The Maker Culture and the Open Source Model in the Architecture, Urbanism and Design Context: the Fabrication and Sharing of a Game for Design Teaching

Total Page:16

File Type:pdf, Size:1020Kb

The Maker Culture and the Open Source Model in the Architecture, Urbanism and Design Context: the Fabrication and Sharing of a Game for Design Teaching The Maker Culture and the Open Source Model in the Architecture, Urbanism and Design Context: The Fabrication and Sharing of a Game for Design Teaching xxii congresso da sociedade Frederico Braida iberoamericana de gráfica digital 22th conference of the Universidade Federal de Juiz de Fora | Brazil | [email protected] iberoamerican society of digital graphics Icaro Chagas 07|08|09|novembro|2018 Universidade Federal de Juiz de Fora | Brazil | [email protected] iau usp | são carlos | sp br Isabela Ruback Cascardo de Almeida Universidade Federal de Juiz de Fora | Brazil | [email protected] Janaina Mendes de Castro Universidade Federal de Juiz de Fora | Brazil | [email protected] Abstract This article aims to present a discussion about the maker culture and an experience of fabricating and sharing a set of building blocks designed as a didactic tool for teaching architectural design within the premises of do-it-yourself culture and an open source model. Methodologically, the article is the result of both a bibliographical research and an empirical research, from which, in contemporary times, is evidenced the strengthening of flexible, collaborative, creative and innovative processes, prevailing premises in the maker movement. Keywords: Maker culture; Open source; Teaching; Democratization; Digital culture. INTRODUCTION Thus, permeating the fields of human knowledge, the 1 theme of the maker culture, articulated with the issues of We are faced with a contemporary movement towards the the open source universe (Kera, 2017), has gained universalization of learning: the maker culture (Weiss, relevance in the era of digital culture. Also, in the fields of 2008; Mellis & Buechley, 2011; Ames et al., 2014), which Architecture, Urbanism and Design, this theme has been is based on the empowerment of individuals, above all in evidence, especially after the dissemination of digital from the stimulus to the creative making and access to manufacturing technologies and the extensive the content available on digital media, on the internet. implantation of fab labs. The idea behind the maker culture is to create and In this context, in the field of Education, whether formal or develop new products (concrete or digital ones), using informal, we have witnessed the democratization of various software or tools (especially digital), in open teaching-learning processes (Okada, 2017). Also in the spaces, workshops or laboratories (Anderson, 2012 in teaching of architecture, urbanism and design, several Schön, Ebner & Kumar, 2014). This movement involves initiatives that incorporate digital technologies and innovative, economically accessible forms of production, collaborative modes of production can be highlighted. and do-it-yourself (DIY) work, being considered by many authors as the fourth Industrial Revolution (Schwab, It is within this scenario that this paper is inserted. In this 2016). work, the results of a research in which an experiment of production and sharing of a set of blocks of assembly was One of the nine principles of the maker movement, conceived as a didactic tool for the teaching of according to Hatch (2016), is the sharing, which consists architecture project within the assumptions of the culture of dividing a product and its production instructions with of the make- yourself and an open source model. Thus, other makers, with the shared knowledge being the the main objective of this article is to present a case in greatest reward among the supporters of the movement. which the premises of the maker movement and the open This principle, along with the strong dissemination, along source platforms were fundamental for the development the years, of spaces for doing and learning - of a proposal that aims to contribute with a didactic makerspaces, fab labs (fabrication laboratory), material aimed at the formal phase of the Architecture and hackerspaces and others - reveals the strong influence of Urbanism design. the maker culture on the democratization of knowledge. Within this culture, open source orientation is valued and For this, the paper is structured in five sections. It begins fostered, which allows the appropriation and modification with some considerations on the maker culture and its of a technique, software or machinery for its distribution unfolding in the field of Architecture, Urbanism and Design and improvement (Pacini, Passaro & Henriques, 2017). in the contemporaneity. Next is presented the Although this movement is less than 20 years old, the development of the building block game called Archbricks, review of these events leads us to understand the impact which is about a result of a