European Union Law Working Papers

Total Page:16

File Type:pdf, Size:1020Kb

European Union Law Working Papers Stanford – Vienna Transatlantic Technology Law Forum A joint initiative of Stanford Law School and the University of Vienna School of Law European Union Law Working Papers No. 49 An Analysis of Articles 15 and 17 of the EU Directive on Copyright in the Digital Single Market: a boost for the creative industries or the death of the internet? Diana Passinke 2020 European Union Law Working Papers Editors: Siegfried Fina and Roland Vogl About the European Union Law Working Papers The European Union Law Working Paper Series presents research on the law and policy of the European Union. The objective of the European Union Law Working Paper Series is to share “works in progress”. The authors of the papers are solely responsible for the content of their contributions and may use the citation standards of their home country. The working papers can be found at http://ttlf.stanford.edu. The European Union Law Working Paper Series is a joint initiative of Stanford Law School and the University of Vienna School of Law’s LLM Program in European and International Business Law. If you should have any questions regarding the European Union Law Working Paper Series, please contact Professor Dr. Siegfried Fina, Jean Monnet Professor of European Union Law, or Dr. Roland Vogl, Executive Director of the Stanford Program in Law, Science and Technology, at: Stanford-Vienna Transatlantic Technology Law Forum http://ttlf.stanford.edu Stanford Law School University of Vienna School of Law Crown Quadrangle Department of Business Law 559 Nathan Abbott Way Schottenbastei 10-16 Stanford, CA 94305-8610 1010 Vienna, Austria About the Author Diana Passinke is a graduate of the University of Vienna, where she earned her LLM degree in European and International Business Law with distinction in 2020. Her main areas of interest include intellectual property, human rights, employment, tax, and competition/antitrust law. Diana is currently working in a tax advisory role at the London office of Smith & Williamson LLP. General Note about the Content The opinions expressed in this student paper are those of the author and not necessarily those of the Transatlantic Technology Law Forum, or any of TTLF’s partner institutions, or the other sponsors of this research project. Suggested Citation This European Union Law Working Paper should be cited as: Diana Passinke, An Analysis of Articles 15 and 17 of the EU Directive on Copyright in the Digital Single Market: a boost for the creative industries or the death of the internet?, Stanford-Vienna European Union Law Working Paper No. 49, http://ttlf.stanford.edu. Copyright © 2020 Diana Passinke Abstract The digital revolution has had a strong impact on copyright-intensive industries. The ease of removing rightholders’ information from their works and distributing content in the online environment contributes to the difficulties faced by rightholders seeking to effectively license their rights and obtain remuneration for the online distribution of their works. This has allegedly become a threat to the future production of creative content. While some studies demonstrate that within the copyright industries the sky is rising rather than falling, the emergence of a growing value gap is indisputable. With online platforms gaining more revenue as a result of digitalisation en masse, the European Commission decided that the right step forward is to improve the position of rightholders by placing additional burdens on those that allowed them to thrive. The European Commission introduced the Digital Single Market Copyright Directive with a hope of ensuring that consumers and creators can make the most of the digital world. However, the introduction of Articles 15 and 17 might achieve something quite the opposite. As demonstrated by the French attempt of implementing Article 15 into its national legislation, the press publishers’ right is unlikely to be effective. Instead, it might have inadvertent consequences for smaller press publishers and consumers by limiting their market exposure and the available choices on the market. It is also likely to have an overall negative effect on press pluralism and innovation. While Article 17 has been significantly improved since the initial proposal, the difficulties faced by press publishers in concluding a satisfactory license with Google in France, demonstrate that a new licensing obligation will not always culminate in increased revenues for the content creator. The lack of clear resultant benefits that this provision seeks to achieve might not be worth the chaotic disruption it could leave in its wake. Instead of disrupting the market to resemble the structures of the past, the European Union needs to embrace the new digitalised world. It should seek progressive solutions that would align with the actual objective of the Digital Single Market Copyright Directive: the enhancement of the ability for consumers and creators to make the most of this digital world. Perhaps then, it would be more likely to deliver the promised boost to the creative industries. TABLE OF CONTENTS TABLE OF CASES .......................................................................................................................... 2 TABLE OF LEGISLATION ........................................................................................................... 4 LIST OF ABBREVIATIONS .......................................................................................................... 5 INTRODUCTION ............................................................................................................................ 