The Ecology of Acidobacteria: Moving Beyond Genes and Genomes

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology of Acidobacteria: Moving Beyond Genes and Genomes fmicb-07-00744 May 27, 2016 Time: 15:45 # 1 REVIEW published: 31 May 2016 doi: 10.3389/fmicb.2016.00744 The Ecology of Acidobacteria: Moving beyond Genes and Genomes Anna M. Kielak1†, Cristine C. Barreto2†, George A. Kowalchuk3, Johannes A. van Veen1 and Eiko E. Kuramae1* 1 Department of Microbial Ecology, The Netherlands Institute of Ecology – Koninklijke Nederlandse Akademie van Wetenschappen, Wageningen, Netherlands, 2 Graduate Program in Genomic Sciences and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil, 3 Ecology and Biodiversity Group, University of Utrecht, Utrecht, Netherlands The phylum Acidobacteria is one of the most widespread and abundant on the planet, yet remarkably our knowledge of the role of these diverse organisms in the functioning of terrestrial ecosystems remains surprisingly rudimentary. This blatant knowledge gap stems to a large degree from the difficulties associated with the cultivation of these bacteria by classical means. Given the phylogenetic breadth of the Acidobacteria, which is similar to the metabolically diverse Proteobacteria, it is clear that detailed and functional descriptions of acidobacterial assemblages are necessary. Fortunately, recent advances are providing a glimpse into the ecology of members of the phylum Acidobacteria. These include novel cultivation and enrichment strategies, genomic Edited by: characterization and analyses of metagenomic DNA from environmental samples. Here, Rich Boden, we couple the data from these complementary approaches for a better understanding University of Plymouth, UK of their role in the environment, thereby providing some initial insights into the ecology of Reviewed by: Stephanie A. Eichorst, this important phylum. All cultured acidobacterial type species are heterotrophic, and University of Vienna, Austria members of subdivisions 1, 3, and 4 appear to be more versatile in carbohydrate Hinsby Cadillo-Quiroz, utilization. Genomic and metagenomic data predict a number of ecologically relevant Arizona State University, USA capabilities for some acidobacteria, including the ability to: use of nitrite as N source, *Correspondence: Eiko E. Kuramae respond to soil macro-, micro nutrients and soil acidity, express multiple active [email protected] transporters, degrade gellan gum and produce exopolysaccharide (EPS). Although †These authors have contributed these predicted properties allude to a competitive life style in soil, only very few of these equally to this work. prediction shave been confirmed via physiological studies. The increased availability of Specialty section: genomic and physiological information, coupled to distribution data in field surveys and This article was submitted to experiments, should direct future progress in unraveling the ecology of this important Terrestrial Microbiology, a section of the journal but still enigmatic phylum. Frontiers in Microbiology Keywords: Acidobacteria, carbohydrate metabolism, transporters, nitrogen metabolism, EPS, soil factors Received: 08 October 2015 Accepted: 03 May 2016 Published: 31 May 2016 INTRODUCTION Citation: Kielak AM, Barreto CC, Although the Acidobacteria were only recognized as a phylum relatively recently, their abundance Kowalchuk GA, van Veen JA across a range of ecosystems, especially soils, has demanded research into their ecology. 16S rRNA and Kuramae EE (2016) The Ecology gene-based approaches as well as environmental shotgun metagenomic analyses have revealed of Acidobacteria: Moving beyond Genes and Genomes. that the Acidobacteria represent a highly diverse phylum resident to a wide range of habitats Front. Microbiol. 7:744. around the globe (Chow et al., 2002; Kuske et al., 2002; Gremion et al., 2003; Quaiser et al., 2003; doi: 10.3389/fmicb.2016.00744 Fierer et al., 2005; Stafford et al., 2005; Janssen, 2006; Sanguin et al., 2006; de Carcer et al., 2007; Frontiers in Microbiology | www.frontiersin.org 1 May 2016 | Volume 7 | Article 744 fmicb-07-00744 May 27, 2016 Time: 15:45 # 2 Kielak et al. Ecology of Acidobacteria Kim et al., 2007; Singh et al., 2007; DeAngelis et al., 2009; Jesus Acidobacteria phylum. Based on phylogenetic analysis of 16S et al., 2009; Kielak et al., 2009; Navarrete et al., 2010, 2013b; Zhang rRNA gene sequences, the Acidobacteria phylum raised from et al., 2014). However, despite their high abundance and diversity, the originally described four to six subdivisions (Kuske et al., we still have relatively little information regarding the actual 1997; Ludwig et al., 1997; Barns et al., 1999, 2007) to over eight activities and ecology of members of this phylum, a shortcoming subdivisions in 1998 (Hugenholtz et al., 1998) and in 2005 that can be attributed to a large extent to the