research financed by the State of the maker culture in contemporary societies; and it is Research Support Foundation FAPEMIG, in the scope of no wonder that many consider it as a revolution. The the LEAUD, from the Faculty of Architecture and expansion of sites that stimulate digital production and Urbanism of the Federal University of Juiz de Fora (FAU- manufacturing, along with the sharing of all the knowledge UFJF). At the end, it is discussed how the game had its acquired by “doing”, amplifies the possibilities of scientific conception, production and distribution conceived from advancement, as well as being a new alternative to the the premises of the maker movement, contributing to the detriment of industrial overproduction, also supporting socialization of the open knowledge to the possibilities of sustainable development and, from a political point of collaboration, as well as some reflections ascending from view, nurturing access to information and knowledge. the critical analysis of the different phases of the research. MAKER CULTURE IN THE FIELD OF CONSIDERATIONS ABOUT THE MAKER ARCHITECTURE, URBANISM AND CULTURE DESIGN The maker culture can have its origin understood through If we understand Architecture, Urbanism and Design as a some significant events throughout history. The path between idea and materialization, it makes clear that emergence of fab labs, for example, came about from the the maker movement would find great possibilities of use great success of a lecture at the Massachusetts Institute of Technology (MIT) Center of Bits and Athoms (CBA) in in these fields of knowledge and human acting. There, 2001. The initial idea was to teach a small group of perhaps, lies the main justification for the rapid expansion students to use the machinery of the CBA, however, such of fab labs, mainly those linked to higher education laboratory was equipped with digital manufacturing tools institutions, especially the schools of Architecture, and students were enthusiastic about the possibility of Urbanism and Design. producing objects for personal use. Inspired by the Nowadays, the physical models have returned to a great success of this first class in 2003, the CBA began an importance, since the direct communication existing extension project supported by the National Science between digital files and physical models (file-to-factory Foundation (Gershenfeld, 2012), which provided digital process) can be easily established (Dunn, 2012). In this and manual tools in a college space so that users could context, rapid prototyping, as well as digital fabrication, actually produce things, which come to be known as fab has been an important tool for testing and manufacturing lab. products, since, by generating physical models quickly, reduces the gap existing between a project and its The years that followed inaugurated the spread of fab labs execution. throughout the world, and the leasing of new facilities in 2 countries on all continents is impressive. In recent years, In our time, the Fab Foundation, linked to MIT, is the total number of fab labs has expanded considerably, associated with fab labs spread all over the world, many forming a network connected by the democratization of of them linked to the universities and colleges of production and knowledge, in favor of the maker Architecture, Urbanism and Design. In several movement (see https://www.fablabs.io/organizations). laboratories, there are architects and designers as the main enthusiasts. In 2005, a major magazine entitled MAKE (https://makezine.com/) was available in the United In a survey conducted in 2015 for the exhibition Homo States, which is published every two weeks and focuses Faber: Digital Fabrication in Latin America, 31 digital on projects involving computers, robotics, electronics and manufacturing laboratories were mapped out in Latin other areas (Schön, Ebner & Kumar, 2014). The America. Of this total, 22 laboratories were concentrated magazine organized the first Maker Faire in San Mateo in in universities and academic research institutions 2006, where exhibitors displayed artifacts produced by (Sperling et al., 2015). At the time, in Brazil, there were 22 themselves, which occurs annually to this day. At the laboratories, of which 14 were linked to the MIT Fab and same time, in the same year, the first commercial Rhino Fab networks. makerspace was inaugurated, TechShop (whose company went bankrupt February 26, 2018, see In 2017, Brazil had 58 spaces that were called http://www.techshop.ws), a studio equipped with digital makerspaces, fab labs or digital manufacturing manufacturing tools, such as such as 3D printers, laser laboratories, which were distributed in 24 cities (Costa & cutters, vinyl plotters and computer aided design (CAD) Pelegrini, 2017). Among those, many were linked to the software,
Recommended publications
  • Makerspaces and Urban Ideology: the Institutional Shaping of Fab Labs in China and Northern Ireland
