonic-Wave Propagation in repair can be reduced, decreasing maintenance costs [1]. -
Bernoulli-Gaussian Distribution with Memory As a Model for Power Line Communication Noise Victor Fernandes, Weiler A
XXXV SIMPOSIO´ BRASILEIRO DE TELECOMUNICAC¸ OES˜ E PROCESSAMENTO DE SINAIS - SBrT2017, 3-6 DE SETEMBRO DE 2017, SAO˜ PEDRO, SP Bernoulli-Gaussian Distribution with Memory as a Model for Power Line Communication Noise Victor Fernandes, Weiler A. Finamore, Mois´es V. Ribeiro, Ninoslav Marina, and Jovan Karamachoski Abstract— The adoption of Additive Bernoulli-Gaussian Noise very useful to come up with a as simple as possible models (ABGN) as an additive noise model for Power Line Commu- of PLC noise, similar to the additive white Gaussian noise nication (PLC) systems is the subject of this paper. ABGN is a (AWGN) model. model that for a fraction of time is a low power noise and for the remaining time is a high power (impulsive) noise. In this context, In this regard, we introduce the definition of a simple and we investigate the usefulness of the ABGN as a model for the useful mathematical model for the noise perturbing the data additive noise in PLC systems, using samples of noise registered transmission over PLC channel that would be a helpful tool. during a measurement campaign. A general procedure to find the With this goal in mind, an investigation of the usefulness of model parameters, namely, the noise power and the impulsiveness what we call additive Bernoulli-Gaussian noise (ABGN) as a factor is presented. A strategy to assess the noise memory, using LDPC codes, is also examined and we came to the conclusion that model for the noise perturbing the digital communication over ABGN with memory is a consistent model that can be used as for PLC channel is discussed. -
Introduction to Noise Radar and Its Waveforms
sensors Article Introduction to Noise Radar and Its Waveforms Francesco De Palo 1, Gaspare Galati 2 , Gabriele Pavan 2,* , Christoph Wasserzier 3 and Kubilay Savci 4 1 Department of Electronic Engineering, Tor Vergata University of Rome, now with Rheinmetall Italy, 00131 Rome, Italy; [email protected] 2 Department of Electronic Engineering, Tor Vergata University and CNIT-Consortium for Telecommunications, Research Unit of Tor Vergata University of Rome, 00133 Rome, Italy; [email protected] 3 Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR, 53343 Wachtberg, Germany; [email protected] 4 Turkish Naval Research Center Command and Koc University, Istanbul, 34450 Istanbul,˙ Turkey; [email protected] * Correspondence: [email protected] Received: 31 July 2020; Accepted: 7 September 2020; Published: 11 September 2020 Abstract: In the system-level design for both conventional radars and noise radars, a fundamental element is the use of waveforms suited to the particular application. In the military arena, low probability of intercept (LPI) and of exploitation (LPE) by the enemy are required, while in the civil context, the spectrum occupancy is a more and more important requirement, because of the growing request by non-radar applications; hence, a plurality of nearby radars may be obliged to transmit in the same band. All these requirements are satisfied by noise radar technology. After an overview of the main noise radar features and design problems, this paper summarizes recent developments in “tailoring” pseudo-random sequences plus a novel tailoring method aiming for an increase of detection performance whilst enabling to produce a (virtually) unlimited number of noise-like waveforms usable in different applications. -
EP Signal to Noise in Emp 2
TN0000909 – Former Doc. No. TECN1852625 – New Doc. No. Rev. 02 Page 1 of 5 Understanding the EP Signal-to-Noise Calculation in Empower 2 This document: • Provides a definition of the 2005 European Pharmacopeia (EP) signal-to-noise ratio • Describes the built-in EP S/N calculation in Empower™ 2 • Describes the custom field necessary to determine EP S/N using noise from a blank injection. 2005 European Pharmacopeia (EP) Definition: Signal-to-Noise Ratio The signal-to-noise ratio (S/N) influences the precision of quantification and is calculated by the equation: 2H S/N = λ where: H = Height of the peak (Figure 1) corresponding to the component concerned, in the chromatogram obtained with the prescribed reference solution, measured from the maximum of the peak to the extrapolated baseline of the signal observed over a distance equal to 20 times the width at half-height. λ = Range of the background noise in a chromatogram obtained after injection or application of a blank, observed over a distance equal to 20 times the width at half- height of the peak in the chromatogram obtained with the prescribed reference solution and, if possible, situated equally around the place where this peak would be found. Figure 1 – Peak Height Measurement TN0000909 – Former Doc. No. TECN1852625 – New Doc. No. Rev. 02 Page 2 of 5 In Empower 2 software, the EP Signal-to-Noise (EP S/N) is determined in an automated fashion and does not require a blank injection. The intention of this calculation is to preserve the sense of the EP calculation without requiring a separate blank injection. -
Measurement and Estimation of the Mode Partition Coefficient K