6 CHAPTER I: THE DIGITAL SINGLE MARKET AND THE PURPOSE OF THE DSM COPYRIGHT DIRECTIVE .......................................................................................................... 10 1. The Digital Single Market ...................................................................................................... 10 2. The Value Gap ........................................................................................................................ 12 3. The Fair Balance and the Controversy Surrounding the DSM Copyright Directive ....... 13 CHAPTER II: ARTICLE 15 – THE PRESS PUBLISHERS’ RIGHT ...................................... 16 1. The Background ...................................................................................................................... 16 2. Article 11 of the DSM Copyright Directive Proposal .......................................................... 18 3. The Criticism of the Proposed Article 11 ............................................................................. 18 3.1 The Value Gap and News Aggregators ........................................................................... 20 3.2 The Spanish and German Experience ............................................................................. 21 3.3 The Need for an Ancillary Right ..................................................................................... 24 3.4 The Other Criticisms ........................................................................................................ 26 4. The European Commission’s Response to the Raised Criticisms ...................................... 30 5. The Remaining Criticisms ...................................................................................................... 32 6. An Alternative Solution .......................................................................................................... 40 CHAPTER III: ARTICLE 17 – THE FILTERING SYSTEM OF AUTOMATIC COPYRIGHT DETECTION ......................................................................................................... 48 1. The Background ...................................................................................................................... 48 2. Article 13 of the DSM Copyright Directive Proposal .......................................................... 52 3. The Criticism of the Proposed Article 13 ............................................................................. 52 3.1 Article 13 and its Interaction with the InfoSoc and e-Commerce Directives .............. 55 3.2 Article 13 and the Charter of Fundamental Rights of the European Union ............... 62 3.3 Impact of Article 13 on Innovation and Competition in the Digital Market ............... 71 4. The European Commission’s Response to the Raised Criticisms ...................................... 72 5. The Remaining Criticism ....................................................................................................... 77 6. An Alternative Solution .......................................................................................................... 77 CONCLUSION ............................................................................................................................... 81 BIBLIOGRAPHY ........................................................................................................................... 85 1 TABLE OF CASES CJEU cases Belgische Verenigung van Auteurs, Componisten en Uitgevers CVBA (SABAM) v Netlog (C-360/10) EU:C:2012:85 Gaston Schul Douane Expediteur BV v Inspecteur der Invoerrechten en Accijnzen, Roosendaal (C-15/81) EU:C:1982:135, [1982] ECR 01409 Google France Sarl v Louis Vuitton Malletier SA (C-236/08) EU:C:2010:159, [2010] ECR I-2417 GS Media BV v Sanoma Media Netherlands BV (C-160/15) EU:C:2016:64 J. N. v Staatssecretaris van Veiligheid en Justitie (C-601/15 PPU) EU:C:2016:84 L’Oréal SA and Others v eBay International
Recommended publications
  • Artificial Intelligence, Automation, and Work
    Artificial Intelligence, Automation, and Work The Economics of Artifi cial Intelligence National Bureau of Economic Research Conference Report The Economics of Artifi cial Intelligence: An Agenda Edited by Ajay Agrawal, Joshua Gans, and Avi Goldfarb The University of Chicago Press Chicago and London The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2019 by the National Bureau of Economic Research, Inc. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations in critical articles and reviews. For more information, contact the University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637. Published 2019 Printed in the United States of America 28 27 26 25 24 23 22 21 20 19 1 2 3 4 5 ISBN-13: 978-0-226-61333-8 (cloth) ISBN-13: 978-0-226-61347-5 (e-book) DOI: https:// doi .org / 10 .7208 / chicago / 9780226613475 .001 .0001 Library of Congress Cataloging-in-Publication Data Names: Agrawal, Ajay, editor. | Gans, Joshua, 1968– editor. | Goldfarb, Avi, editor. Title: The economics of artifi cial intelligence : an agenda / Ajay Agrawal, Joshua Gans, and Avi Goldfarb, editors. Other titles: National Bureau of Economic Research conference report. Description: Chicago ; London : The University of Chicago Press, 2019. | Series: National Bureau of Economic Research conference report | Includes bibliographical references and index. Identifi ers: LCCN 2018037552 | ISBN 9780226613338 (cloth : alk. paper) | ISBN 9780226613475 (ebook) Subjects: LCSH: Artifi cial intelligence—Economic aspects. Classifi cation: LCC TA347.A78 E365 2019 | DDC 338.4/ 70063—dc23 LC record available at https:// lccn .loc .gov / 2018037552 ♾ This paper meets the requirements of ANSI/ NISO Z39.48-1992 (Permanence of Paper).