    Makerspaces and urban ideology: the institutional shaping of Fab Labs in China and Northern Ireland Dr. Pip Shea School of Media, Film and Journalism Monash University Dr. Xin Gu School of Media, Film and Journalism Monash University Abstract Makerspaces—specifically those with a focus on digital fabrication and physical computing—are emerging as symbols of social and economic change in many cultures. Much of the empirical evidence that provides details of this phenomenon has been gathered in neo- liberal market economies in Europe and North America. Existing findings have helped situate makerspaces as sites that emphasise ‘commons based peer production’ underscored by non- proprietary ‘gift economies’ (see Gershenfeld 2005, Anderson 2012, Troxler 2013, Kostakis et. al 2015). These narratives have been expanded by findings that reveal how participation is shaped—and often impeded—by the communities, platforms, and policies surrounding makerspaces (see Alper 2013, Toupin 2014, Moilanen et al 2015, Shea 2016). This paper contributes to the literature through an analysis of the institutional arrangements of Fab Labs in China and Northern Ireland. It argues that processes of institutionalisation within these makerspaces are shaped by the specific urban ideologies they are bound to. Fab Labs in Belfast and Derry (Northern Ireland) are deployed as facilitators and enablers of unification processes in a post-conflict society, while Fab Labs in Shenzhen (China) have been manipulated for a specific post-industrial agenda. Institutionalised makerspaces,
    [Show full text]
  • Technologically Mediated Artisanal Production Tamara Kneese University of San Francisco, [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Media Studies College of Arts and Sciences 10-8-2014 Technologically Mediated Artisanal Production Tamara Kneese University of San Francisco, [email protected] Follow this and additional works at: https://repository.usfca.edu/ms Part of the Communication Technology and New Media Commons, and the Work, Economy and Organizations Commons Recommended Citation Kneese, Tamara, "Technologically Mediated Artisanal Production" (2014). Media Studies. 17. https://repository.usfca.edu/ms/17 This Article is brought to you for free and open access by the College of Arts and Sciences at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Media Studies by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. Technologically Mediated Artisanal Production by Tamara Kneese, Alex Rosenblat, and danah boyd Data & Society Working Paper, October 8, 2014 Prepared for: Future of Work Project supported by Open Society Foundations Brief Description As traditional mass manufacturing in the tech, textile, and auto industries has largely left the United States and relocated to the Global South, post-industrial forms of work have taken the place of this kind of labor. And yet, the disappearance of manufacturing jobs and the dire straits of formerly great Rust Belt cities like Detroit have led to a kind of nostalgia for both industrial and artisanal modes of production. Manufacturing still exists in the United States, but there is movement towards a new kind of labor process and product.
    [Show full text]
  • Maker Culture and Minecraft: Implications for the Future of Learning
    Educational Media International ISSN: 0952-3987 (Print) 1469-5790 (Online) Journal homepage: https://www.tandfonline.com/loi/remi20 Maker culture and Minecraft: implications for the future of learning Dodie J. Niemeyer & Hannah R. Gerber To cite this article: Dodie J. Niemeyer & Hannah R. Gerber (2015) Maker culture and Minecraft: implications for the future of learning, Educational Media International, 52:3, 216-226, DOI: 10.1080/09523987.2015.1075103 To link to this article: https://doi.org/10.1080/09523987.2015.1075103 Published online: 30 Oct 2015. Submit your article to this journal Article views: 1651 View related articles View Crossmark data Citing articles: 21 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=remi20 Educational Media International, 2015 Vol. 52, No. 3, 216–226, http://dx.doi.org/10.1080/09523987.2015.1075103 Maker culture and Minecraft: implications for the future of learning Dodie J. Niemeyer* and Hannah R. Gerber Department of Language, Literacy and Special Populations, Sam Houston State University, Huntsville, TX, USA Collaborative learning environments found with gaming communities can provide excellent structures to study the way that learners act within informal learning environments. For example, many of these gaming communities encour- age gamers to create videogames and virtual world walkthroughs and commen- taries. Walkthroughs and commentaries provide gamers information that helps them in game play. We refer to this process of walkthrough creation as digital maker culture. This study explored the phenomena of digital maker culture through a multiple case study design by examining five Minecraft walkthrough creators who created walkthrough repositories on YouTube.