Measurement and Estimation of the Mode Partition Coefficient k Rick Pimpinella and Jose Castro IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force November 2012, San Antonio, TX Background & Objective Background: Mode Partition Noise in MMF channel links is caused by pulse-to-pulse power fluctuations among VCSEL modes and differential delay due to dispersion in the fiber (Power independent penalty) “k” is an index used to describe the degree of mode fluctuations and takes on a value between 0 and 1, called the mode partition coefficient [1,2] Currently the IEEE link model assumes k = 0.3 It has been discussed that a new link model requires validation of k The measurement & estimation of k is challenging due to several conditions: Low sensitivity of detectors at 850nm The presence of additional noise components in VCSEL-MMF channels (RIN, MN, Jitter – intensity fluctuations, reflection noise, thermal noise, …) Differences in VCSEL designs Objective: Provide an experimental estimate of the value of k for VCSELs Additional work in progress 2 MPN Theory Originally derived for Fabry-Perot lasers and SMF [3] Assumptions: Total power of all modes carried by each pulse is constant Power fluctuations among modes are anti-correlated Mechanism: When modes (different wavelengths) travel at the same speed their fluctuations remain anti-correlated and the resultant pulse-to-pulse noise is zero. When modes travel in a dispersive medium the modes undergo different delays resulting in pulse distortions and a noise penalty. Example: Two VCSEL modes transmitted in a SMF undergoing chromatic dispersion: START END Optical Waveform @ Detector START t END With mode power fluctuations Decision Region Shorter Wavelength Time (arrival) t slope DL Time (arrival) Longer Wavelength Time (arrival) 3 Example of Intensity Fluctuation among VCSEL modes MPN can be observed using an Optical Spectrum Analyzer (OSA). -
Introduction to Noise Measurements on Business Machines (Bo0125)
BO 0125-11 Introduction to Noise Measurements on Business Machines by Roger Upton, B.Sc. Introduction In recent years, manufacturers of DIN 45 635 pt.19 ization committees in the pursuit of business machines, that is computing ANSI Si.29, (soon to be superced- harmonization, meaning that the stan- and office machines, have come under ed by ANSI S12.10) dards agree with each other in the increasing pressure to provide noise ECMA 74 bulk of their requirements. This appli- data on their products. For instance, it ISO/DIS 7779 cation note first discusses some acous- is becoming increasingly common to tic measurement parameters, and then see noise levels advertised, particular- With four separate standards in ex- the measurements required by the ly for printers. A number of standards istence, one might expect some con- various standards. Finally, it describes have been written governing how such siderable divergence in their require- some Briiel & Kjaer measurement sys- noise measurements should be made, ments. However, there has been close terns capable of making the required namely: contact between the various standard- measurements. Introduction to Noise Measurement Parameters The standards referred to in the previous section call for measure• ments of sound power and sound pres• sure. These measurements can then be used in a variety of ways, such as noise labelling, prediction of installation noise levels, comparison of noise emis• sions of products, and production con• trol. Sound power and sound pressure are fundamentally different quanti• ties. Sound power is a measure of the ability of a device to make noise. It is independent of the acoustic environ• ment. -
The Physics of Sound 1
The Physics of Sound 1 The Physics of Sound Sound lies at the very center of speech communication. A sound wave is both the end product of the speech production mechanism and the primary source of raw material used by the listener to recover the speaker's message. Because of the central role played by sound in speech communication, it is important to have a good understanding of how sound is produced, modified, and measured. The purpose of this chapter will be to review some basic principles underlying the physics of sound, with a particular focus on two ideas that play an especially important role in both speech and hearing: the concept of the spectrum and acoustic filtering. The speech production mechanism is a kind of assembly line that operates by generating some relatively simple sounds consisting of various combinations of buzzes, hisses, and pops, and then filtering those sounds by making a number of fine adjustments to the tongue, lips, jaw, soft palate, and other articulators. We will also see that a crucial step at the receiving end occurs when the ear breaks this complex sound into its individual frequency components in much the same way that a prism breaks white light into components of different optical frequencies. Before getting into these ideas it is first necessary to cover the basic principles of vibration and sound propagation. Sound and Vibration A sound wave is an air pressure disturbance that results from vibration. The vibration can come from a tuning fork, a guitar string, the column of air in an organ pipe, the head (or rim) of a snare drum, steam escaping from a radiator, the reed on a clarinet, the diaphragm of a loudspeaker, the vocal cords, or virtually anything that vibrates in a frequency range that is audible to a listener (roughly 20 to 20,000 cycles per second for humans). -
Airspace: Seeing Sound Grades
