Habitat Destruction and Ascidian Biodiversity Loss - an Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Destruction and Ascidian Biodiversity Loss - an Assessment Int. J. of Life Sciences, 2017, Vol. 5 (1): 55-62 ISSN: 2320-7817| eISSN: 2320-964X RESEARCH ARTICLE Habitat Destruction and Ascidian Biodiversity Loss - An Assessment Vaidhyanathapuram Kesavan Meenakshi* and Sudalaimuthu Gomathy Department of Zoology, A.P.C. Mahalaxmi College for Women, Tuticorin, Tamilnadu. Corresponding Author: [email protected] Manuscript details: ABSTRACT Received: 19.01.2017 Intertidal rocky shores offer good substratum and habitat for sedentary Accepted: 28.02.2017 animals accounting for the rich biodiversity. Destruction of coastal Published : 06.04.2017 habitat by way of industrialization, port expansion activities and construction of tourist spots results in loss of marine resources. The Editor: Dr. Arvind Chavhan present review focuses the loss of ascidian biodiversity from the intertidal rocky area situated near the western side of the Thoothukudi Cite this article as: harbour North breakwater opposite to the SPIC Jothi terminal. Vaidhyanathapuram Kesavan Publications reporting the collection and biodiversity of ascidians from Meenakshi and Sudalaimuthu this area between 1980 and 2015 were reviewed in the context of Gomathy (2017) Habitat Destruction and Ascidian Biodiversity Loss - An destruction to the habitat. The study indicated the occurrence of 24 Assessment, International J. of Life species of ascidians belonging to 14 genera coming under 7 families Sciences, 5 (1): 55-62. over the period of 35 years. Colonial ascidians were predominant compared to simple ascidians. Eudistoma lakshmiani, Eudistoma viride, Acknowledgement: Didemnum psammathodes, Diplosoma swamiensis, Lissoclinum fragile, The authors are extremely grateful to Perophora formosona, Botrylloides chevalense, and Microcosmus curvus Dr. T.K. Renganathan, Professor were available all through the years. The destruction of the habitat in (Retd.), PG and Research Department this area has resulted in the total disappearance of marine resources of Zoology, V.O. Chidambaram and hence loss of ascidian biodiversity. College, Tuticorin for introducing us to the wonderful field of ascidian Key words: Ascidian, biodiversity, intertidal rocky area and habitat systematics. destruction. Copyright: © 2016 | Author(s), This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial - No INTRODUCTION Derivs License, which permits use and distribution in any medium, The Gulf of Manaar coast extending from Rameswaram to Kanyakumari provided the original work is is predominated by calcrete and solid rocks. These rocky shores are properly cited, the use is non- model natural laboratories to learn the ecology of intertidal habitat as commercial and no modifications or they are environmentally rich with great biodiversity. Complex adaptations are made. intertidal rocky habitats provide many different spatial niches. The surface of rock exposed to strong beating surf offers a stable anchorage to many sedentary organisms. Most intertidal sedentary animals are filter feeders which can actively feed only when they are covered by seawater. The cracks and crevices in the rocks and boulders form dynamic microhabitats that provide shelter from dehydration on © 2017 |IJLSCI www.ijlsci.in 55 Vaidhyanathapuram and Sudalaimuthu, 2017 exposure to sun, wind and afford protection from occurrence, nutritive value, antimicrobial, breaking waves and a safe hide out from larger pharmacology, cytotoxicity, antifouling, chemical predators. They are abundant on the under surface of investigation and DNA bar coding of ascidians rocks where they are submerged for longer time. The collected from this area (Renganathan 1981, 1982, widely changing abiotic condition in the intertidal 1983a,b,c, 1984a,b,c; Renganathan and Krishnaswamy zone is a significant factor in creating a large number 1985; Renganathan 1986a,b; Krishnan et al., 1989; of ecological niches. Adaptations of different species to Meenakshi 1997; Meenakshi, 2000, 2004, 2008; withstand the biotic interactions like predation and Meenakshi et al., 2003; Meenakshi and Senthamarai competition are the factors that lead to zonation on the 2013; Renganathan 1983d,e,f, 1984d; rocky shore. The coastal zone is rich with respect to Paripooranaselvi, 2013; Meenakshi, 2010; Tamilselvi nutrients in the form of phyto and zooplankton. 