A General Result for the Magnetoelastic Response Of

Total Page:16

File Type:pdf, Size:1020Kb

A General Result for the Magnetoelastic Response Of Journal of the Mechanics and Physics of Solids 107 (2017) 343–364 Contents lists available at ScienceDirect Journal of the Mechanics and Physics of Solids journal homepage: www.elsevier.com/locate/jmps A general result for the magnetoelastic response of isotropic suspensions of iron and ferrofluid particles in rubber, with applications to spherical and cylindrical specimens ∗ Victor Lefèvre a, Kostas Danas b, Oscar Lopez-Pamies a, a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States b LMS, C.N.R.S., École Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France a r t i c l e i n f o a b s t r a c t Article history: This paper puts forth an approximate solution for the effective free-energy function de- Received 10 April 2017 scribing the homogenized (or macroscopic) magnetoelastic response of magnetorheological Revised 10 May 2017 elastomers comprised of non-Gaussian rubbers filled with isotropic suspensions of either Accepted 25 June 2017 iron or ferrofluid particles. The solution is general in that it applies to N = 2 and 3 space Available online 13 July 2017 dimensions and any arbitrary (non-percolative) isotropic suspension of filler particles. By Keywords: construction, it is exact in the limit of small deformations and moderate magnetic fields. Magnetorheological elastomers For finite deformations and finite magnetic fields, its accuracy is demonstrated by means Ferrofluid inclusions of direct comparisons with full-field simulations for two prominent cases: ( i ) isotropic sus- Magnetostriction pensions of circular particles and ( ii ) isotropic suspensions of spherical particles. Finite magnetoelastostatics With the combined objectives of demonstrating the possible benefits of using fer- rofluid particles in lieu of the more conventional iron particles as fillers and gaining insight into recent experimental results, the proposed homogenization-based constitutive model is deployed to generate numerical solutions for boundary-value problems of both fundamental and practical significance: those consisting of magnetorheological elastomer specimens of spherical and cylindrical shape that are immersed in air and subjected to a remotely applied uniform magnetic field. It is found that magnetorheological elastomers filled with ferrofluid particles can exhibit magnetostrictive capabilities far superior to those of magnetorheological elastomers filled with iron particles. The results also reveal that the deformation and magnetic fields are highly heterogenous within the specimens and strongly dependent on the shape of these, specially for magnetorheological elas- tomers filled with iron particles. From an applications perspective, this evidence makes it plain that attempts at designing magnetrostrictive devices based on magnetorheological elastomers need to be approached, in general, as structural problems, and not simply as materials design problems. ©2017 Elsevier Ltd. All rights reserved. 1. Introduction Ostensibly due to the renewed experimental impetus started during the 1990s (see, e.g., Ginder et al., 1999; Jolly et al., 1996; Shiga et al., 1995 ), increasing efforts have been devoted by the mechanics community to construct continuum mod- ∗ Corresponding author. E-mail addresses: [email protected] (V. Lefèvre), [email protected] (K. Danas), [email protected] (O. Lopez-Pamies). http://dx.doi.org/10.1016/j.jmps.2017.06.017 0022-5096/© 2017 Elsevier Ltd. All rights reserved. 344 V. Lefèvre et al. / Journal of the Mechanics and Physics of Solids 107 (2017) 343–364 Fig. 1. Schematic of a magnetorheological elastomer in its ground configuration depicting its underlying microstructure comprised of a random isotropic suspension of either (a) iron particles or (b) ferrofluid particles firmly embedded in a rubber matrix. The magnetoelastic behaviors of the rubber matrix and the particles are characterized by free-energy functions W m and W p . The macroscopic magnetoelastic behavior of the magnetorheological elastomer is characterized by the effective free-energy function W . els capable of describing the magnetoelastic response of magnetorheological elastomers under finite deformations (involv- ing arbitrary finite strains and rigid rotations) and finite magnetic fields. These efforts can be roughly classified into two categories: ( i ) top-down or