Pore Surface Engineering of Covalent Organic Frameworks

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Nanoscale View Article Online REVIEW View Journal | View Issue Pore surface engineering of covalent organic frameworks: structural diversity and applications Cite this: Nanoscale, 2019, 11, 21679 Harsh Vardhan,a Ayman Nafady,b Abdullah M. Al-Enizib and Shengqian Ma *a Connecting molecular building blocks by covalent bonds to form extended crystalline structures has caused a sharp upsurge in the field of porous materials, especially covalent organic frameworks (COFs), thereby translating the accuracy, precision, and versatility of covalent chemistry from discrete molecules to two-dimensional and three-dimensional crystalline structures. COFs are crystalline porous frameworks prepared by a bottom-up approach from predesigned symmetric units with well-defined structural pro- perties such as a high surface area, distinct pores, cavities, channels, thermal and chemical stability, struc- tural flexibility and functional design. Due to the tedious and sometimes impossible introduction of certain functionalities into COFs via de novo synthesis, pore surface engineering through judicious functionalization with a range of substituents under ambient or harsh conditions using the principle of coordination chemistry, chemical conversion, and building block exchange is of profound importance. In Received 31st August 2019, this review, we aim to summarize dynamic covalent chemistry and framework linkage in the context of Accepted 28th October 2019 design features, different methods and perspectives of pore surface engineering along with their versatile DOI: 10.1039/c9nr07525a roles in a plethora of applications such as biomedical, gas storage and separation, catalysis, sensing, rsc.li/nanoscale energy storage and environmental remediation. giant structure of Vitamin B12 and other solid networks exist- Introduction – ing in nature.20 22 In 2005, a revolution was made by success- The utilization of confined space for molecular purposes is fully connecting boronic acid and catechol to form one of the basic principles of living systems and is profoundly extended structures6 using the principle of dynamic covalent believed to be one of the vital steps in the origin of life. The chemistry.23,24 Since then, the sustained expansion and biological process proceeds in the spatial confinement, com- development of COFs have been the answer to both long- Published on 29 October 2019. Downloaded by University of South Florida 11/21/2019 2:40:47 PM. monly known as the enzyme pocket, to drastically influence lasting and newly recognized problems demanding new the reactivity and selectivity of biochemical reactions. To and evolving synthetic routes, characterization and applied mimic this, linking organic building blocks by strong covalent studies. bonds to form crystalline materials is vital; however, one The development of elementary skeletons in frameworks cannot neglect the possibility of thermodynamically favored primarily relies on the geometry of the building blocks. In 2D amorphous disordered structures.1,2 In comparison to non- COFs, the building blocks are covalently bonded with a well- porous materials, porous materials have various characteristics defined stacking of π-building units under the influence of π–π such as a high surface area, nanometer-scale pores with stacking interactions, whereas the lattice structure of 3D COFs peculiar properties and functions, tunable pore sizes, and is preserved by robust covalent bonds between precursor units – – chemical and thermal stability.3 11 Covalent organic frame- using the principle of reticular chemistry.25 29 The uniquely works (COFs) are porous, crystalline extended solids con- confined nanometer-sized pores have practical implemen- structed from organic building units entirely composed of tation as an outstanding platform for future challenges. With light elements (C, H, N, B, O) and connected by covalent this goal in mind, it is important to examine the peculiar pro- – bonds, which are robust and diverse in nature.12 19 The perties of COFs, starting with crystallinity. Due to the ordered strength of covalent bonds is unambiguously reflected in the structure, crystallinity enables characterization using powder X-ray diffraction patterns (PXRD). The porous nature is a result of the crystalline structure and the uniform and periodic a Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, assembly of monomer units exhibiting surface areas as high as Tampa, Florida-33620, USA. E-mail: [email protected]; Fax: +1-813-974 3203; − 4000 m2 g 1. Chemical/thermal stability (>400 °C) emerges Tel: +1-813-9745217 bDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, from the robust and diverse nature of the covalent bonds, Saudi Arabia which resist severe conditions such as