Uniformity of Rational Points
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Algebraic Curves and Surfaces
Notes for Curves and Surfaces Instructor: Robert Freidman Henry Liu April 25, 2017 Abstract These are my live-texed notes for the Spring 2017 offering of MATH GR8293 Algebraic Curves & Surfaces . Let me know when you find errors or typos. I'm sure there are plenty. 1 Curves on a surface 1 1.1 Topological invariants . 1 1.2 Holomorphic invariants . 2 1.3 Divisors . 3 1.4 Algebraic intersection theory . 4 1.5 Arithmetic genus . 6 1.6 Riemann{Roch formula . 7 1.7 Hodge index theorem . 7 1.8 Ample and nef divisors . 8 1.9 Ample cone and its closure . 11 1.10 Closure of the ample cone . 13 1.11 Div and Num as functors . 15 2 Birational geometry 17 2.1 Blowing up and down . 17 2.2 Numerical invariants of X~ ...................................... 18 2.3 Embedded resolutions for curves on a surface . 19 2.4 Minimal models of surfaces . 23 2.5 More general contractions . 24 2.6 Rational singularities . 26 2.7 Fundamental cycles . 28 2.8 Surface singularities . 31 2.9 Gorenstein condition for normal surface singularities . 33 3 Examples of surfaces 36 3.1 Rational ruled surfaces . 36 3.2 More general ruled surfaces . 39 3.3 Numerical invariants . 41 3.4 The invariant e(V ).......................................... 42 3.5 Ample and nef cones . 44 3.6 del Pezzo surfaces . 44 3.7 Lines on a cubic and del Pezzos . 47 3.8 Characterization of del Pezzo surfaces . 50 3.9 K3 surfaces . 51 3.10 Period map . 54 a 3.11 Elliptic surfaces . -
Arxiv:2002.02220V2 [Math.AG] 8 Jun 2020 in the Early 80’S, V
Contemporary Mathematics Toward good families of codes from towers of surfaces Alain Couvreur, Philippe Lebacque, and Marc Perret To our late teacher, colleague and friend Gilles Lachaud Abstract. We introduce in this article a new method to estimate the mini- mum distance of codes from algebraic surfaces. This lower bound is generic, i.e. can be applied to any surface, and turns out to be \liftable" under finite morphisms, paving the way toward the construction of good codes from towers of surfaces. In the same direction, we establish a criterion for a surface with a fixed finite set of closed points P to have an infinite tower of `{´etalecovers in which P splits totally. We conclude by stating several open problems. In par- ticular, we relate the existence of asymptotically good codes from general type surfaces with a very ample canonical class to the behaviour of their number of rational points with respect to their K2 and coherent Euler characteristic. Contents Introduction 1 1. Codes from surfaces 3 2. Infinite ´etaletowers of surfaces 15 3. Open problems 26 Acknowledgements 29 References 29 Introduction arXiv:2002.02220v2 [math.AG] 8 Jun 2020 In the early 80's, V. D. Goppa proposed a construction of codes from algebraic curves [21]. A pleasant feature of these codes from curves is that they benefit from an elementary but rather sharp lower bound for the minimum distance, the so{called Goppa designed distance. In addition, an easy lower bound for the dimension can be derived from Riemann-Roch theorem. The very simple nature of these lower bounds for the parameters permits to formulate a concise criterion for a sequence of curves to provide asymptotically good codes : roughly speaking, the curves should have a large number of rational points compared to their genus. -
Workshop on Syzygies in Algebraic Geometry, with an Exploration of a Connection with String Theory