phenomenological approaches in which macroscopic free energies are postulated based on macroscopic experimental observations (see, e.g., Bustamante et al., 2011; Danas et al., 2012; Dorfmann and Ogden, 2005; Kankanala and Triantafyllidis, 2004; Pelteret et al., 2016; Saxena et al., 2015 ) and ( ii ) bottom-up or homogenization ap- proaches in which macroscopic free energies are derived based on the underlying microscopic behavior (see, e.g., Borcea and Bruno, 2001; Corcolle et al., 2008; Galipeau and Ponte Castaeda, 2012; Galipeau and Ponte Castañeda, 2013; Liu et al., 2006; Zhou and Shin, 2005 ). While the practical challenges of carrying out experiments that test the material (and not the structural) response of specimens over wide ranges of finite deformations and finite magnetic fields have curtailed the ad- vancement of phenomenological models, the intrinsic mathematical challenges of carrying out the homogenization limit of the equations of magnetoelastostatics have hindered the construction of homogenization-based models. In this context, leveraging a recent result of Lefèvre and Lopez-Pamies (2017a, b) within the mathematically analogous setting of electroelastostatics, the fundamental object of this work is to put forth a homogenization-based macroscopic free energy that describes the finite magnetoelastic response of isotropic magnetorheological elastomers under arbitrary magne- tomechanical loadings. The focus is on isotropic magnetorheological elastomers —in both N = 2 and 3 space dimensions — comprised of a non-Gaussian rubber matrix isotropically filled with either iron or ferrofluid particles; see Fig. 1 for a schematic. By deploying the constructed free energies, an additional practical objective of this work is also to provide in- sight into the merits of using ferrofluid particles in lieu of the more conventional iron particles as fillers. A further practical objective is to scrutinize experiments available in the literature on magnetorheological elastomers containing iron particles. This is accomplished by carrying out finite-element simulations of representative experiments making use of the constructed free energies to model the magnetoelastic behavior of the specimens. To put the present work in perspective, we remark that existing analytical homogenization (exact or approximate) results for isotropic magnetorheological elastomers are restricted to the asymptotic context of small deformations, save for an ap- proximate result due to Galipeau and Ponte Castaeda (2012) in N = 2 space dimensions that is valid for finite deformations. These authors made use of a partial decoupling approximation ( Ponte Castañeda and Galipeau, 2011 ) together with an earlier result of Lopez-Pamies and Ponte Castañeda (2006) to construct an estimate for the macroscopic free energy of an isotropic incompressible elastic matrix reinforced by an isotropic suspension of circular magnetizable particles that are mechanically rigid. It is also fitting to remark that computational homogenization results have been recently reported in the literature for rubber filled with periodic square/hexagonal arrays ( Galipeau et al., 2014; Javili et al., 2013; Keip and Rambausek, 2016 ) and approximately isotropic distributions ( Danas, 2017; Kalina et al., 2016 ) of circular particles in N = 2 space dimensions and with periodic cubic arrays of spherical particles ( Javili et al., 2013; Miehe et al., 2016 ) in N = 3 space dimensions. These computational results pertain to rubber matrices featuring high compressibility (presumably in order to avoid numerical complications such as volumetric locking). We also remark that neither theoretical nor experimental studies on magne- torheological elastomers containing ferrofluid filler particles appear to have been reported in the literature; see, however, the recent works of Lopez-Pamies (2014) , Lefèvre and Lopez-Pamies (2017b) , Barlett et al. (2017) , and references therein for intimately related studies of dielectric elastomers filled with liquid-metal inclusions. The presentation of the work is organized as follows. We begin in Section 2 by formulating the problem in N = 2 and 3 space dimensions that defines the macroscopic magnetoelastic response of isotropic incompressible non-Gaussian rubber, filled with an arbitrary isotropic suspension of deformable magnetizable particles whose magnetization may possibly saturate, under finite deformations and finite electric fields. In Section 3 , we