hydrolysis, oxidation, This journal is © The Royal Society of Chemistry 2019 Nanoscale,2019,11,21679–21708 | 21679 View Article Online Review Nanoscale reduction, and pH range variations. Also, the low density, by stability, crystallinity, diversity, etc. The chemical stability and virtue of uniform composition with lightweight elements allows crystallinity are two peculiar properties that are dependent and a high gravimetric performance. De novo synthesis, to a lesser come at the expense of others. In recent years, numerous the- – extent, suffers from various challenges such as active metal matic perspectives and reviews have discussed16,30 37 in great complexation, chemical conversion, tedious synthetic and puri- detail the role of dynamic covalent chemistry in constructing fication procedures, etc. However, in order to address these chal- frameworks of different linkages under the umbrella of reticu- lenges the tunable pore size of pristine frameworks must lar chemistry, and their implementation in different pore undergo pore surface engineering using established molecular sizes, pore volumes and dual pore frameworks. We are not organic chemistry to tune the structural and functional pro- trying to duplicate those aspects, however, we have briefly perties of COFs. In this review, we will briefly mention the extra- highlighted different linkages and pore geometries present in ordinary role of dynamic covalent chemistry in the COFs to create cohesion for a better understanding of the synthesizing COFs of specific pore size and broadly summarize central theme of this review. the principle and examples of pore surface engineering in – frameworks along with their role in a vast number of appli- B O linkages cations such as drug delivery, catalysis, environmental remedia- Yaghi and co-workers reported the first class of boroxine-based tion, gas adsorption and separation, sensing and energy frameworks6,38 (COF-1, COF-102) by the self-condensation of storage. boronic acid-based building units, and the co-condensation of the same building blocks with catechol generates the boronate ester linkage framework (COF-5, COF-105). Due to the vulner- Dynamic linkages ability of the B–O linkage, the frameworks hydrolyze in moisture. The Dichtel research group also highlighted the dissociation of Since the advent of the first COF in 2005, the last decade has HHTP-DPB COF in aqueous solution within minutes.39 To observed substantial development in COFs from the perspec- enhance the stability, Yaghi’s group introduced the B–O–Si tive of design, construction and application. There are ranges linkage in a borosilicate-linked framework (COF-202) prepared of linkages, as shown in Fig. 1, which have been employed to by the reaction of silanols with boronic acid, showing stability in construct extended frameworks of different pore structures moisture ranging from minutes to days.40 Additionally, the stabi- and morphologies. Unlike traditional interactions, dynamic lity of frameworks in water and basic medium was visualized in covalent bonds possess error-checking capabilities, and the spiroborate-linked ionic COFs by varying the hybridization of robustness of reversible bonds bestow COFs with thermal boron by incorporating alkali metal ions.41 Harsh Vardhan received his Ayman Nafady is currently a Master of Science (M.Sc.) degree Professor of Nanomaterials/ in Chemistry from the Indian Inorganic Electrochemistry at Published on 29 October 2019. Downloaded by University of South Florida 11/21/2019 2:40:47 PM. Institute of Technology- King Saud University, Riyadh, Kharagpur, India. In 2016, he Saudi Arabia & Sohag obtained his Ph.D. in Material University, Egypt. He is also an Physics and Chemistry under the adjunct/visiting professor at supervision of Prof. Francis RMIT University, Melbourne, Verpoort from the Laboratory of Australia and Editor in Chief of Organometallics, Catalysis, and the International Journal of Ordered Materials, Wuhan Nanomaterials and Chemistry. University of Technology, China. Prof. Nafady obtained his Ph.D. Harsh Vardhan At present, he is a graduate Ayman Nafady (2000–2004) under the supervi- student in the research group of sion of Prof. William Geiger at Prof. Shengqian Ma at the University of South Florida, USA. His the University of Vermont, USA and has been a Research Fellow at research interest is focused on developing novel covalent organic Monash University (2005–2011), Australia working with Prof. frameworks as organic scaffolds for heterogeneous catalysis, Alan Bond. He has made significant contributions to the fields of including C–H activation. inorganic/organometallic electrochemistry and nanomaterials science and has been a pioneer in the development of novel electrochemical and photochemical
Recommended publications
  • A Calix[4]Arene Based Boronic Acid Catalyst for Amide Bond Formation: Proof of Principle Study