National Aeronautics and Space Administration GRADES K-8 Seeing Sound airspace Aeronautics Research Mission Directorate Museum in a BO SerieXs www.nasa.gov MUSEUM IN A BOX Materials: Seeing Sound In the Box Lesson Overview PVC pipe coupling Large balloon In this lesson, students will use a beam of laser light Duct tape to display a waveform against a flat surface. In doing Super Glue so, they will effectively“see” sound and gain a better understanding of how different frequencies create Mirror squares different sounds. Laser pointer Tripod Tuning fork Objectives Tuning fork activator Students will: 1. Observe the vibrations necessary to create sound. Provided by User Scissors GRADES K-8 Time Requirements: 30 minutes airspace 2 Background The Science of Sound Sound is something most of us take for granted and rarely do we consider the physics involved. It can come from many sources – a voice, machinery, musical instruments, computers – but all are transmitted the same way; through vibration. In the most basic sense, when a sound is created it causes the molecule nearest the source to vibrate. As this molecule is touching another molecule it causes that molecule to vibrate too. This continues, from molecule to molecule, passing the energy on as it goes. This is also why at a rock concert, or even being near a car with a large subwoofer, you can feel the bass notes vibrating inside you. The molecules of your body are vibrating, allowing you to physically feel the music. MUSEUM IN A BOX As with any energy transfer, each time a molecule vibrates or causes another molecule to vibrate, a little energy is lost along the way, which is why sound gets quieter with distance (Fig 1.) and why louder sounds, which cause the molecules to vibrate more, travel farther. -
33600A Series Trueform Waveform Generators Generate Trueform Arbitrary Waveforms with Less Jitter, More Fidelity and Greater Resolution
DATA SHEET 33600A Series Trueform Waveform Generators Generate Trueform arbitrary waveforms with less jitter, more fidelity and greater resolution Revolutionary advances over previous generation DDS 33600A Series waveform generators with exclusive Trueform signal generation technology offer more capability, fidelity and flexibility than previous generation Direct Digital Synthesis (DDS) generators. Use them to accelerate your development Trueform process from start to finish. – 1 GSa/s sampling rate and up to 120 MHz bandwidth Better Signal Integrity – Arbs with sequencing and up to 64 MSa memory – 1 ps jitter, 200x better than DDS generators – 5x lower harmonic distortion than DDS – Compatible with Keysight Technologies, DDS Inc. BenchVue software Over the past two decades, DDS has been the waveform generation technology of choice in function generators and economical arbitrary waveform generators. Reduced Jitter DDS enables waveform generators with great frequency resolution, convenient custom waveforms, and a low price. <1 ps <200 ps As with any technology, DDS has its limitations. Engineers with exacting requirements have had to either work around the compromised performance or spend up to 5 times more for a high-end, point-per-clock waveform generator. Keysight Technologies, Inc. Trueform Trueform technology DDS technology technology offers an alternative that blends the best of DDS and point-per-clock architectures, giving you the benefits of both without the limitations of either. Trueform technology uses an exclusive digital 0.03% -
Background Noise, Noise Sensitivity, and Attitudes Towards Neighbours, and a Subjective Experiment Using a Rubber Ball Impact Sound
International Journal of Environmental Research and Public Health Article Background Noise, Noise Sensitivity, and Attitudes towards Neighbours, and a Subjective Experiment Using a Rubber Ball Impact Sound Jeongho Jeong Fire Insurers Laboratories of Korea, 1030 Gyeongchungdae-ro, Yeoju-si 12661, Korea; [email protected]; Tel.: +82-31-887-6737 Abstract: When children run and jump or adults walk indoors, the impact sounds conveyed to neighbouring households have relatively high energy in low-frequency bands. The experience of and response to low-frequency floor impact sounds can differ depending on factors such as the duration of exposure, the listener’s noise sensitivity, and the level of background noise in housing complexes. In order to study responses to actual floor impact sounds, it is necessary to investigate how the response is affected by changes in the background noise and differences in the response when focusing on other tasks. In this study, the author presented subjects with a rubber ball impact sound recorded from different apartment buildings and housings and investigated the subjects’ responses to varying levels of background noise and when they were assigned tasks to change their level of attention on the presented sound. The subjects’ noise sensitivity and response to their neighbours were also compared. The results of the subjective experiment showed differences in the subjective responses depending on the level of background noise, and high intensity rubber ball impact sounds were associated with larger subjective responses. In addition, when subjects were performing a Citation: Jeong, J. Background Noise, task like browsing the internet, they attended less to the rubber ball impact sound, showing a less Noise Sensitivity, and Attitudes towards Neighbours, and a Subjective sensitive response to the same intensity of impact sound.