    [Show full text]
  • The Makings of China's Hackerspace Community
    Forum communiTy + cuLTure Community + Culture features practitioner perspectives on designing technologies for and with communities. We highlight compelling projects and provocative points of view that speak to both community technology practice and the interaction design field as a whole. Christopher A. Le Dantec Created in China: The Makings of China’s Hackerspace Community Silvia Lindtner University of California, Irvine | [email protected] David Li XinCheJian | [email protected] Hackerspaces are shared studios In September 2010, China’s first that bring together people commit- hackerspace opened its doors ted to the free and open sharing of in Shanghai under the name software and hardware, as well as XinCheJian 新车间 (literal transla- ideas and knowledge. As of April tion: new workshop, or new factory). 2012, there are more than 500 active Only a year after the founding of hackerspaces in existence world- XinCheJian, the Shanghai govern- wide, making them a global phe- ment announced a call for proposals nomenon [1]. A typical studio will be to build 100 “innovation houses” equipped with tools that allow for (chuangxin wu 创新屋) to be sup- experimenting with the physical/ ported by government funding. digital boundary—laser cutters, 3-D Although the official document [4] printers, microcontroller kits, and described this initiative as part of so forth. Many hackerspaces also a larger effort to build a citywide host educational workshops where platform for supporting popular sci- these tools are used to teach others ence work and innovation, national about manipulating the physical and international media inter- environment through software, or preted this move as an endorse- vice versa.
    [Show full text]
  • Maker Culture in CMU SCS Part II: 3D Printing Dave Touretzky November, 2013
    Maker Culture in CMU SCS Part II: 3D Printing Dave Touretzky November, 2013 http://www.cs.cmu.edu/~dst/Maker 1 3D Printing vs. Laser Cutter X Slower X Less precise X More expensive X Limited materials X Support material may be required Complex 3D structures! 2 Low Cost 3D Printers • RepRap: 2005 onward – Adrian Bowyer, University of Bath (UK) – Goal: open source 3D printer that can replicate itself – 4 generations: Darwin, Mendel, Prusa Mendel, Huxley – Spawned many start-ups • Makerbot – Evolved from RepRap; initially was open source – Cupcake, Thing-o-Matic, Makerbot2, Replicator • Solidoodle ($500) • Cube • Many, many more… 3 Cube Components “Cube tube” Extruder Material cartridge Print pad USB port for flash drive Touch panel display and power button 4 2nd Generation Cube • Prints ABS (acrylonitrile butadiene styrene) or PLA (polylactic acid). • Faster than original cube. • Better precision (200 microns vs. 250 for original model.) • No heated bed: saves time. • Can print “hollow” or “solid” objects. • Same cost as the original: $1300. • Buy it at Staples, or at Cubify.com. 5 Inside the Cartridge • Chip in cartridge tracks how much material used. • No actual sensing. 6 Changing Cartridges • Takes several minutes for the extruder to heat. • Never yank filament out of the extruder! – Can damage the mechanism. – If a piece breaks off, the extruder will clog. – Once it heats up, the filament comes out easily. • Always reinstall the thumbscrew to protect the cartridge. 7 The Cube Extruder Heated section Image from cubifyfans.blogspot.com 8 Cutting the Filament A simple 45o cut will help to prevent jams in the extruder.