present an approximate solution for the problem formulated in Section 2 for two types of filler particles: iron (modelled as mechanically rigid) and ferrofluids (modeled as mechanically liquid-like, that is, incompressible and of vanishingly small shear stiffness). For the case of N = 3 space dimensions, the solution corresponds to a recasting, mutatis mutandis , of the solution recently derived by Lefèvre and Lopez-Pamies (2017b ) within the mathematically analogous setting of electroelastostatics. The solution for N = 2 space dimensions corresponds to a generalization of such a solution beyond N = 3 . We devote Sections 4 and 5 to spelling out the specializations of the general solution presented in Section 3 to the basic cases of isotropic
Recommended publications
  • Static Analysis of Isotropic, Orthotropic and Functionally Graded Material Beams
    Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 3 Issue 5, May - 2016 Static analysis of isotropic, orthotropic and functionally graded material beams Waleed M. Soliman M. Adnan Elshafei M. A. Kamel Dep. of Aeronautical Engineering Dep. of Aeronautical Engineering Dep. of Aeronautical Engineering Military Technical College Military Technical College Military Technical College Cairo, Egypt Cairo, Egypt Cairo, Egypt [email protected] [email protected] [email protected] Abstract—This paper presents static analysis of degrees of freedom for each lamina, and it can be isotropic, orthotropic and Functionally Graded used for long and short beams, this laminated finite Materials (FGMs) beams using a Finite Element element model gives good results for both stresses and deflections when compared with other solutions. Method (FEM). Ansys Workbench15 has been used to build up several models to simulate In 1993 Lidstrom [2] have used the total potential different types of beams with different boundary energy formulation to analyze equilibrium for a conditions, all beams have been subjected to both moderate deflection 3-D beam element, the condensed two-node element reduced the size of the of uniformly distributed and transversal point problem, compared with the three-node element, but loads within the experience of Timoshenko Beam increased the computing time. The condensed two- Theory and First order Shear Deformation Theory. node system was less numerically stable than the The material properties are assumed to be three-node system. Because of this fact, it was not temperature-independent, and are graded in the possible to evaluate the third and fourth-order thickness direction according to a simple power differentials of the strain energy function, and thus not law distribution of the volume fractions of the possible to determine the types of criticality constituents.
    [Show full text]
  • Constitutive Relations: Transverse Isotropy and Isotropy
    Objectives_template Module 3: 3D Constitutive Equations Lecture 11: Constitutive Relations: Transverse Isotropy and Isotropy The Lecture Contains: Transverse Isotropy Isotropic Bodies Homework References file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture11/11_1.htm[8/18/2014 12:10:09 PM] Objectives_template Module 3: 3D Constitutive Equations Lecture 11: Constitutive relations: Transverse isotropy and isotropy Transverse Isotropy: Introduction: In this lecture, we are going to see some more simplifications of constitutive equation and develop the relation for isotropic materials. First we will see the development of transverse isotropy and then we will reduce from it to isotropy. First Approach: Invariance Approach This is obtained from an orthotropic material. Here, we develop the constitutive relation for a material with transverse isotropy in x2-x3 plane (this is used in lamina/laminae/laminate modeling). This is obtained with the following form of the change of axes. (3.30) Now, we have Figure 3.6: State of stress (a) in x1, x2, x3 system (b) with x1-x2 and x1-x3 planes of symmetry From this, the strains in transformed coordinate system are given as: file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture11/11_2.htm[8/18/2014 12:10:09 PM] Objectives_template (3.31) Here, it is to be noted that the shear strains are the tensorial shear strain terms. For any angle α, (3.32) and therefore, W must reduce to the form (3.33) Then, for W to be invariant we must have Now, let us write the left hand side of the above equation using the matrix as given in Equation (3.26) and engineering shear strains.