    A Calix[4]Arene Based Boronic Acid Catalyst for Amide Bond Formation: Proof of Principle Study

    The Free Internet Journal Paper for Organic Chemistry Archive for Arkivoc 2018, part v, 221-229 Organic Chemistry A calix[4]arene based boronic acid catalyst for amide bond formation: proof of principle study Asslly Tafara Mafaune and Gareth E. Arnott* Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, South Africa Email: [email protected] Received 01-23-2018 Accepted 04-14-2018 Published on line 06-25-2018 Abstract A calix[4]arene boronic acid was synthesized and tested for catalysis in amide formation. The results were positive and paved the way for future designs, even though protodeboronation was observed under the conditions employed. Keywords: Amide bond catalysis, calix[4]arene boronic acid, protodeboronation DOI: https://doi.org/10.24820/ark.5550190.p010.492 Page 221 ©ARKAT USA, Inc Arkivoc 2018, v, 221-229 Mafaune, A. T. et al. Introduction The importance of amide bonds to human kind cannot be overemphasized; they are ubiquitous in nature and indispensable in chemical applications. They can be found in compounds such as the polymers that make our lives easier; the insecticides and agrochemicals that ensure that we have food on our tables; and most notably in the pharmaceutical drugs that help us live longer. Amide bonds are also part of the building blocks of biological systems, linking together amino acid units forming peptides, proteins and enzymes. The amide is arguably the most important functional group in chemistry and it also happens to be the most frequently synthesized in medicinal chemistry.1 Because of the versatility and importance of the amide bond, catalytic direct amide formation has been highlighted as a top priority reaction from a green chemistry viewpoint.
  • Phenyl Replacement Reactions: Solvent Effects on Reactions of Boroxines with Primary Amines

    Phenyl Replacement Reactions: Solvent Effects on Reactions of Boroxines with Primary Amines

    Phenyl Replacement Reactions: Solvent Effects on Reactions of Boroxines with Primary Amines A thesis presented to the faculty of the Graduate School of Western Carolina University in partial fulfillment of the requirements for the degree of Master of Science in Chemistry. By Nicholas John Wilcox Director: Dr. William R. Kwochka Associate Professor of Chemistry Chemistry Department Committee Members: Dr. Channa De Silva, Chemistry Dr. Brian Dinkelmeyer, Chemistry March 2015 TABLE OF CONTENTS Page List of Figures ......................................................................................................................... iii List of Schemes ...................................................................................................................... vi Abstract................................................................................................................................... vii Chapter One: Introduction ....................................................................................................... 1 1.1 Background ...................................................................................................... 1 1.2 Complexes created by dative bonds ................................................................ 3 Chapter Two: Results and Discussion ..................................................................................... 7 2.1 Displacement and Complexation Reactions ..................................................... 7 Chapter Three: Conclusion ....................................................................................................
  • 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G

    1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G

    j1 1 Structure, Properties, and Preparation of Boronic Acid Derivatives Overview of Their Reactions and Applications Dennis G. Hall 1.1 Introduction and Historical Background Structurally, boronic acids are trivalent boron-containing organic compounds that possess one carbon-based substituent (i.e., a CÀB bond) and two hydroxyl groups to fill the remaining valences on the boron atom (Figure 1.1). With only six valence electrons and a consequent deficiency of two electrons, the sp2-hybridized boron atom possesses a vacant p-orbital. This low-energy orbital is orthogonal to the three substituents, which are oriented in a trigonal planar geometry. Unlike carbox- ylic acids, their carbon analogues, boronic acids, are not found in nature. These abiotic compounds are derived synthetically from primary sources of boron such as boric acid, which is made by the acidification of borax with carbon dioxide. Borate esters, one of the key precursors of boronic acid derivatives, are made by simple dehydration of boric acid with alcohols. The first preparation and isolation of a boronic acid was reported by Frankland in 1860 [1]. By treating diethylzinc with triethylborate, the highly air-sensitive triethylborane was obtained, and its slow oxidation in ambient air eventually provided ethylboronic acid. Boronic acids are the products of a twofold oxidation of boranes. Their stability to atmospheric oxidation is considerably superior to that of borinic acids, which result from the first oxidation of boranes. The product of a third oxidation of boranes, boric acid, is a very stable and relatively benign compound to humans (Section 1.2.2.3). Their unique properties and reactivity as mild organic Lewis acids, coupled with their stability and ease of handling, are what make boronic acids a particularly attractive class of synthetic intermediates.
  • (12) United States Patent (10) Patent No.: US 7,749,992 B2 Cao Et Al