difficulties in this number increased to 11 (Zimmermann et al., 2005) deeply cultivating the majority of acidobacteria and their poor coverage branching and strongly supported subdivisions. Currently there in bacterial culture collections (Bryant et al., 2007; Lee et al., 2008; are 26 accepted subdivisions (Barns et al., 2007) in the Ribosomal da Rocha et al., 2009; Eichorst et al., 2011; Navarrete et al., 2013b). Database Project. The first recognized strain and species of the However, environmental surveys have provided insight into some phylum Acidobacteria was Acidobacterium capsulatum obtained the environmental factors that may drive acidobacteria dynamics, from an acid mine drainage in Japan (Kishimoto and Tano, such as pH and nutrients (Fierer et al., 2007; Jones et al., 2009; 1987; Kishimoto et al., 1991; Abed et al., 2002). Although the Lauber et al., 2009; Navarrete et al., 2013b). second isolate belonging to this phylum was Holophaga foetida In 2009, the first sequenced genomes of acidobacteria strains first described in 1994, it was not initially recognized as related became available, providing preliminary genetic insights into to Acidobacteria capsulatum. Instead, it was thought to belong the potential physiology and environment functions of several to the phylum Proteobacteria (Liesack et al., 1994). A few years members of this phylum (Ward et al., 2009). In these first later, a closely related bacterium named Geothrix fermentans genomic studies, five aspects of physiological received particular was isolated (Coates et al., 1999) and subsequently another attention: (i) carbon usage, (ii) nitrogen assimilation, (iii) closely related bacterium Acanthopleuribacter pedis, the first metabolism of iron, (iv) antimicrobials, and (v) abundance acidobacteria obtained from a marine sample, was described of transporters. Besides genome sequencing of cultivated (Fukunaga et al., 2008). Since these isolates were very distantly isolates, addition information regarding genomic properties of related to A. capsulatum, it was proposed that it should be acidobacteria has been derived from metagenomics studies (Liles included in a new class named Holophagae. Acidobacteriia et al., 2003; Quaiser et al., 2003, 2008; Riaz et al., 2008; Jones et al., and Holophagae are the only classes currently included in the 2009; Kielak et al., 2010; Parsley et al., 2011; Faoro et al., 2012; most recent edition of the Bergey’s Manual (Thrash and Coates, Navarrete et al., 2013b; Mendes et al., 2014). 2014). In this review, we couple the complementary data coming Currently Acidobacteria phylum has 26 subdivisions based from physiological, genomic and metagenomics studies to seek on the extremely broad diversity of acidobacterial populations a better understanding of the role of Acidobacteria in the found in uranium-contaminated soils (Barns et al., 2007). Newly environment, thereby providing some initial insights into the characterized acidobacteria from subdivision 1 may challenge ecology of this important phylum. We aim to not only give a more this taxonomy in the near future, since of 16S rRNA gene analysis complete picture of the current knowledge of Acidobacteria, but has consistently shown that the genera Acidobacteria,‘Acidipila’ also seek to provide a solid base for future experiments geared (Okamura et al., 2011), Telmatobacter (Pankratov et al., 2012), toward gaining a better understanding of the ecological roles and Acidicapsa (Kulichevskaya et al., 2012) form a group that is played by members of this phylum. distinct from the genera Granulicella, Terriglobus, Bryocella, and Edaphobacter (Eichorst et al., 2007; Koch et al., 2008; Pankratov and Dedysh, 2010; Männistö et al., 2011, 2012; Rawat et al., HISTORY AND GENERAL INFORMATION 2012a,b; Baik et al., 2013; Whang et al., 2014). ON THE PHYLUM Acidobacteria The vast majority of isolates cultivated to date are affiliated with acidobacteria subdivision 1 (Class Acidobacteriia). They are The introduction of molecular biological strategies into microbial all heterotrophic, most species are aerobic or microaerophilic ecology over the past decades has yielded a new perspective on and some species (Telmatobacter bradus, Acidobacterium the breadth and vastness of microbial diversity. The phylum capsulatum) are facultative anaerobic bacteria (Pankratov of the Acidobacteria is one of the bacterial lineages that has et al., 2012). Members of subdivisions 3, 4, 8 (currently profited most from the cultivation-independent interrogation Class Holophagae), 10, and 23 are heterotrophic as well. of environmental samples. Indeed, in the past two decades, Thermotomaculum (subdivision 10) and Thermoanaerobaculum this phylum has grown from being virtually unknown to being (subdivision 23) are thermophilic anaerobic bacteria (Izumi et al., recognized
Recommended publications
  • The Lichens' Microbiota, Still a Mystery?