Workshop on Syzygies in Algebraic Geometry, with an exploration of a connection with String Theory Lawrence Ein (University of Illinois at Chigago), David Eisenbud (University of California, Berkeley), Gavril Farkas (Humboldt Universitat¨ zu Berlin), Irena Peeva (Cornell University) August 12–17, 2012 1 Overview of the Field Free resolutions are often naturally attached to geometric objects. A question of prime interest has been to understand what constraints the geometry of a variety imposes on the corresponding Betti numbers and structure of the resolution. In recent years, free resolutions have been also impressively used to study the birational geometry of moduli spaces of curves. One of the most exciting and challenging long-standing open conjectures on free resolutions is the Regu- larity Eisenbud-Goto Conjecture that the regularity of a prime ideal is bounded above by its multiplicity. The conjecture has roots in Castelnuovo’s work, and is known to hold in only a few cases: the Cohen-Macaulay case, for curves, and for smooth surfaces. In the 80’s, Mark Green [11], [12] conjectured that the the minimal resolution of the canonical ring a non-hyperelliptic curve X of genus g satisfies the Np property if and only if the Clifford index of X is g−1 greater than P . Recall that N1 says that the homogenous ideal of X in P is generated by quadrics. For p ≥ 2, Np means that the first p − 1 steps of the minimal resolution of the homogenous ideal of X are given by matrices of linear forms. Using geometry of the Hilbert schemes of K3 surfaces, Voisin [20], [21] showed that the Green conjecture holds for generic curves. -
Report No. 26/2008
Mathematisches Forschungsinstitut Oberwolfach Report No. 26/2008 Classical Algebraic Geometry Organised by David Eisenbud, Berkeley Joe Harris, Harvard Frank-Olaf Schreyer, Saarbr¨ucken Ravi Vakil, Stanford June 8th – June 14th, 2008 Abstract. Algebraic geometry studies properties of specific algebraic vari- eties, on the one hand, and moduli spaces of all varieties of fixed topological type on the other hand. Of special importance is the moduli space of curves, whose properties are subject of ongoing research. The rationality versus general type question of these spaces is of classical and also very modern interest with recent progress presented in the conference. Certain different birational models of the moduli space of curves have an interpretation as moduli spaces of singular curves. The moduli spaces in a more general set- ting are algebraic stacks. In the conference we learned about a surprisingly simple characterization under which circumstances a stack can be regarded as a scheme. For specific varieties a wide range of questions was addressed, such as normal generation and regularity of ideal sheaves, generalized inequalities of Castelnuovo-de Franchis type, tropical mirror symmetry constructions for Calabi-Yau manifolds, Riemann-Roch theorems for Gromov-Witten theory in the virtual setting, cone of effective cycles and the Hodge conjecture, Frobe- nius splitting, ampleness criteria on holomorphic symplectic manifolds, and more. Mathematics Subject Classification (2000): 14xx. Introduction by the Organisers The Workshop on Classical Algebraic Geometry, organized by David Eisenbud (Berkeley), Joe Harris (Harvard), Frank-Olaf Schreyer (Saarbr¨ucken) and Ravi Vakil (Stanford), was held June 8th to June 14th. It was attended by about 45 participants from USA, Canada, Japan, Norway, Sweden, UK, Italy, France and Germany, among of them a large number of strong young mathematicians. -
On the Density of Rational Points on Elliptic Fibrations
On the density of rational points on elliptic fibrations F. A. Bogomolov Courant Institute of Mathematical Sciences, N.Y.U. 251 Mercer str. New York, (NY) 10012, U.S.A. e-mail: [email protected] and Yu. Tschinkel Dept. of Mathematics, U.I.C. 851 South Morgan str. Chicago, (IL) 60607-7045, U.S.A. e-mail: [email protected] arXiv:math/9811043v1 [math.AG] 7 Nov 1998 1 Introduction Let X be an algebraic variety defined over a number field F . We will say that rational points are potentially dense if there exists a finite extension K/F such that the set of K-rational points X(K) is Zariski dense in X. The main problem is to relate this property to geometric invariants of X. Hypothetically, on varieties of general type rational points are not potentially dense. In this paper we are interested in