    (12) United States Patent (10) Patent No.: US 7,749,992 B2 Cao Et Al

    USOO7749992B2 (12) United States Patent (10) Patent No.: US 7,749,992 B2 Cao et al. (45) Date of Patent: Jul. 6, 2010 (54) COMPOUNDS AND METHODS FOR 5,602,122 A 2/1997 Flynn et al. TREATING DSLPIDEMA 5,622,947 A 4/1997 Ogawa et al. 6,090,824 A 7/2000 Bernstein et al. (75) Inventors: Guoqing Cao, Carmel, IN (US); Ana 6,096,735 A 8 2000 Ogawa et al. Maria Escribano, Alcobendas-Madrid 6,140,343 A 10/2000 DeNinno et al. (ES); Maria Carmen Fernandez, 6,147,089 A 11/2000 DeNinno et al. Alcobendas-Madrid (ES); Todd Fields, 6,147,090 A 11, 2000 DeNinno et al. Indianapolis, IN (US); Douglas Linn 6, 197,786 B1 3/2001 DeNinno et al. Gernert, Indianapolis, IN (US); R R 58: N et al - K - aO a shortly to Troy, NY 6,586.448 B1 7/2003 DeNinno et al. s s 6,689,897 B2 2/2004 Damon et al. NAGA S. (US Nath: Bryan 6,962.931 B2 11/2005 Gumkowski et al. antlo, Brownsburg, N (US); Eva 2002/00725 14 A1 6/2002 Brendel et al. Maria Martin De La Nava, 2002/0103225 A1 8/2002 Curatolo et al. Alcobendas-Madrid (ES); Ana Isabel 2003/0198674 A1 10, 2003 Curatolo et al. Mateo Herranz, Algobendas-Madrid 2004/0082609 A1 4/2004 Ghosh et al. (ES); paniel Ray Mayhugh, Carmel, IN 2004/0204450 A1 10, 2004 Bechle et al. (US); Xiaodong Wang, Carmel, IN (US) 2005/0059810 A1 3, 2005 Maeda et al. (73) Assignee: Eli Lilly and Company, Indianapolis, 2005/0234212 A1 10/2005 Depuydt et al.
  • Boronic Acids

    Boronic Acids

    Boronic Acids Boronic acids and their derivatives are among the most useful classes of organoboron molecules. Unlike many organometallic derivatives and most organoboranes, boronic acids are usually stable to air and moisture, and are of relatively low toxicity and environmental impact. The reactions of boronic acids can be divided into two categories according to whether the boron-oxygen or the carbon-boron bonds are involved. Reactions involving the B-O bonds Boroxine formation Most boronic acids readily undergo dehydration to form cyclic trimeric anhydrides (boroxines) (Scheme 1). This tends to occur spontaneously at room temperature, so that it is difficult to obtain the acid free from the anhydride. Since in almost all cases, both will undergo the required reaction, they can usually be regarded as equivalent. Scheme 1 Boronate formation The ease with which boronic acids react with diols, with loss of water, to give cyclic boronic esters (boronates) has led to their application in a number of areas, especially in the carbohydrate field. Protection of diols One of the main applications of boronic acids has been as reagents for protection and derivatization of 1,2- and 1,3-diols as boronates (1,3,2-dioxaborolanes and 1,3,2-dioxa- borinanes), particularly in carbohydrate chemistry.1 These have been widely used as volatile derivatives for GC and GC-MS purposes. The boronate derivatives are formed simply by stirring the boronic acid and diol together at ambient temperature, by warming, or, if necessary, with azeotropic removal of water. Usually cleavage occurs readily under hydrolytic conditions, by exchange with a glycol,2 or by treatment with hydrogen peroxide.3 Hindered boronic esters, such as those of pinacol, may be relatively stable to hydrolysis, and can often be purified by chromatography.
  • New Conducting Salts for Rechargeable Lithium-Ion Batteries