    [Show full text]
  • Orthotropic Material Homogenization of Composite Materials Including Damping
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Orthotropic material homogenization of composite materials including damping A. Nateghia,e, A. Rezaeia,e,, E. Deckersa,d, S. Jonckheerea,b,d, C. Claeysa,d, B. Pluymersa,d, W. Van Paepegemc, W. Desmeta,d a KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B box 2420, 3001 Heverlee, Belgium. E-mail: [email protected]. b Siemens Industry Software NV, Digital Factory, Product Lifecycle Management – Simulation and Test Solutions, Interleuvenlaan 68, B-3001 Leuven, Belgium. c Ghent University, Department of Materials Science & Engineering, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium. d Member of Flanders Make. e SIM vzw, Technologiepark Zwijnaarde 935, B-9052 Ghent, Belgium. Introduction In the multiscale analysis of composite materials obtaining the effective equivalent material properties of the composite from the properties of its constituents is an important bridge between different scales. Although, a variety of homogenization methods are already in use, there is still a need for further development of novel approaches which can deal with complexities such as frequency dependency of material properties; which is specially of importance when dealing with damped structures. Time-domain methods Frequency-domain method Material homogenization is performed in two separate steps: Wave dispersion based homogenization is performed to a static step and a dynamic one. provide homogenized damping and material
    [Show full text]
  • Analysis of Deformation
    Chapter 7: Constitutive Equations Definition: In the previous chapters we’ve learned about the definition and meaning of the concepts of stress and strain. One is an objective measure of load and the other is an objective measure of deformation. In fluids, one talks about the rate-of-deformation as opposed to simply strain (i.e. deformation alone or by itself). We all know though that deformation is caused by loads (i.e. there must be a relationship between stress and strain). A relationship between stress and strain (or rate-of-deformation tensor) is simply called a “constitutive equation”. Below we will describe how such equations are formulated. Constitutive equations between stress and strain are normally written based on phenomenological (i.e. experimental) observations and some assumption(s) on the physical behavior or response of a material to loading. Such equations can and should always be tested against experimental observations. Although there is almost an infinite amount of different materials, leading one to conclude that there is an equivalently infinite amount of constitutive equations or relations that describe such materials behavior, it turns out that there are really three major equations that cover the behavior of a wide range of materials of applied interest. One equation describes stress and small strain in solids and called “Hooke’s law”. The other two equations describe the behavior of fluidic materials. Hookean Elastic Solid: We will start explaining these equations by considering Hooke’s law first. Hooke’s law simply states that the stress tensor is assumed to be linearly related to the strain tensor.
    [Show full text]
  • Numerical Simulation of Excavations Within Jointed Rock of Infinite Extent
    NUMERICAL SIMULATION OF EXCAVATIONS WITHIN JOINTED ROCK OF INFINITE EXTENT by ALEXANDROS I . SOFIANOS (M.Sc.,D.I.C.) May 1984- - A thesis submitted for the degree of Doctor of Philosophy of the University of London Rock Mechanics Section, R.S.M.,Imperial College London SW7 2BP -2- A bstract The subject of the thesis is the development of a program to study i the behaviour of stratified and jointed rock masses around excavations. The rock mass is divided into two regions,one which is. supposed to * exhibit linear elastic behaviour,and the other which will include discontinuities that behave inelastically.The former has been simulated by a boundary integral plane strain orthotropic module,and the latter by quadratic joint,plane strain and membrane elements.The # two modules are coupled in one program.Sequences of loading include static point,pressure,body,and residual loads,construetion and excavation, and quasistatic earthquake load.The program is interactive with graphics. Problems of infinite or finite extent may be solved. Errors due to the coupling of the two numerical methods have been analysed. Through a survey of constitutive laws, idealizations of behaviour and test results for intact rock and discontinuities,appropriate models have been selected and parameter ♦ ranges identif i ed. The representation of the rock mass as an equivalent orthotropic elastic continuum has been investigated and programmed. Simplified theoretical solutions developed for the problem of a wedge on the roof of an opening have been compared with the computed results.A problem of open stoping is analysed. * ACKNOWLEDGEMENTS The author wishes to acknowledge the contribution of all members of the Rock Mechanics group at Imperial College to this work, and its full financial support by the State Scholarship Foundation of * G reece.