smooth projective varieties such that neither they nor their unramified coverings admit a dominant map onto varieties of general type. For these varieties it seems plausible to expect that rational points are potentially dense (see [2]). Varieties which are not of general type can be thought of as triple fibra- tions X → Y → Z, where the generic fiber of X → Y is rationally connected, Y → Z is a Kodaira fibration with generic fiber of Kodaira dimension 0 and the base has Kodaira dimension ≤ 0 (cf. [3]). In this paper we study mostly varieties of dimension 2 and 3. In dimension 2 the picture is as follows: Rationally connected surfaces are rational over some finite extension of F and therefore the problem has an easy solution in this case. -
Rational Points and Obstructions to Their Existence 2015 Arizona Winter School Problem Set Extended Version
RATIONAL POINTS AND OBSTRUCTIONS TO THEIR EXISTENCE 2015 ARIZONA WINTER SCHOOL PROBLEM SET EXTENDED VERSION KĘSTUTIS ČESNAVIČIUS The primary goal of the problems below is to build up familiarity with some useful lemmas and examples that are related to the theme of the Winter School. Notation. For a field k, we denote by k a choice of its algebraic closure, and by ks Ă k the resulting separable closure. If k is a number field and v is its place, we write kv for the corresponding completion. If k “ Q, we write p ¤ 8 to emphasize that p is allowed be the infinite place; for this particular p, we write Qp to mean R. For a base scheme S and S-schemes X and Y , we write XpY q for the set of S-morphisms Y Ñ X. When dealing with affine schemes we sometimes omit Spec for brevity: for instance, we write Br R in place of BrpSpec Rq. A ‘torsor’ always means a ‘right torsor.’ Acknowledgements. I thank the organizers of the Arizona Winter School 2015 for the opportunity to design this problem set. I thank Alena Pirutka for helpful comments. 1. Rational points In this section, k is a field and X is a k-scheme. A rational point of X is an element x P Xpkq, i.e., a section x: Spec k Ñ X of the structure map X Ñ Spec k. 1.1. Suppose that X “ Spec krT1;:::;Tns . Find a natural bijection pf1;:::;fmq n Xpkq ÐÑ tpx1; : : : ; xnq P k such that fipx1; : : : ; xnq “ 0 for every i “ 1; : : : ; mu: krT1;:::;Tns Hint. -
IV.5 Arithmetic Geometry Jordan S
i 372 IV. Branches of Mathematics where the aj,i1,...,in are indeterminates. If we write with many nice pictures and reproductions. A Scrap- g1f1 + ··· + gmfm as a polynomial in the variables book of Complex Curve Theory (American Mathemat- x1,...,xn, then all the coefficients must vanish, save ical Society, Providence, RI, 2003), by C. H. Clemens, the constant term which must equal 1. Thus we get and Complex Algebraic Curves (Cambridge University a system of linear equations in the indeterminates Press, Cambridge, 1992), by F. Kirwan, also start at an easily accessible level, but then delve more quickly into aj,i1,...,in . The solvability of systems of linear equations is well-known (with good computer implementations). advanced subjects. Thus we can decide if there is a solution with deg gj The best introduction to the techniques of algebraic 100. Of course it is possible that 100 was too small geometry is Undergraduate Algebraic Geometry (Cam- a guess, and we may have to repeat the process with bridge University Press, Cambridge, 1988), by M. Reid. larger and larger degree bounds. Will this ever end? For those wishing for a general overview, An Invitation The answer is given by the following result, which was to Algebraic Geometry (Springer, New York, 2000), by proved only recently. K. E. Smith, L. Kahanpää, P. Kekäläinen, and W. Traves, is a good choice, while Algebraic Geometry (Springer, New Effective Nullstellensatz. Let f1,...,fm be polyno- York, 1995), by J. Harris, and Basic Algebraic Geometry, mials of degree less than or equal to d in n variables, volumes I and II (Springer, New York, 1994), by I. -
Rational Points on Curves