    New Conducting Salts for Rechargeable Lithium-Ion Batteries

    New Conducting Salts for Rechargeable Lithium-Ion Bateries INAUGURALDISSERTATION zur Erlangung des Doktorgrads der Fakultät für Chemie und Pharmazie der Albert-Ludwigs-Universität Freiburg im Breisgau vorgelegt von Michael Rohde aus Freiburg im Breisgau 2014 Vorsitzender des Promotionsausschusses: Prof. Dr. Torsten Koslowski Referent: Prof. Dr. Ingo Krossing Korreferent: Prof. Dr. Caroline Röhr Datum der mündlichen Prüfung: 30.03.2014 Diese Arbeit wurde im Zeitraum von Oktober 2010 bis Februar 2014 am Freiburger Materialforschungszentrum der Albert-Ludwigs-Universität in Freiburg im Breis- gau unter Anleitung von Prof. Dr. Ingo Krossing angefertigt. Teile dieser Arbeit enthalten Ergebnisse, die im Rahmen von Bachelorarbeiten (Alexander Norow 08.2011, Verena Leppert 08.2012, Lutz Miensopust 05.2013 und Marcel Schorpp 07.2013) im Arbeitskreis von Prof. Krossing unter meiner Anleitung angefertigt wurden. „achtzehn?“ „weg.“ „weg!“ „Karo.“ „Kontra!“ VII Danksagung Ich danke allerherzlichst meinem Doktorvater Prof. Ingo Krossing für das Bereitstellen des spannenden Temas innerhalb dieser Industriekooperation, seine ausgezeichnete Betreuung über all die Jahre, seine Motivationsfähigkeit und die bei dieser Arbeit ge- lassenen Freiheiten. Ich möchte mich sehr herzlich bedanken bei der Korreferentin Prof. Caroline Röhr für die Übernahme der Zweitkorrektur dieser Arbeit, dem Dritprüfer Prof. Michael Fiederle, meinen Laborkollegen Michel Panzer und Christoph Schulz für die geniale Zeit, dem Gruppenleiter Philipp Eiden für seine Geduld bei meinen vielen Fragen, den Bachelorstudenten Alexander Norow, Verena Leppert, Lutz Miensopust und Marcel Schorpp für die Unterstützung im Labor, den Partnern von der BASF Dr. Michael Schmidt, Dr. Arnd Garsuch und Dr. Günter Semrau für die produktiven Projektrefen und angenehme Zusammenarbeit, Stefanie Kuhl für Hilfe bei allen organisatorischen Dingen, die tolle Zeit auf den Sci- ence-Days und die Zeit im FMF oder auch außerhalb.
  • Boronic Acids

    Boronic Acids

    Boronic Acids Boronic Acids www.alfa.com INCLUDING: • Boronic Esters • Oxazaborolidine Reagents • Coupling and Hydroboration Catalysts • Phosphine Ligands • Borylation Reagents www.alfa.com Where Science Meets Service Quality Boronic Acids from Alfa Aesar Alfa Aesar is known worldwide for a variety of chemical compounds used in research and development. Recognized for purity and quality, our products and brands are backed by technical and sales teams dedicated to providing you the best service possible. In this catalog, you will find details on our line of boronic acids, esters and related compounds, which are manufactured to the same exacting standards as our full offering of over 33,000 products. Also included in this catalog is a 28-page introduction to boronic acids, their properties and applications. This catalog contains only a selection of our wide range of chemicals and materials. Also included is a selection of novel coupling catalysts and ligands. Many more products, including high purity metals, analytical products, and labware are available in our main catalog or online at www.alfa.com. Table of Contents About Us _____________________________________________________________________________ II How to Order/General Information ____________________________________________________ III Introduction __________________________________________________________________________ 1 Alkenylboronic acids and esters _____________________________________________________ 29 Alkylboronic acids and esters ________________________________________________________
  • The Metallomimetic Chemistry of Boron Marc-André Légaré,A,B