    [Show full text]
  • Composite Laminate Modeling
    Composite Laminate Modeling White Paper for Femap and NX Nastran Users Venkata Bheemreddy, Ph.D., Senior Staff Mechanical Engineer Adrian Jensen, PE, Senior Staff Mechanical Engineer Predictive Engineering Femap 11.1.2 White Paper 2014 WHAT THIS WHITE PAPER COVERS This note is intended for new engineers interested in modeling composites and experienced engineers who would like to get acquainted with the Femap interface. This note is intended to accompany a technical seminar and will provide you a starting background on composites. The following topics are covered: o A little background on the mechanics of composites and how micromechanics can be leveraged to obtain composite material properties o 2D composite laminate modeling Defining a material model, layup, property card and material angles Symmetric vs. unsymmetric laminate and why this is important Results post processing o 3D composite laminate modeling Defining a material model, layup, property card and ply/stack orientation When is a 3D model preferred over a 2D model o Modeling a sandwich composite Methods of modeling a sandwich composite 3D vs. 2D sandwich composite models and their pros and cons o Failure modeling of a 2D composite laminate Defining a laminate failure model Post processing laminate and lamina failure indices Predictive Engineering Document, Feel Free to Share With Your Colleagues Page 2 of 66 Predictive Engineering Femap 11.1.2 White Paper 2014 TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................................................................
    [Show full text]
  • Dynamic Analysis of a Viscoelastic Orthotropic Cracked Body Using the Extended Finite Element Method
    Dynamic analysis of a viscoelastic orthotropic cracked body using the extended finite element method M. Toolabia, A. S. Fallah a,*, P. M. Baiz b, L.A. Louca a a Department of Civil and Environmental Engineering, Skempton Building, South Kensington Campus, Imperial College London SW7 2AZ b Department of Aeronautics, Roderic Hill Building, South Kensington Campus, Imperial College London SW7 2AZ Abstract The extended finite element method (XFEM) is found promising in approximating solutions to locally non-smooth features such as jumps, kinks, high gradients, inclusions, voids, shocks, boundary layers or cracks in solid or fluid mechanics problems. The XFEM uses the properties of the partition of unity finite element method (PUFEM) to represent the discontinuities without the corresponding finite element mesh requirements. In the present study numerical simulations of a dynamically loaded orthotropic viscoelastic cracked body are performed using XFEM and the J-integral and stress intensity factors (SIF’s) are calculated. This is achieved by fully (reproducing elements) or partially (blending elements) enriching the elements in the vicinity of the crack tip or body. The enrichment type is restricted to extrinsic mesh-based topological local enrichment in the current work. Thus two types of enrichment functions are adopted viz. the Heaviside step function replicating a jump across the crack and the asymptotic crack tip function particular to the element containing the crack tip or its immediately adjacent ones. A constitutive model for strain-rate dependent moduli and Poisson ratios (viscoelasticity) is formulated. A symmetric double cantilever beam (DCB) of a generic orthotropic material (mixed mode fracture) is studied using the developed XFEM code.