    [Show full text]
  • Fintech, Racial Equity, and an Inclusive Financial System
    Volume 15 , Issue 2, Summer 2021 Community Development INNOVATION REVIEW Fintech, Racial Equity, and an Inclusive Financial System Community Development INNOVATION REVIEW The Community Development Innovation Review focuses on bridging the gap between theory and practice, from as many viewpoints as possible. The goal of this journal is to promote cross-sector dialogue around a range of emerging issues and related investments that advance economic resilience and mobility for low- and moderate-income communities. For submission guidelines and themes of upcoming issues, or other inquiries and subscription requests, contact [email protected]. The material herein may not represent the views of the Federal Reserve Bank of San Francisco or the Federal Reserve System. Community Development Innovation Review Issue Editorial Team Bina Patel Shrimali Co-Editor Rocio Sanchez-Moyano Co-Editor Kaitlin Asrow Guest Issue Editor Sean Creehan Guest Issue Editor Genevieve Melford Guest Issue Editor Tim Shaw Guest Issue Editor Mackenzie Wallace Guest Issue Editor Federal Reserve Bank of San Francisco. 2021. “Fintech, Racial Equity, and an Inclusive Financial System,” Federal Reserve Bank of San Francisco Community Development Innovation Review 2021-2. Available at https://doi.org/10.24148/cdir2021-02 Table of Contents Foreword ...........................................................................................................................................................5 Laura Choi, Federal Reserve Bank of San Francisco Ida
    [Show full text]
  • C:\Working Papers\7804.Wpd
    1%(5:25.,1*3$3(56(5,(6 7+(6/2:'2:12)7+((&2120,&638%/,6+,1*352&(66 *OHQQ(OOLVRQ :RUNLQJ3DSHU KWWSZZZQEHURUJSDSHUVZ 1$7,21$/%85($82)(&2120,&5(6($5&+ 0DVVDFKXVHWWV$YHQXH &DPEULGJH30$ -XO\ ,ZRXOGOLNHWRWKDQNWKH1DWLRQDO6FLHQFH)RXQGDWLRQ6%5WKH6ORDQ)RXQGDWLRQWKH&HQWHUIRU$GYDQFHG 6WXG\LQWKH%HKDYLRUDO6FLHQFHVDQGWKH3DXO(*UD\8523)XQGIRUWKHLUVXSSRUW7KLVSDSHUZRXOGQRWKDYHEHHQ SRVVLEOHZLWKRXWWKHKHOSRIDJUHDWPDQ\SHRSOH,DPYHU\JUDWHIXOIRUWKHHIIRUWVWKDWDQXPEHURIMRXUQDOVPDGHWR VXSSO\PHZLWKGDWD,QDGGLWLRQPDQ\RIWKHLGHDVLQWKLVSDSHUZHUHGHYHORSHGLQWKHFRXUVHRIDVHULHVRIFRQYHUVDWLRQV ZLWKRWKHUHFRQRPLVWV,ZRXOGHVSHFLDOO\OLNHWRWKDQN2UOH\$VKHQIHOWHU6XVDQ$WKH\5REHUW%DUUR*DU\%HFNHU-RKQ &RFKUDQH2OLYLHU%ODQFKDUG-XG\&KHYDOLHU.HQ&RUWV%U\DQ(OOLFNVRQ6DUD)LVKHU(OOLVRQ)UDQN)LVKHU'UHZ )XGHQEHUJ-RVKXD*DQV(GZDUG*ODHVHU'DQLHO+DPHUPHVK/DUV+DQVHQ+DUULHW+RIIPDQ-LP+RVHN$ODQ.UXHJHU 3DXOD/DULFK9LFN\/RQJDZD5REHUW/XFDV:DOO\0XOOLQ3DXO6DPXHOVRQ,O\D6HJDO.DUO6KHOO$QGUHL6KOHLIHUDQG .DWK\6LPNDQLFKZLWKRXWLPSOLFDWLQJWKHPIRUDQ\RIWKHYLHZVGLVFXVVHGKHUHLQ5LFKDUG&UXPS6LPRQD-HOHVFX &KULVWLQH.LDQJ1DGD0RUDDQG&DUROLQH6PLWKSURYLGHGYDOXDEOHUHVHDUFKDVVLVWDQFH7KHYLHZVH[SUHVVHGKHUHDUH WKHDXWKRUDQGGRQRWQHFHVVDULO\UHIOHFWWKRVHRIWKH1DWLRQDO%XUHDXRI(FRQRPLF5HVHDUFK E\*OHQQ(OOLVRQ$OOULJKWVUHVHUYHG6KRUWVHFWLRQVRIWH[WQRWWRH[FHHGWZRSDUDJUDSKVPD\EHTXRWHG ZLWKRXWH[SOLFLWSHUPLVVLRQSURYLGHGWKDWIXOOFUHGLWLQFOXGLQJQRWLFHLVJLYHQWRWKHVRXUFH 7KH6ORZGRZQRIWKH(FRQRPLFV3XEOLVKLQJ3URFHVV *OHQQ(OOLVRQ 1%(5:RUNLQJ3DSHU1R -XO\ -(/1R$ $%#% 2YHUWKHODVWWKUHHGHFDGHVWKHUHKDVEHHQDGUDPDWLFLQFUHDVHLQWKHOHQJWKRIWLPHQHFHVVDU\ WRSXEOLVKDSDSHULQDWRSHFRQRPLFVMRXUQDO7KLVSDSHUGRFXPHQWVWKHVORZGRZQDQGQRWHVWKDW
    [Show full text]
  • When Should You Adjust Standard Errors for Clustering?