    fmicb-12-623839 March 24, 2021 Time: 15:25 # 1 REVIEW published: 30 March 2021 doi: 10.3389/fmicb.2021.623839 The Lichens’ Microbiota, Still a Mystery? Maria Grimm1*, Martin Grube2, Ulf Schiefelbein3, Daniela Zühlke1, Jörg Bernhardt1 and Katharina Riedel1 1 Institute of Microbiology, University Greifswald, Greifswald, Germany, 2 Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria, 3 Botanical Garden, University of Rostock, Rostock, Germany Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name- giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses Edited by: confirm the partition of functions in lichen partnerships. The ample functional diversity Nathalie Connil, Université de Rouen, France of the mycobiont contrasts the predominant function of the photobiont in production Reviewed by: (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by Dirk Benndorf, nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and Otto von Guericke University community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify Magdeburg, Germany Guilherme Lanzi Sassaki, the bacterial community present on L.
    [Show full text]
  • Draft Genome Sequence of Acidobacteria Group 1 Acidipila Sp
    GENOME SEQUENCES crossm Draft Genome Sequence of Acidobacteria Group 1 Acidipila sp. Strain EB88, Isolated from Forest Soil Luiz A. Domeignoz-Horta,a Kristen M. DeAngelis,a Grace Poldb aDepartment of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA bGraduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA ABSTRACT Here, we present the genome sequence of a member of the group I Acidobacteria, Acidipila sp. strain EB88, which was isolated from temperate forest soil. Like many other members of its class, its genome contains evidence of the potential to utilize a broad range of sugars. roup I Acidobacteria are abundant members of acidic-soil microbial communities G(1), typically characterized by slow growth, heterotrophy, and the production of copious extracellular polysaccharides (2). Within this group, members of the genus Acidipila are characterized as acidophilic heterotrophs that use sugars as favored growth substrates (3, 4). Acidipila sp. strain EB88 was isolated from the Ͻ0.8-␮m size fraction of a deciduous forest mineral soil slurry plated onto VL45 plus glucose-yeast extract (GYE) medium (5). It was selected for sequencing based on the paucity of cultivated group I Acidobacteria, its peculiar bright-red waxy colonies on solid medium, and its undetectable growth in liquid medium unless a solid substrate, such as sand, is added. DNA was prepared for sequencing by repeatedly freeze-thawing 9-day-old biomass scraped from pH 5 R2A medium and extracted using the Qiagen genomic DNA protocol. Sequencing at UMass Worcester using the PacBio RS II sequencer resulted in 476,266 filtered reads, with a mean length of 3,208 bp.
    [Show full text]
  • Novel Bacterial Lineages Associated with Boreal Moss Species Hannah
    bioRxiv preprint doi: https://doi.org/10.1101/219659; this version posted November 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Novel bacterial lineages associated with boreal moss species 2 Hannah Holland-Moritz1,2*, Julia Stuart3, Lily R. Lewis4, Samantha Miller3, Michelle C. Mack3, Stuart 3 F. McDaniel4, Noah Fierer1,2* 4 Affiliations: 5 1Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, 6 Boulder, CO, USA 7 2Department of Ecology and Evolutionary Biology, University of Colorado at Boulder, Boulder, CO, 8 USA 9 3Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ USA 10 4Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA 11 *Corresponding Author 12 13 Abstract 14 Mosses are critical components of boreal ecosystems where they typically account for a large 15 proportion of net primary productivity and harbor diverse bacterial communities that can be the major 16 source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have 17 limited understanding of how microbial communities vary across boreal moss species and the extent to 18 which local environmental conditions may influence the composition of these bacterial communities. 19 We used marker gene sequencing to analyze bacterial communities associated with eight boreal moss 20 species collected near Fairbanks, AK USA. We found that host identity was more important than site in 21 determining bacterial community composition and that mosses harbor diverse lineages of potential N2- 22 fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including 23 candidate phylum WPS-2).