    [Show full text]
  • The Interaction Integral for Fracture of Orthotropic Functionally Graded Materials: Evaluation of Stress Intensity Factors Jeong-Ho Kim, Glaucio H
    International Journal of Solids and Structures 40 (2003) 3967–4001 www.elsevier.com/locate/ijsolstr The interaction integral for fracture of orthotropic functionally graded materials: evaluation of stress intensity factors Jeong-Ho Kim, Glaucio H. Paulino * Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Newmark Laboratory, 205North Mathews Avenue, Urbana, IL 61801, USA Received 26 July 2002; received in revised form 11 March 2003 Abstract The interaction integral is an accurate and robust scheme for evaluating mixed-mode stress intensity factors. This paper extends the concept to orthotropic functionally graded materials and addresses fracture mechanics problems with arbitrarily oriented straight and/or curved cracks. The gradation of orthotropic material properties are smooth func- tions of spatial coordinates, which are integrated into the element stiffness matrix using the so-called ‘‘generalized isoparametric formulation’’. The types of orthotropic material gradation considered include exponential, radial, and hyperbolic-tangent functions. Stress intensity factors for mode I and mixed-mode two-dimensional problems are evaluated by means of the interaction integral and the finite element method. Extensive computational experiments have been performed to validate the proposed formulation. The accuracy of numerical results is discussed by com- parison with available analytical, semi-analytical, or numerical solutions. Ó 2003 Elsevier Science Ltd. All rights reserved. Keywords: Functionally graded material (FGM); Fracture mechanics; Stress intensity factor (SIF); Interaction integral; Finite element method (FEM); Generalized isoparametric formulation (GIF) 1. Introduction Functionally graded materials (FGMs) are a new class of composites in which the volume fraction of constituent materials vary smoothly, giving a nonuniform microstructure with continuously graded macro- properties (Hirai, 1993; Paulino et al., 2002).
    [Show full text]
  • Plane Strain Theory for an Orthotropic Cylinder with Pure Bending
    Appendix A Plane Strain Theory for an Orthotropic Cylinder with Pure Bending Lekhnitskii (1963) derives a general theory for the state of stress in an elastic body bounded by a cylindrical surface and possessing cylindrical anisotropy where the stresses do not vary along the generator. In what follows, the analysis given in Archer (1976) for the transversely isotropic material model is extended to the orthotropic case (Archer 1985). The equations of equilibrium in cylindrical coordinates after dropping dependence on the axial coordinate, and the "torsion" equilibrium equation, and body force terms become ou, +! O't"re + u, -O"e =O or r oe r (A.1) O't"re +! OO"e + 2 't"re =O or r o(} r and the generalized Hooke's law for the orthotropic case e, [all [ Be l= a12 (A.2) Sz a13 where IX., IX9 , and IXz are prescribed strains as measured by strain relief experiments (Nicholson 1971, 1973a, Sasaki et al. 1978) and taken as independent ofz; u., ue, O"z, -r,e are stress components; e., Be, Bz, y9, are the strain components; r, (}, z the cylindrical coordinates; and all ... %6 the elastic constants. The shear stresses 't"ez and 't"rz have been uncoupled from the system (A.1-A.2) and are applicable to torsion problems which do not concern us here. The relevant strain-displacement relations are ou 1 ov u e,=or ' ee=~ oe+r (A.3) ow 1 ou ov v Bz= OZ ' l're=~ o(} +or-~ A modification of the Lekhnitskii (1963) derivation which includes the growth strains follows if we set (A.4) then since Sz and IXz are independent of z, we may write D +1Xz=a33 (Ar sin(}+ Brcos (}+C) , (A.5) 206 Plain Strain Theory for an Orthotropic Cylinder with Pure Bending where A and B correspond to "pure bending" stress terms and C to a "uniform axial" stress term.
    [Show full text]
  • Analysis of a Kinked Crack in an Anisotropic Material Under Antiplane Deformation† H
    Journal of Mechanical Science and Technology 26 (2) (2012) 411~419 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-011-1025-4 Analysis of a kinked crack in an anisotropic material under antiplane deformation† H. G. Beom*, J. W. Lee and C. B. Cui Department of Mechanical Engineering, Inha University, 253 Yonghyun-dong, Incheon, 402-751, Korea (Manuscript Received July 21, 2011; Revised September 23, 2011; Accepted September 23, 2011) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Abstract This paper analyzes the asymptotic problem of a kinked crack in an anisotropic material under antiplane deformation. Using the linear transformation method proposed in this paper, a solution to the asymptotic problem of a kinked crack in an anisotropic material can be obtained from the solution of the corresponding isotropic kinked crack problem. The exact solution of the stress intensity factor for the kinked crack in the anisotropic material is obtained from the solution of the isotropic problem. The effect of the kink angle and two ani- sotropic parameters on the stress intensity factor is discussed for the inclined orthotropic material as well as the anisotropic material. In order to verify the exact solution of the stress intensity factor, numerical calculations are performed by using finite element analysis.