    When Should You Adjust Standard Errors for Clustering? Alberto Abadie Susan Athey Guido W. Imbens Jeffrey Wooldridge October, 2017 Working Paper No. 17-030 When Should You Adjust Standard Errors for Clustering?∗ Alberto Abadie† Susan Athey‡ Guido W. Imbens§ Jeffrey Wooldridge¶ October 2017 Abstract In empirical work in economics it is common to report standard errors that account for clustering of units. Typically, the motivation given for the clustering adjustments is that unobserved components in outcomes for units within clusters are correlated. However, because correlation may occur across more than one dimension, this motivation makes it difficult to justify why researchers use clustering in some dimensions, such as geographic, but not others, such as age cohorts or gender. This motivation also makes it difficult to explain why one should not cluster with data from a randomized experiment. In this paper, we argue that clustering is in essence a design problem, either a sampling design or an experimental design issue. It is a sampling design issue if sampling follows a two stage process where in the first stage, a subset of clusters were sampled randomly from a population of clusters, and in the second stage, units were sampled randomly from the sampled clusters. In this case the clustering adjustment is justified by the fact that there are clusters in the population that we do not see in the sample. Clustering is an experimental design issue if the assignment is correlated within the clusters. We take the view that this second perspective best fits the typical setting in economics where clustering adjustments are used.
    [Show full text]
  • NBER-2017-—-Economics-Of-AI.Pdf
    ECONOMICS OF AI HOME + CONFERENCES PAPERS BLOG NBER CONFERENCE, TORONTO 2017 AEA 2018 TPI WASHINGTON DC FEBRUARY 2018 2018 INET/IMF MACROECONOMICS OF AI NBER CONFERENCE TORONTO 2018 On 13-14 September, 2017, we held our inaugural conference in Toronto to set the research agenda on The Economics of AI. The conference was made possible by generous support from the NBER, Creative Destruction Lab and CIFAR. Ajay Agrawal, Joshua Gans and Avi Goldfarb of the University of Toronto organised the conference. Presentation Videos Introduction by Ajay Agrawal Agenda Introduction - Ajay Agrawal (Toronto & NBER) (Slides, Video) The Impact of Artificial Intelligence on Innovation (Slides, Video) Iain Cockburn (Boston University & NBER) Rebecca Henderson (Harvard & NBER) Scott Stern (MIT & NBER) Discussant: Matthew Mitchell, University of Toronto (Slides) Artificial Intelligence and the Modern Productivity Paradox: A Clash of Expectations and Statistics (Slides, Video, Media Coverage) Erik Brynjolfsson (MIT & NBER) Daniel Rock (MIT & NBER) Chad Syverson (Chicago & NBER) Discussant: Rebecca Henderson, Harvard University and NBER (Slides) Market Design (Slides, Video) Paul Milgrom (Stanford) Steven Tadelis (University of California at Berkeley & NBER) Discussant: Matt Taddy, Chicago & Microsoft (Slides) Impact on Economics (Slides, Video) Susan Athey (Stanford & NBER) Discussant: Mara Lederman, University of Toronto (Slides) Lunch Presentation by Vinod Khosla, Khosla Ventures (Video) Prediction, Judgment and Complexity (Slides, Video) Ajay Agrawal (Toronto & NBER) Joshua Gans (Toronto & NBER) Avi Goldfarb (Toronto & NBER) Discussant: Andrea Prat, Columbia University (Slides) Privacy (Slides, Video) Catherine Tucker (MIT & NBER) Discussant: Ginger Zhe Jin, Maryland & NBER (Slides) Trade (Slides, Video) Daniel Trefler (Toronto & NBER) Avi Goldfarb (Toronto & NBER) Discussant: Dave Donaldson, MIT & NBER (Slides) Panel: Impact on Policy Making (Video) Susan Athey (Stanford & NBER) Austan Goolsbee (Chicago & NBER) Lawrence H.