    [Show full text]
  • Fabricating Society 13Th International Fab Lab Conference and Symposium Santiago, Chile | August 2017
    Research Book Fabricating Society 13th International Fab Lab Conference and Symposium Santiago, Chile | August 2017 Research Book Fabricating Society 13th International Fab Lab Conference and Symposium Santiago, Chile | August 2017 5 Editors: DID Andrés Briceño & Tomás Vivanco Design: Daniela Moyano Fundación DID Seminario 642 Ñuñoa-Santiago, CHILE Phone: 02-2-904 92 90 web: fundaciondid.cl ISBN: 978-956-14-2115-8 Printed in Santiago/Impreso en Santiago 6 Contents Articles Distributed Design 12 Towards a holistic and political design process Distributed design: Speculative 18 prototypes for emergent scenarios 28 The mass distribution everything Notes for future research on the impact 36 of the Fab Lab network From material scarcity to artificial 47 abundance 57 Systems of Resilience 68 Citizenship and democratic production 74 Fabricating the City Itself 78 Making as Social Fabrication Papers Thinking social housing through 90 robotic technology: DESIGNING AN ARCH-ROBOTIC HOUSING SYSTEM FabLab in Nigeria’s Innovation Space: 95 A Report from GreenLab Microfactory’s DIWO Event MyOrthotics: Digital Manufacturing in 111 the Development of a DIY Interactive Rehabilitation Orthosis 7 Abstracts 130 BioLabs and Blanket Forts Design and Construction of Electro- 131 Mechanic Transtibial Prosthetics for Both Lower Limbs Digital Badges and Skills Recognition 132 in Fab Labs Digital craft for mud monolithic shells 133 as a housing solution Fab labs as catalysts for sharing 135 economies in Latin America Halasuru Traverses: Retelling history 136 using digital fabrication Open Jails to Education: How can Fab- 137 Labs contribute to democratize the knowledge? 9 Fabricating Society Andrés Briceño & Tomás Vivanco After a year and a half of working events occur from a far distance, and generating a proper platform including wars, social revolutions to host an intense and diverse and cutting edge discussions.
    [Show full text]
  • Building a Maker Community Aroundan Open Hardware Platform
    Building a Maker Community Around an Open Hardware Platform Fabio Morreale1, Giulio Moro1, Alan Chamberlain2, Steve Benford2, and Andrew P. McPherson1 1Centre for Digital Music, Queen Mary University of London, UK 2Mixed Reality Laboratory, The University of Nottingham, UK 1{f.morreale,g.moro,a.mcpherson}@qmul.ac.uk 2{alan.chamberlain,steve.benford}@nottingham.ac.uk ABSTRACT on shared interests or shared usage of particular technical tools This paper reflects on the dynamics and practices of building [8, 22]. a maker community around a new hardware platform. We ex- Most studies of maker communities have focused on estab- amine the factors promoting the successful uptake of a maker lished, stable communities [8, 24, 26, 28, 44, 46]. Compar- platform from two perspectives: first, we investigate the tech- atively little is known about how new maker communities nical and user experience considerations that users identify as emerge, partly because the identification of a group of people the most important. Second, we explore the specific activities as a “community” can only be done with any certainty in retro- that help attract a community and encourage sustained partici- spect. In particular, the process by which user groups develop pation. We present an inductive approach based on the case around new digital tools, and how design decisions influence study of Bela, an embedded platform for creating interactive the dynamics of the user community, merit further study. audio systems. The technical design and community building processes are detailed, culminating in a successful crowdfund- In this paper, we present a longitudinal study of the emergence ing campaign.