    [Show full text]
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants
    SUPPLEMENTARY INFORMATIONARTICLES https://doi.org/10.1038/s41559-020-1221-7 In the format provided by the authors and unedited. The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Linzhou Li1,2,13, Sibo Wang1,3,13, Hongli Wang1,4, Sunil Kumar Sahu 1, Birger Marin 5, Haoyuan Li1, Yan Xu1,4, Hongping Liang1,4, Zhen Li 6, Shifeng Cheng1, Tanja Reder5, Zehra Çebi5, Sebastian Wittek5, Morten Petersen3, Barbara Melkonian5,7, Hongli Du8, Huanming Yang1, Jian Wang1, Gane Ka-Shu Wong 1,9, Xun Xu 1,10, Xin Liu 1, Yves Van de Peer 6,11,12 ✉ , Michael Melkonian5,7 ✉ and Huan Liu 1,3 ✉ 1State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China. 2Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark. 3Department of Biology, University of Copenhagen, Copenhagen, Denmark. 4BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China. 5Institute for Plant Sciences, Department of Biological Sciences, University of Cologne, Cologne, Germany. 6Department of Plant Biotechnology and Bioinformatics (Ghent University) and Center for Plant Systems Biology, Ghent, Belgium. 7Central Collection of Algal Cultures, Faculty of Biology, University of Duisburg-Essen, Essen, Germany. 8School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China. 9Department of Biological Sciences and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. 10Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China. 11College of Horticulture, Nanjing Agricultural University, Nanjing, China. 12Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
    [Show full text]
  • Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics
    Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics Jonathan L. Klassen* Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada Abstract Background: Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings: Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family
    [Show full text]
  • Edaphobacter Dinghuensis Sp. Nov., an Acidobacterium Isolated from Lower Subtropical Forest Soil Jia Wang,3 Mei-Hong Chen,3 Ying-Ying Lv, Ya-Wen Jiang and Li-Hong Qiu
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 276–282 DOI 10.1099/ijsem.0.000710 Edaphobacter dinghuensis sp. nov., an acidobacterium isolated from lower subtropical forest soil Jia Wang,3 Mei-hong Chen,3 Ying-ying Lv, Ya-wen Jiang and Li-hong Qiu Correspondence State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Li-hong Qiu Guangzhou 510275, PR China [email protected] An aerobic bacterium, designated DHF9T, was isolated from a soil sample collected from the lower subtropical forest of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Cells were Gram-stain-negative, non-motile, short rods that multiplied by binary division. Strain DHF9T was an obligately acidophilic, mesophilic bacterium capable of growth at pH 3.5–5.5 (optimum pH 4.0) and at 10–33 8C (optimum 28–33 8C). Growth was inhibited at NaCl concentrations above 2.0 % (w/v). The major fatty acids were iso-C15 : 0,C16 : 0 and C16 : 1v7c. The polar lipids consist of phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids, two unidentified polar lipids and an unidentified glycolipid. The DNA G+C content was 57.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the genus Edaphobacter in subdivision 1 of the phylum Acidobacteria, with the highest 16S rRNA gene sequence similarity of 97.0 % to Edaphobacter modestus Jbg-1T. Based on phylogenetic, chemotaxonomic and physiological analyses, it is proposed that strain DHF9T represents a novel species of the genus Edaphobacter, named Edaphobacter dinghuensis sp. nov.