    [Show full text]
  • Artificial Intelligence and Its Implications for Income Distribution
    Artificial Intelligence and Its Implications ... The Economics of Artifi cial Intelligence National Bureau of Economic Research Conference Report The Economics of Artifi cial Intelligence: An Agenda Edited by Ajay Agrawal, Joshua Gans, and Avi Goldfarb The University of Chicago Press Chicago and London The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2019 by the National Bureau of Economic Research, Inc. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission, except in the case of brief quotations in critical articles and reviews. For more information, contact the University of Chicago Press, 1427 E. 60th St., Chicago, IL 60637. Published 2019 Printed in the United States of America 28 27 26 25 24 23 22 21 20 19 1 2 3 4 5 ISBN-13: 978-0-226-61333-8 (cloth) ISBN-13: 978-0-226-61347-5 (e-book) DOI: https:// doi .org / 10 .7208 / chicago / 9780226613475 .001 .0001 Library of Congress Cataloging-in-Publication Data Names: Agrawal, Ajay, editor. | Gans, Joshua, 1968– editor. | Goldfarb, Avi, editor. Title: The economics of artifi cial intelligence : an agenda / Ajay Agrawal, Joshua Gans, and Avi Goldfarb, editors. Other titles: National Bureau of Economic Research conference report. Description: Chicago ; London : The University of Chicago Press, 2019. | Series: National Bureau of Economic Research conference report | Includes bibliographical references and index. Identifi ers: LCCN 2018037552 | ISBN 9780226613338 (cloth : alk. paper) | ISBN 9780226613475 (ebook) Subjects: LCSH: Artifi cial intelligence—Economic aspects. Classifi cation: LCC TA347.A78 E365 2019 | DDC 338.4/ 70063—dc23 LC record available at https:// lccn .loc .gov / 2018037552 ♾ This paper meets the requirements of ANSI/ NISO Z39.48-1992 (Permanence of Paper).
    [Show full text]
  • Kominers 40.Pdf
    ISSN 1936-5349 (print) ISSN 1936-5357 (online) HARVARD JOHN M. OLIN CENTER FOR LAW, ECONOMICS, AND BUSINESS FELLOWS’ DISCUSSION PAPER SERIES CONCORDANCE AMONG HOLDOUTS Scott Duke Kominers E. Glen Weyl Discussion Paper No. 40 08/2011 Harvard Law School Cambridge, MA 02138 Contributors to this series are John M. Olin Fellows or Terence M. Considine Fellows in Law and Economics at Harvard University. This paper can be downloaded without charge from: The Harvard John M. Olin Fellow’s Discussion Paper Series: http://www.law.harvard.edu/programs/olin_center/ Concordance among Holdouts∗ Scott Duke Kominersy E. Glen Weylz Abstract Holdout problems prevent decentralized aggregation of complementary goods, as in the assembly of land or transfer of corporate ownership. Therefore, as Mailath and Postelwaite (1990) formalized, some coercion is needed to enable the assembly of complements in large populations. We propose an approximate individual rationality condition under which individuals are guaranteed to receive as compensation for taking at least the best estimate of their value possible from others' information. Unlike strict individual rationality, this constraint is consistent with the bilateral efficiency achieved by a take-it-or-leave-it offer to the aggregate seller community. We propose a class of Concordance mechanisms which includes the maximally attractive mechanisms achieving these objectives together with, depending on the implementation considered, either dominant-strategy incentive compatibility or Bayesian incentive compatibility and budget balance. JEL classification: D40, D70, D81, L10 ∗Kominers gratefully acknowledges the support of an NSF Graduate Research Fellowship, a Yahoo! Key Scientific Challenges Program Fellowship, and a Terence M. Considine Fellowship in Law and Economics funded by the John M.