    [Show full text]
  • The Maker Movement in Education
    The Maker Movement in Education Mary Rinehart, M.A.Ed. The Maker Movement in Education Have you ever made something? Have you ever shared your gift with another? Making and sharing is part of what makes us human. A makerspaces is a facility where people share resources and collaborate to build and innovate products. Makerspaces make tools available to people who want to design and create something new. The maker movement has allowed ideas to be turned into inventions by giving people access to the tools and collaborative space that they need to prototype a design. Before makerspaces were developed, an innovative idea could cost anywhere from $50,000- $300,000 to turn into a prototype. It had to be researched, designed, prototyped, and then it would be market tested. If the results were favorable, it had a chance at making it out of the gate as a new product. A beginning entrepreneur had few options but using his or her own funds or borrowing funding to make the project happen. Makerspaces have made it much more efficient to innovate. A new idea can now be researched, designed, prototyped, and market tested by the entrepreneur. A person no longer needs to The need for makerspaces has risen out of send something out to engineers to be 3 things: designed, and cut. An entrepreneur can do it 1. The need for qualified STEM themselves by taking classes at a makerspace professionals entering the workforce and filling in any gaps of knowledge online. If (US Dept. of Commerce expects 17% they have a worthy idea, they can pursue it growth in STEM fields between 2014- and see if people would be willing to purchase 2024) a product that they are interested in making 2.
    [Show full text]
  • Innovation Through Experience Research Summary
    Research Summary Innovation Through Experience Reshaping Learning Spaces for Makers, Hackers, and Coworkers Key Insights How do people become innovators? In today’s economy, it’s often a hands-on approach. A growing community of makers, • Universal access to the Internet and breakthroughs in hackers, and coworkers are creating an emerging culture of manufacturing have democratized innovation, creating “learning by doing” that is shifting how future workers learn a new driver for the economy. to innovate. • To thrive in this economy, people need opportunities As schools prepare the next generation to engage in this maker to tinker (make), deconstruct (hack), and network economy, they’re creating a new kind of learning space where (cowork). students can engage in a combination of hands-on processes • Academic institutions have an opportunity to prepare and networking to bring their ideas to life. To better understand the next generation of innovators by designating this shift, Herman Miller researchers leveraged insights from learning spaces for making, hacking, and coworking. prior Herman Miller research on the Future of Learning, toured • The most effective innovation spaces combine all three university campuses, and interviewed education and business activities in one centrally located site that’s thought leaders. approachable to everyone. Innovation Through Experience 1 Research Summary Map of participating sites WA. ME. MT. N.D. VT. OR. MN. N.H. WI. N.Y. ID. S.D. MA. CT. MI. WY. R.I. PA. IA. N.J. NE. NV. OH. MD IL. IN. DE. UT. W. CO. VA. DC. CA. VA. KS. MO. KY. N.C. TN. The SHED, University of CA, Berkeley Geek Group AZ.
    [Show full text]
  • Identifying Practices of Inclusion in Maker and Hacker Spaces with Diverse Participation
    Paper ID #23107 MAKER: Identifying Practices of Inclusion in Maker and Hacker Spaces with Diverse Participation Adam Stark Masters, Virginia Tech Adam S. Masters is a doctoral student and Graduate Research Assistant at Virginia Polytechnic Institute and State University. They received a B.S. in Mechanical Engineering from University of Delaware and are currently pursuing a Ph.D. in Engineering Education at Virginia Tech. Adam’s research interests include access, equity and social justice in engineering with particular attention to the experiences of women & LGBTQ+ engineering students. Dr. Lisa D. McNair, Virginia Tech Lisa D. McNair is a Professor of Engineering Education at Virginia Tech, where she also serves as Director of the Center for Research in SEAD Education at the Institute for Creativity, Arts, and Technology (ICAT). Her research interests include interdisciplinary collaboration, design education, communication studies, identity theory and reflective practice. Projects supported by the National Science Foundation include exploring disciplines as cultures, liberatory maker spaces, and a RED grant to increase pathways in ECE for the professional formation of engineers. Dr. Donna M. Riley, Purdue University, West Lafayette (College of Engineering) Donna Riley is Kamyar Haghighi Head of the School of Engineering Education and Professor of Engi- neering Education at Purdue University. c American Society for Engineering Education, 2018 MAKER: Identifying Practices of Inclusion in Maker and Hacker Spaces with Diverse Participation Abstract Some have hailed the emergence of maker spaces as an opportunity to broaden participation of underrepresented groups in science, technology, engineering, and math (STEM) education, engaging participants in open, creative, and supportive spaces for learning and applying practical STEM knowledge.