    The Metallomimetic Chemistry of Boron Marc-André Légaré,A,B

    The Metallomimetic Chemistry of Boron Marc-André Légaré,a,b,* Conor Pranckevicius,a,b,* Holger Braunschweiga,b a Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg (Germany). b Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians- Universität Würzburg, Am Hubland, 97074 Würzburg (Germany). * These authors contributed equally Abstract: The study of main-group molecules that behave and react similarly to transition metal (TM) complexes has attracted significant interest in the recent decades. Most notably, the attractive idea of eliminating the all-too-often rare and costly metals from catalysis has motivated efforts to develop main-group-element-mediated reactions. Main-group elements, however, lack the electronic flexibility of many TM complexes that arise from combinations of empty and filled d-orbitals and that seem ideally suited to bind and activate many substrates. In this Review, we look at boron, an element which, despite its non-metal nature, low atomic weight, and relative redox staticity has achieved great milestones in terms of TM-like reactivity. We show how in inter-element cooperative systems, diboron molecules and hypovalent complexes, the fifth element can acquire a truly metallomimetic character. As we discuss, this character is particularly strikingly demonstrated by the reactivity of boron-based molecules with H2, CO, alkynes, alkenes and even with N2. 1.1. Introduction The transition elements are defined by their d-orbital sub-shell which has the unique situation of being partially filled.1 These d-orbitals, which are part of the valence shell of the transition metals, have become the salient feature of their chemistry and give them a unique place in the periodic table and in the realms of scientific interests and applications.
  • UC Santa Cruz Electronic Theses and Dissertations

    UC Santa Cruz Electronic Theses and Dissertations

    UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES Permalink https://escholarship.org/uc/item/113107h0 Author Clary, Jacob William Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ OBSERVATIONS IN REACTIVITY BETWEEN BH CONTAINING COMPOUNDS AND ORGANOMETALLIC REAGENTS: SYNTHESIS OF BORONIC ACIDS, BORONIC ESTERS, AND MAGNESIUM HYDRIDES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in CHEMISTRY AND BIOCHEMISTRY by Jacob William Clary March 2012 The Dissertation of Jacob W. Clary is approved: Professor Bakthan Singaram, Advisor Professor Rebecca Braslau, Chair Professor Claude Bernasconi Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright © by Jacob W. Clary 2012 ii TABLE OF CONTENTS LIST OF FIGURES viii LIST OF SCHEMES x LIST OF TABLES xii ABSTRACT xviii DEDICATION AND ACKNOWLEDGEMENTS xv CHAPTER 1. Review of Boronic Acid Synthesis and Applications 1 1.1 Introduction 2 1.1.1 Nomenclature of Boronic Acids 3 1.1.2 Properties of Boronic Acids 5 1.1.3 Analysis of Boronic Acids 7 1.2 Boronic Acids in Organic Chemistry 9 1.2.1 Suzuki-Miyaura C-C Cross-Coupling 9 1.2.1.1 Applications of the Suzuki-Miyaura Cross-Coupling Reaction 11 1.2.1.2 Mechanism of the Suzuki-Miyaura Cross-Coupling 15 1.2.2 Stereoselective Suzuki Cross-Coupling 16 1.2.3 C-N and C-O Cross-Coupling Reactions with Boronic Acids 23 1.2.4 Biological and Medicinal Applications 26 1.3 Synthesis of Boronic Acids 31 1.3.1 Transmetallation of Grignard and Organolithium Reagent 32 iii 1.3.2 Cross-coupling Reaction of Bis(pinacolato)diboron and Pinacolborane 34 1.3.3 C-H Activation 40 1.4.
  • Boronic Acid Building Blocks: Tools for Self Assembly

    Boronic Acid Building Blocks: Tools for Self Assembly

    View Online FEATURE ARTICLE www.rsc.org/chemcomm | ChemComm Boronic acid building blocks: tools for self assembly Ryuhei Nishiyabu,a Yuji Kubo,*a Tony D. James*b and John S. Fosseycd Received 30th July 2010, Accepted 3rd November 2010 DOI: 10.1039/c0cc02921a Dynamic covalent functionality has been acknowledged as a powerful tool for the construction of organised architectures, the reversible nature thermodynamically facilitates self-control and self-correction. The use of boronic acids complexation with diols and their congeners has already shown great promise in realising and developing reversible boron-containing multicomponent systems with dynamic covalent functionality. The structure-directing potential has lead to the development of a variety of self-organisation involving not only macrocycles, cages and capsules, but also porous covalent organic frameworks and polymers. Structure controls as well as remarkable synthesis are highlighted in this feature article. 1. Introduction increase in the applications of boronic acid based systems in self-assembly4 sensing,5 and separation science,6 recent The first synthesis of an organoboron compound, ethylboronic developments pertaining to self assembly are discussed herein. acid was reported by Frankland in 1860.1 Some twenty years after dichlorophenyl borane was reported by Michaelis and 1.1 Scope of article Becker, which on hydrolysis allowed phenylboronic acid to be prepared.2 Subsequently Grignard reagents were used with In this feature article recent developments in the boronic acid trialkyl
  • 1980 Synthesis and Structural Features of Hydrogen-Bonded