    [Show full text]
  • Breiman's Two Cultures: a Perspective from Econometrics Guido Imbens, Susan Athey
    Breiman's Two Cultures: A Perspective from Econometrics Guido Imbens, Susan Athey Observational Studies, Volume 7, Issue 1, 2021, pp. 127-133 (Article) Published by University of Pennsylvania Press DOI: https://doi.org/10.1353/obs.2021.0028 For additional information about this article https://muse.jhu.edu/article/799753 [ Access provided at 27 Sep 2021 20:43 GMT with no institutional affiliation ] Observational Studies Vol. 7.1 (2021): Published July 2021 Breiman's Two Cultures: A Perspective from Econometrics Guido Imbens [email protected] Graduate School of Business and Department of Economics Stanford University Stanford, CA 94305 Susan Athey [email protected] Graduate School of Business Stanford University Stanford, CA 94305 Abstract Breiman's \Two Cultures" paper painted a picture of two disciplines, data modeling, and algorithmic machine learning, both engaged in the analyses of data but talking past each other. Although that may have been true at the time, there is now much interaction between the two. For example, in economics, machine learning algorithms have become valuable and widely appreciated tools for aiding in the analyses of economic data, informed by causal/structural economic models. Keywords: Econometrics, Causal Inference, Instrumental Variables 1. Introduction When we first read Breiman's \Two Cultures" paper (Breiman, 2001) in the early 2000's it baffled us. In econometrics, as in much of statistics (98% according to Breiman), the modeling culture was dominant, and a purely prediction-based focus seemed very alien to what econometricians were doing. You can see this clearly in the history of econometrics (see for a description, e.g, Hendry and Morgan (1997)).
    [Show full text]
  • Efficient Estimation for Staggered Rollout Designs Arxiv:2102.01291V3
    Efficient Estimation for Staggered Rollout Designs∗ Jonathan Roth† Pedro H.C. Sant’Anna‡ June 30, 2021 Abstract This paper studies efficient estimation of causal effects when treatment is (quasi-) randomly rolled out to units at different points in time. We solve for the most efficient estimator in a class of estimators that nests two-way fixed effects models and other popular generalized difference-in-differences methods. A feasible plug-in version of the efficient estimator is asymptotically unbiased with efficiency (weakly) dominating that of existing approaches. We provide both t-based and permutation-test based methods for inference. We illustrate the performance of the plug-in efficient estimator in simula- tions and in an application to Wood et al.(2020a)’s study of the staggered rollout of a procedural justice training program for police officers. We find that confidence intervals based on the plug-in efficient estimator have good coverage and can be as much as five times shorter than confidence intervals based on existing state-of-the-art methods. As an empirical contribution of independent interest, our application provides the most precise estimates to date on the effectiveness of procedural justice training programs for police officers. ∗We are grateful to Yuehao Bai, Brantly Callaway, Jen Doleac, Peng Ding, Avi Feller, Ryan Hill, Li- hua Lei, David McKenzie, Emily Owens, Ashesh Rambachan, Evan Rose, Adrienne Sabety, Jesse Shapiro, Yotam Shem-Tov, Dylan Small, Ariella Kahn-Lang Spitzer, Sophie Sun, and seminar participants at In- arXiv:2102.01291v3 [econ.EM] 29 Jun 2021 sper, Notre Dame, UC-Berkeley, University of Cambridge, University of Delaware, University of Florida, the North American Summer Meetings of the Econometric Society, and the International Association of Applied Econometrics annual meeting for helpful comments and conversations.