Rational points on curves December 6, 2013 Contents 1 Curves of genus 0 2 1.1 Rational points.......................................2 1.2 Representation by quadratic forms............................4 1.3 Local representatbility...................................5 2 Curves of genus 1 6 2.1 Basic algebraic geometry of curves............................6 2.2 Curves of genus 1......................................8 2.3 Elliptic curves over C or finite fields........................... 10 3 Arithmetic curves 10 3.1 Divisors and line bundles................................. 10 3.2 Riemann{Roch....................................... 13 3.3 Applications......................................... 13 4 Mordell{Weil theorem 15 4.1 Mordell{Weil theorem................................... 15 4.2 Weak Mordell{Weil theorem................................ 16 5 Hermitian line bundles 17 5.1 Divisors, line bundles, and metrics............................ 17 5.2 Arithmetic line bundles and arithmetic divisors..................... 18 5.3 Heights........................................... 19 6 Heights without hermitian line bundles 20 6.1 Behavior under morphisms................................ 21 6.2 Nothcott property..................................... 23 6.3 Neron{Tate height on elliptic curves........................... 24 7 Birch and Swinnerton-Dyer conjectures 25 7.1 Tate{Shafarevich groups.................................. 25 7.2 L-functions......................................... 26 7.3 Geometric analog...................................... 28 1 8 Constant -
Arxiv:1803.02069V1 [Math.NT] 6 Mar 2018 Ayelpi Uvsdfie Yeutoso H Form the of Equations by Defined Curves Elliptic Many Be Have Respectively
SEQUENCES OF CONSECUTIVE SQUARES ON QUARTIC ELLIPTIC CURVES MOHAMED KAMEL AND MOHAMMAD SADEK Abstract. Let C : y2 = ax4 + bx2 + c, be an elliptic curve defined over Q. A set of rational points (xi,yi) ∈ C(Q), i = 1, 2, ··· , is said to be a sequence 2 of consecutive squares if xi = (u + i) , i = 1, 2, ··· , for some u ∈ Q. Using ideas of Mestre, we construct infinitely many elliptic curves C with sequences of consecutive squares of length at least 6. It turns out that these 6 rational points are independent. We then strengthen this result by proving that for a fixed 6- term sequence of consecutive squares, there are infinitely many elliptic curves C with the latter sequence forming the x-coordinates of six rational points in C(Q). 1. Introduction In [3], Bremner started discussing the existence of long sequences on elliptic curves. He produced an infinite family of elliptic curves with arithmetic progres- sion sequences of length 8. Several authors displayed infinite families of elliptic curves with long arithmetic progression sequences, see [5, 7, 10]. A geometric progression sequence is another type of sequence that has been studied on elliptic and hyperelliptic curves. Infinitely many (hyper)elliptic curves with 5-term and 8-term geometric progression sequences have been introduced in [4] and [1] respectively. arXiv:1803.02069v1 [math.NT] 6 Mar 2018 In [6], sequences of consecutive squares on elliptic curves were studied. Infinitely many elliptic curves defined by equations of the form E : y2 = ax3 + bx + c, a, b, c ∈ Q, with 5-term sequences of consecutive squares were presented. -
On Rational Points in CFT Moduli Spaces
CALT-TH 2020-050, IPMU20-0117 On Rational Points in CFT Moduli Spaces Nathan Benjamin,a Christoph A. Keller,b Hirosi Ooguri,c;d and Ida G. Zadehe a Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA b Department of Mathematics, University of Arizona, Tucson, AZ 85721-0089, USA c Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA d Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, 277-8583, Japan e International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy nathanb at princeton.edu, cakeller at math.arizona.edu, ooguri at caltech.edu, zadeh at ictp.it ABSTRACT Motivated by the search for rational