    1980 Synthesis and Structural Features of Hydrogen-Bonded

    Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3): 1980-1989, 2021 Journal of the Institute of Science and Technology, 11(3): 1980-1989, 2021 ISSN: 2146-0574, eISSN: 2536-4618 Fizik / Physics DOI: 10.21597/jist.857611 Araştırma Makalesi / Research Article Geliş tarihi / Received: 10.01.2021 Kabul tarihi / Accepted: 25.03.2021 Atıf İçin: Üstündağ FD, Güngör E, Subaşat Kara H, 2021. Trifenilboroksin Katyonu ve Pt(SCN)4 Anyon Tuzu Tektonlarının Kombinasyonuna Dayanan Hidrojen Bağlı Ağların Sentezi ve Yapısal Özellikleri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(3): 1980-1989. To Cite: Ustundag FD, Gungor E, Subasat Kara H, 2021. Synthesis and Structural Features of Hydrogen-Bonded Networks Based on The Combination of Tectons Triphenylboroxine Cation and Pt(SCN)4 Anion Salts. Journal of the Institute of Science and Technology, 11(3): 1980-1989. Synthesis and Structural Features of Hydrogen-Bonded Networks Based on The Combination of Tectons Triphenylboroxine Cation and Pt(SCN)4 Anion Salts Fumet Duygu USTUNDAG1, Elif GUNGOR2, Hulya KARA SUBASAT3* ABSTRACT: In this work, a new compound [C15H16B3N3O5].[Pt(SCN)4].2(H2O] (1) has been synthesized and structurally characterized. The compound (1) crystallizes in monoclinic, space group 3 P21/c a=10.443 Å, b= 24.918 Å, c= 15.048 Å, 훼=90 , β=133.945 , γ=90 , V=2819.4 Å , Z=4. The use of molecular tecton (building block) able to form thiocyano-based hydrogen-bonded synthons (OH···SCN) to synthesize a diverse range of crystal structures is described. In the crystal structure, molecules are linked by intermolecular SCN···HN and BO···HN hydrogen bonds, forming a three- dimensional network.
  • Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations

    Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations

    crystals Article Structure and Properties of 1,3-Phenylenediboronic Acid: Combined Experimental and Theoretical Investigations Agnieszka Adamczyk-Wo´zniak 1,*, Michał K. Cyra ´nski 2, Krzysztof Durka 1 , Jan T. Gozdalik 1, Paulina Klimentowska 2, Rafał Rusiecki 1,3, Andrzej Sporzy ´nski 1 and Dorota Zarzecza ´nska 4 1 Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; [email protected] (K.D.); [email protected] (J.T.G.); [email protected] (R.R.); [email protected] (A.S.) 2 Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; [email protected] (M.K.S.); [email protected] (P.K.) 3 Adamed Pharma S.A., Pie´nków, Adamkiewicza 6A, 05-152 Czosnów, Poland 4 Faculty of Chemistry, University of Gda´nsk,Wita Stwosza 63, 80-308 Gda´nsk,Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-234-6147; Fax: +48-22-628-2741 Received: 16 January 2019; Accepted: 15 February 2019; Published: 19 February 2019 Abstract: The structure and properties of 1,3-phenylenediboronic acid are reported. Molecular and crystal structures were determined by single crystal as well as by powder X-ray diffraction methods. Acidity constant, thermal behavior, and NMR characterization of the title compound were also investigated. In addition to the experimental data, calculations of rotational barrier and intermolecular interaction energies were performed. The compound reveals a two-step acid–base equilibrium with different pKa values. TGA and DSC measurements show a typical dehydration reaction with formation of boroxine.