    [Show full text]
  • Synthetic Difference in Differences Arxiv:1812.09970V4 [Stat.ME]
    Synthetic Difference in Differences Dmitry Arkhangelsky† Susan Athey‡ David A. Hirshberg§ Guido W. Imbens¶ Stefan Wager‖ Version July 2021 Abstract We present a new estimator for causal effects with panel data that builds on insights behind the widely used difference in differences and synthetic control methods. Relative to these methods we find, both theoretically and empirically, that this \synthetic difference in differences” estimator has desirable robustness properties, and that it performs well in settings where the conventional estimators are commonly used in practice. We study the asymptotic behavior of the estimator when the systematic part of the outcome model includes latent unit factors interacted with latent time factors, and we present conditions for consistency and asymptotic normality. Keywords: causal inference, difference in differences, synthetic controls, panel data ∗We are grateful for helpful comments and feedback from a co-editor and referees, as well as from arXiv:1812.09970v4 [stat.ME] 2 Jul 2021 Alberto Abadie, Avi Feller, Paul Goldsmith-Pinkham, Liyang Sun, Yiqing Xu, Yinchu Zhu, and seminar participants at several venues. This research was generously supported by ONR grant N00014-17-1- 2131 and the Sloan Foundation. The R package for implementing the methods developed here is available at https://github.com/synth-inference/synthdid. The associated vignette is at https://synth- inference.github.io/synthdid/. †Associate Professor, CEMFI, Madrid, [email protected]. ‡Professor of Economics, Graduate School of Business, Stanford University, SIEPR, and NBER, [email protected]. §Postdoctoral Fellow, Graduate School of Business and Department of Statistics, Stanford Univer- sity, [email protected]. ¶Professor of Economics, Graduate School of Business, and Department of Economics, Stanford University, SIEPR, and NBER, [email protected].
    [Show full text]
  • Imbens Wooldridge
    Journal of Economic Literature 2009, 47:1, 5–86 http:www.aeaweb.org/articles.php?doi=10.1257/jel.47.1.5 Recent Developments in the Econometrics of Program Evaluation Guido W. Imbens and Jeffrey M. Wooldridge* Many empirical questions in economics and other social sciences depend on causal effects of programs or policies. In the last two decades, much research has been done on the econometric and statistical analysis of such causal effects. This recent theoreti- cal literature has built on, and combined features of, earlier work in both the statistics and econometrics literatures. It has by now reached a level of maturity that makes it an important tool in many areas of empirical research in economics, including labor economics, public finance, development economics, industrial organization, and other areas of empirical microeconomics. In this review, we discuss some of the recent developments. We focus primarily on practical issues for empirical research- ers, as well as provide a historical overview of the area and give references to more technical research. 1. Introduction research in economics and suitable for a review. In this article, we attempt to pres- any empirical questions in economics ent such a review. We will focus on practi- Mand other social sciences depend on cal issues for empirical researchers, as well as causal effects of programs or policies. In the provide an historical overview of the area and last two decades, much research has been give references to more technical research. done on the econometric and statistical anal- This review complements and extends other ysis of such causal effects.
    [Show full text]
  • Machine Learning and Economics Susan Athey (Stanford)
    TOULOUSE NETWORK FOR INFORMATION TECHNOLOGY How do search costs shape digital markets? Daniel Ershov (TSE) Machine learning and economics Susan Athey (Stanford) e Issue 19 e February 2019 BYTES A brave orward-thinking research is essential to help businesses and regulators new world? keep up with the speed of the digital F revolution. In this issue of TNIT News, we feature the work of two TNIT researchers Jacques Crémer whose work seeks to capture the fast-changing dynamics of the new economic landscape. TSE’s Daniel Ershov looks at the effects of consumer search costs on entry, product design, and quality investment in online markets using unique data from the Google Play mobile app store. His results have important implications DARON ACEMOGLU WINS HEIDI WILLIAMS AMONG BEST for anti-trust cases in digital markets. MAJOR TSE-IAST AWARD ECONOMISTS OF THE DECADE Meanwhile, Stanford’s Susan Athey discusses At Toulouse city hall in October, TNIT member Daron The Economist has picked TNIT member Heidi Williams Acemoglu was presented with the 2018 Jean-Jacques as one of its eight best economists of the decade. the extraordinary power of machine-learning Laffont prize. These young scholars, it says, are the future of the discipline: and AI techniques, allied with economists’ TSE president Jean Tirole described the MIT professor as one “They display an impressive combination of clever empiricism know-how, to answer real-world business and of the most influential and outstanding economists of his and serious-minded wonkery. They represent much of what’s policy problems. With a host of new policy areas generation: “Daron is also an extraordinary public intellectual right with economics as well as the acumen of top American to study and an exciting new toolkit, social- but the motivation for the prize is his tremendous contribution in universities in scooping up talent.” science research is on the cusp of a golden age.
    [Show full text]