points in moduli spaces of two-dimensional conformal arXiv:2011.07062v1 [hep-th] 13 Nov 2020 field theories, we investigate how points with enhanced symmetry algebras are distributed there. We first study the bosonic sigma-model with S1 target space in detail and uncover hitherto unknown features. We find for instance that the vanishing of the twist gap, though true for the S1 example, does not automatically follow from enhanced symmetry points being dense in the moduli space. We then explore the supersymmetric sigma- model on K3 by perturbing away from the torus orbifold locus. Though we do not reach a definite conclusion on the distribution of enhanced symmetry points in the K3 moduli space, we make several observations on how chiral currents can emerge and disappear under conformal perturbation theory. November 13, 2020 Contents 1 Introduction 1 2 Warm-up: S1 3 2.1 Spectrum . -
(Linear) Algebraic Groups 1 Basic Definitions and Main Examples
Study Group: (Linear) Algebraic Groups 1 Basic Denitions and Main Examples (Matt) Denition 1.1. Let (where is some eld) then n is an ane algebraic I C K[x] K VI = fP 2 A : f(P ) = 08f 2 Ig set. If I is prime, then VI is an ane algebraic variety. Denition 1.2. A linear algebraic group, G, is a variety V=K with a group structure such that the group operations are morphisms and V is ane. K-rational point e 2 G and K-morphisms µ : G × G ! G (µ(x; y) = xy) and i : G ! G (i(x) = x−1) K[G] is the K algebra of regular functions in V . ∆ : K[G] ! K[G] ⊗K K[G] the comultiplication, ι : K[G] ! K[G] is the coinverse We get the following axioms: (∆ ⊗ 1) ◦ ∆ = (1 ⊗ ∆) ◦ ∆ Example. : where , 1. , ∼ . n2 ∼ . Ga µ(x; y) = x+y a; y 2 A K[x] ∆ : x 7! x⊗1+1⊗y 2 K[x]⊗K[y] = K[x; y] Ga = Mn(K) : ∗ 2 dened by . Then . So Gm K ! V = (x; y) 2 A jxy = 1 t 7! (t; 1=t) (x1; y1) · (x2; y2) = (x1x2; y1y2) ∆ : x 7! x ⊗ x; y 7! y ⊗ y. Note that =∼ GL (K) p p Gm p 1 p p p Let , , −1 x1−y1 2 . Let K = Q( 2)=Q (x1 + y1 2)(x2 + y2 2) = (x1x2 + 2y1y2) + (x1y2 + x2y1) 2 (x1 + y1 2) = 2 2 x1−2y1 2 2, then we can use . , . g = x1−2y1 V (g 6= 0) ∆ : x1 7! x1⊗x2+2y1⊗y2 y1 7! x1⊗y2+x2⊗y1 ι : x1 7! x1=g; y1 7! −y1=g n . -
Hasse's Theorem and Rational Points on the General Conic
Dilip Das 18.704 Rogalski Hasse's Theorem and Rational Points on the General Conic Diophantine Equations are equations to which only integer solutions or alternatively rational solutions are considered. The study of these equations has fascinated man for thousands of years. The ancient Babylonians enumerated Pythagorean triples, integer solutions to the equation: X2 + y2 = Z 2 The study of Diophantine equations continued through Greece and the Renaissance with Diophantos, Fermat, Gauss and many others, and up to the present day in which Wiles' very recent proof of Fermat's last theorem still astonishes mathematicians. The 'natural' first case in which the problem of finding solutions to Diophantine equations becomes nontrivial is the conic. Curves are classified by their genus, a certain very useful topological invariant. The Diophantine theory of curves of genus zero is nontrivial but complete. The Diophantine theory of curves of genus greater than zero including elliptic curves is highly nontrivial and incomplete. However, many general theorems exist and the theory is in constant development. In this paper we will detail the theory for conics. We define a point in the plane to be rational if its coordinates are rational. We define a curve to be rational if it is given by an equation with rational coefficients. In this paper we are concerned with finding rational points on rational curves. The first case that one might wish to consider is that of the linear equation. Linear equations pose no problems, especially if rational points are all that is desired, in which case the set of rational points on a rational line (a line with rational coefficients) is obviously in bijective correspondence with the rationals themselves by projection.