    [Show full text]
  • Is the Maker Movement Contributing to Sustainability?
    sustainability Article Is the Maker Movement Contributing to Sustainability? Jeremy Millard 1,*, Marie N. Sorivelle 2, Sarah Deljanin 1, Elisabeth Unterfrauner 3 and Christian Voigt 3 1 International Center, Danish Technological Institute, DK-8000 Aarhus C, Denmark; [email protected] 2 Ideas and Innovation, Danish Technological Institute, DK-2630 Taastrup Copenhagen, Denmark; [email protected] 3 Centre for Social Innovation, A-1150 Vienna, Austria; [email protected] (E.U.); [email protected] (C.V.) * Correspondence: [email protected]; Tel.: +45-7220-1417 Received: 31 May 2018; Accepted: 26 June 2018; Published: 28 June 2018 Abstract: ICT has already revolutionized content creation and communications. In principle, today, everybody with Internet access, the right skills and equipment can produce digital content composed of virtual “bits” and make it instantly available across the globe. The same is now happening to manufacturing for everyone with access to tools like 3D printers. This inter-changeability of bits and atoms is being called the maker movement, which started as a community-based, socially-driven bottom-up movement but is today also impacting mainstream manufacturing through increased efficiencies, distributed local production and the circular economy. The maker movement thus has significant promise for increasing social, economic and environmental sustainability, but is it currently living up to this potential? This paper reports on work undertaken by the European-funded MAKE-IT project has examined this question through detailed qualitative and quantitative empirical research, including ten in-depth case studies across Europe and a detailed examination of 42 maker initiatives at Europe’s foremost city-based maker faire, supplemented by extensive secondary research.
    [Show full text]
  • Intro to Maker Literacy
    Intro to Maker Literacy Sarah Nagle Creation and Innovation Services Librarian [email protected] Memorable Making Experience Think about a memorable making experience you had in the past... Maker Movement Timeline ● 2001 - MIT FabLab created ● 2005 - Dale Dougherty launches Make Magazine and the next year holds the first Maker Faire ● 2005 - RepRap 3D printers - first low-cost, self-replicating 3D printer ● 2006 - Techshop opens in CA ● 2011 - Fayetteville Free Library (NY) opens makerspace ● 2013 - present - More universities start opening makerspaces ● 2014 - National Week of Making, White House Maker Faire Makerspaces What is a makerspace? A place where people gather together to make things and collaboratively learn about making things together. What’s the Big Deal? People have always been makers...so what’s so different about the maker movement? Rise of makerspaces in education NMC Horizon Report: 2018 Higher Education Edition: “The embedding of maker culture in higher education has made students active contributors to the knowledge ecosystem. They learn by experiencing, doing, and creating, demonstrating newly acquired skills in more concrete and creative ways.” (Becker et al, 2018) Maker Mindset What is a maker mindset? ● Consumer → Creator ● Design sensitivity ● Failure-positive outlook ● Empowered to change the world! 3D Printing: What is it? Simple definition: The creation of a physical object based on a 3D computer model, layer by layer, in an additive process. Types of 3D Printing: Fused Deposition Modeling Fused Deposition Modeling (FDM) Types of 3D Printing: Stereolithography Stereolithography (SLA) Types of 3D Printing: Selective Deposition Lamination Selective Deposition Lamination (SDL) or Paper Printing Image Source: Mcor Technologies.
    [Show full text]