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • (Phaseolus Vulgaris) in Native and Agricultural Soils from Colombia Juan E
    Pérez-Jaramillo et al. Microbiome (2019) 7:114 https://doi.org/10.1186/s40168-019-0727-1 RESEARCH Open Access Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia Juan E. Pérez-Jaramillo1,2,3, Mattias de Hollander1, Camilo A. Ramírez3, Rodrigo Mendes4, Jos M. Raaijmakers1,2* and Víctor J. Carrión1,2 Abstract Background: Modern crop varieties are typically cultivated in agriculturally well-managed soils far from the centers of origin of their wild relatives. How this habitat expansion impacted plant microbiome assembly is not well understood. Results: Here, we investigated if the transition from a native to an agricultural soil affected rhizobacterial community assembly of wild and modern common bean (Phaseolus vulgaris) and if this led to a depletion of rhizobacterial diversity. The impact of the bean genotype on rhizobacterial assembly was more prominent in the agricultural soil than in the native soil. Although only 113 operational taxonomic units (OTUs) out of a total of 15,925 were shared by all eight bean accessions grown in native and agricultural soils, this core microbiome represented a large fraction (25.9%) of all sequence reads. More OTUs were exclusively found in the rhizosphere of common bean in the agricultural soil as compared to the native soil and in the rhizosphere of modern bean accessions as compared to wild accessions. Co-occurrence analyses further showed a reduction in complexity of the interactions in the bean rhizosphere microbiome in the agricultural soil as compared to the native soil. Conclusions: Collectively, these results suggest that habitat expansion of common bean from its native soil environment to an agricultural context had an unexpected overall positive effect on rhizobacterial diversity and led to a stronger bean genotype-dependent effect on rhizosphere microbiome assembly.
    [Show full text]
  • Downloads (Downloaded on December Expected Length, 253 Bp) After Trimming Were Used for Further 04, 2014)
    fmicb-07-00579 April 21, 2016 Time: 15:32 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 25 April 2016 doi: 10.3389/fmicb.2016.00579 Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem Eric R. Johnston1, Luis M. Rodriguez-R2,3, Chengwei Luo2, Mengting M. Yuan4, Liyou Wu4, Zhili He4, Edward A. G. Schuur5, Yiqi Luo4, James M. Tiedje6, Jizhong Zhou4,7,8* and Konstantinos T. Konstantinidis1,2,3* 1 School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 2 Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta, GA, USA, 3 School of Biology, Georgia Institute of Technology, Atlanta, GA, USA, 4 Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA, 5 Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA, 6 Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA, 7 Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 8 State Key Joint Laboratory of Environment Edited by: Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China Brett J. Baker, University of Texas at Austin, USA How soil microbial communities contrast with respect to taxonomic and functional Reviewed by: composition within and between ecosystems remains an unresolved question that M. J. L. Coolen, Curtin University, Australia is central to predicting how global anthropogenic change will affect soil functioning Kasthuri Venkateswaran, and services. In particular, it remains unclear how small-scale observations of soil NASA-Jet Propulsion Laboratory, USA communities based on the typical volume sampled (1–2 g) are generalizable to *Correspondence: ecosystem-scale responses and processes.
    [Show full text]
  • Metagenome-Assembled Genomes from Monte Cristo Cave (Diamantina, 2 Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on Mars 3 4 Amanda G
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185041; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Metagenome-assembled genomes from Monte Cristo Cave (Diamantina, 2 Brazil) reveal prokaryotic lineages as functional models for life on Mars 3 4 Amanda G. Bendia1*, Flavia Callefo2*, Maicon N. Araújo3, Evelyn Sanchez4, Verônica C. 5 Teixeira2, Alessandra Vasconcelos4, Gislaine Battilani4, Vivian H. Pellizari1, Fabio Rodrigues3, 6 Douglas Galante2 7 8 9 1 Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil 10 2 Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, 11 Campinas, Brazil 12 3 Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil 13 4 Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil 14 15 *Corresponding authors: 16 Amanda Bendia 17 [email protected] 18 Flavia Callefo 19 [email protected] 20 21 22 Keywords: Metagenomic-assembled genomes; metabolic potential; survival strategies; quartzite 23 cave; oligotrophic conditions; habitability; astrobiology; Brazil. 24 25 26 Abstract 27 28 Although several studies have explored microbial communities in different terrestrial subsurface 29 ecosystems, little is known about the diversity of their metabolic processes and survival strategies. 30 The advance of bioinformatic tools is allowing the description of novel and not-yet cultivated 31 microbial lineages in different ecosystems, due to the genome reconstruction approach from 32 metagenomic data.
    [Show full text]