    [Show full text]
  • Orthotropic Materials
    Kapitel 2 Orthotropic Materials 2.1 Elastic Strain matrix Elastic strains are related to stresses by Hooke's law, as stated below. The stress- strain relationship is in each material point formulated in the local cartesian coor- dinate system. "e = Cσ (1) σ is the stress vector, which uses the same convention as the strain vector. The stress vector is given below. T σ = [σl σr σt ¿lr ¿lt ¿rt] (2) C is the material compliance matrix. The compliance matrix is given as 2 3 1 ¡ ºrl ¡ ºtl 0 0 0 El Er Et 6 ¡ ºlr 1 ¡ ºtr 0 0 0 7 6 El Er Et 7 6 º º 1 7 6 ¡ lt ¡ rt 0 0 0 7 C = 6 El Er Et 7 (3) 6 0 0 0 1 0 0 7 6 Glr 7 4 0 0 0 0 1 0 5 Glt 0 0 0 0 0 1 Grt E's are moduli of elasticity, G's are shear moduli and º's are Poissons ratios. The compliance matrix should be symmetric, which gives rise to the following restric- 4 KAPITEL 2. ORTHOTROPIC MATERIALS 2.2. COORDINATE SYSTEMS tions: Er Et Et ºrl = ºlr ; ºtl = ºlt ; ºtr = ºrt (4) El El Er The inverse of the compliance matrix is the material stiness matrix, D, which give the stresses produced by an elastic strain state. 2 3 El (1 ¡ ºrtºtr)=k El (ºrtºtl + ºrl)=k El (ºrlºtr + ºtl)=k 0 0 0 6 7 6 Er (ºltºtr + ºlr)=k Er (1 ¡ ºltºtl)=k Er (ºlrºtl + ºtr)=k 0 0 0 7 6 7 6 7 D = 6 Et (ºlrºrt + ºlt)=k Et (ºltºrl + ºrt)=k Et (1 ¡ ºlrºrl)=k 0 0 0 7 6 7 6 0 0 0 Glr 0 0 7 4 5 0 0 0 0 Glt 0 0 0 0 0 0 Grt (5) where k = 1 ¡ ºrtºtr ¡ ºlrºrl ¡ ºltºtl ¡ ºlrºrtºtl ¡ ºrlºtrºlt.
    [Show full text]
  • An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials
    NASA/TM–2011-217314 An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials Michael P. Nemeth Langley Research Center, Hampton, Virginia December 2011 NASA STI Program . in Profile Since its founding, NASA has been dedicated to CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space science. papers from scientific and technical The NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or co-sponsored by NASA. this important role. SPECIAL PUBLICATION. Scientific, The NASA STI program operates under the technical, or historical information from NASA auspices of the Agency Chief Information Officer. It programs, projects, and missions, often collects, organizes, provides for archiving, and concerned with subjects having substantial disseminates NASA’s STI. The NASA STI program public interest. provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical TECHNICAL TRANSLATION. English- Report Server, thus providing one of the largest language translations of foreign scientific and collections of aeronautical and space science STI in technical material pertinent to NASA’s mission. the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Specialized services also include creating custom Series, which includes the following report types: thesauri, building customized databases, and organizing and publishing research results. TECHNICAL PUBLICATION. Reports of completed research or a major significant phase For more information about the NASA STI of research that present the results of NASA program, see the following: programs and include extensive data or theoretical analysis.
    [Show full text]