2008; Tamilselvi et al., 2011; Ajithakumary 1994; Different species of filter feeding animals like mussels, Meenakshi 2009; Sri Kumaran and Bragadeeswaran oysters, bryozoans, sea squirts, anemones and 2014; Sri Kumaran et al., 2011, 2012, 2014a; Raja barnacles are supported by this plentiful food supply. Priyanka Mary et al., 2016; Santhana Ramasamy and This allows them to grow rapidly and produce many Senthil Kumar 2009; Rajesh and Murugan 2013, 2015; offspring. Habitat degradation caused by rapidly Santhana Ramasamy and Murugan 2003; Meenakshi et expanding coastal development is a direct threat to al., 2013; Veerabahu et al., 2013; Sri Kumaran et al., coastal marine biodiversity. Construction activities 2014b). between low and high tide line have serious implications on species diversity and abundance. Destruction causes instant harm to habitat, loss of MATERIALS AND METHODS resources such as food and mates, kills many species in the process resulting in loss of biodiversity. The Study area: present review focuses the status of the species In the context of review on habitat destruction and composition and loss of ascidian biodiversity in the loss of biodiversity, the intertidal rocky shore spread intertidal rocky shore of Thoothukudi coast over a over an area of 1000 m2 situated near the western side period of 35 years from 1980 to 2015. of the outer 4098.66 m long Thoothukudi harbour North breakwater (Latitude 8° 47’ 10” N and Literature Servey indicates that the study area has Longitude 78° 9’ 60” E) opposite to the SPIC Jothi been a paradise for many marine biologists. terminal was selected (Fig. 1). This area is in Researchers and students from various institutions all continuation with the sandy coastal stretch leading to over India have been visiting this place for collection of the Hare Island, one of the islands of Gulf of Mannar in marine fauna, flora and study of intertidal rocky the southeast coast of India. The habitat is habitat as a part of their curriculum. Till recently 40 predominated by loose calcrete rocks and large coral papers have been published on various aspects like Diplosoma macdonaldi stones with scattered taxonomy, embryology, breeding, fouling, ecology, embedded rocks and is mostly free from biology, distribution and seasonal variation in the anthropogenic activities though a few country boats Fig. 1: Study area before 2016 Fig. 2: Study area - 2016 56 Int. J. of Life Sciences, Vol. 5(1) March, 2017 Habitat Destruction and Ascidian Biodiversity Loss - An Assessment operated from here in early 1990. With moderate wind Aplousobranchia and Phlebobranchia, are the two and wave action, this shallow littoral zone anchors suborders of Enterogona and suborder Stolidobran- numerous sedentary animals including ascidians and chia of Pleurogona. A review of research papers on is exposed more than ½ a km during the lowest low ascidian collection and biodiversity of the study area tides. In addition to the sedentary animals, other fauna published since 1980 revealed the following. During including flat worms, annelids, arthropods, molluscs 1980 to 1989, 11 species of ascidians belonging and echinoderms were available in plenty in this study to 9 genera coming under 5 families were reported. Of area. Research papers on ascidian collection and these 10 were colonial ascidians - Eudistoma biodiversity of this area published between the years lakshmiani, Eudistoma viride, Didemnum 1980 - 2015 has been considered here for review. psammathodes, Diplosoma swamiensis, Lissoclinum Field visit to the study area was also carried out in the fragile, Ecteinascidia imperfecta, Ecteinascidia early 2016. krishnani, Perophora formosona, Botrylloides chevalense, Botrylloides magnicoecum and one was simple ascidian Microcosmus curvus (Renganathan RESULTS AND DISCUSSION 1981, 1982, 1983a,b,c, 1984a,b,c, Renganathan and Krishnaswamy 1985, Renganathan 1986a,b). The Ascidiacea are a class of the subphylum Tunicata of phylum Chordata. Class Ascidiacea includes two 13 species of ascidians belonging to 11 genera coming orders. They are Enterogona and Pleurogona. under 6 families were recorded from 1990 - 1999. Out Polyclinum constellatum Eudistoma lakshmiani Eudistoma pyriforme Eudistoma viride Didemnum granulatum Didemnum psammathodes Diplosoma macdonaldi Diplosoma swamiensis Lissoclinum fragile Fig. 3: Ascidian biodiversity of the study area www.ijlsci.in Int. J. of Life Sciences, Vol. 5(1) March, 2017 57 Vaidhyanathapuram and Sudalaimuthu, 2017 Trididemnum clinides Ecteinascidia garstangi Ecteinascidia venue Perophora formosana Ascidia gemmata Styela canopus Symplegma oceania Symplegma viride Botrylloides chevalense Botrylloides magnicoecum Herdmania momus Microcosmus curvus Fig. 3 continued : Ascidian biodiversity of the study area 58 Int. J. of Life Sciences, Vol. 5(1) March, 2017 Habitat Destruction and Ascidian Biodiversity Loss - An Assessment Table 1: Ascidian biodiversity of the study area from 1980 to 2015 Classification S/C 1980- 1990- 2000- 2010- 1989 1999 2009 2015 Class Ascidiacea Order I Enterogona Perrier, 1898 Suborder I Aplousobranchia Lahille, 1887 Family 1 Polyclinidae Milne-Edwards, 1841 Genus 1 Polyclinum Savigny, 1816 1. Polyclinum constellatum
Recommended publications
  • Phlebobranchia of CTAW
    PHLEBOBRANCHIA PHLEBOBRANCHIA The suborder Phlebobranchia (order Enterogona) is characterised by having unpaired gonads present only on the same side of the body as the gut. As in Stolidobranchia, the body is not divided into different sections (such as thorax, abdomen and posterior abdomen) as the gut is folded up in the parietal body wall outside the pharynx and the large branchial sac occupies the whole length of the body. Usually the branchial sac (which is flat, without folds) has internal longitudinal vessels (although only vestiges remain in Agneziidae). Epicardial sacs do not persist in adults as they do in Aplousobranchia, although excretory vesicles (nephrocytes) embedded in the body wall over the gut are known to originate from the embryonic epicardium in Ascidiidae and Corellidae. Most phlebobranchs are solitary. However, Plurellidae Kott, 1973 includes both solitary and colonial forms, and Perophoridae Giard, 1872 are all colonial. Replication in Perophoridae is from ectodermal epithelium (rather than endodermal or mesodermal tissue the mesodermal tissue of the vascular stolon (rather than the endodermal tissue as in most as in Aplousobranchia). The process of replication has not been investigated in Plurellidae. Phlebobranch taxa occurring in Australia are documented in Kott (1985). Family level taxa are characterised principally by the size and form of the branchial sac including the number of branchial vessels and form of the stigmata; the form, size and position of the gonads; and the habit (colonial or solitary) of the taxon. Berrill (1950) has discussed problems in assessing the phylogeny of Perophoridae. References Berrill, N.J. (1950). The Tunicata. Ray Soc. Publs 133: 1–354 Giard, A.M.
    [Show full text]
  • Eudistoma (Ascidiacea: Polycitoridae) from Tropical Brazil
    ZOOLOGIA 31 (2): 195–208, April, 2014 http://dx.doi.org/10.1590/S1984-46702014000200011 Eudistoma (Ascidiacea: Polycitoridae) from tropical Brazil Livia de Moura Oliveira1, Gustavo Antunes Gamba1 & Rosana Moreira da Rocha1,2 1 Programa de Pós-graduação em Zoologia, Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil. 2 Corresponding author: E-mail: [email protected] ABSTRACT. We studied material in collections from coastal intertidal and subtidal tropical waters of the Brazilian states of Paraíba, Pernambuco, Alagoas, Bahia, and Espírito Santo. We identified seven species of Eudistoma, of which two are new to science. Eudistoma alvearium sp. nov. colonies have fecal pellets around each zooid and zooids are 6-8 mm long with seven straight and parallel pyloric tubules; the larval trunk is 0.6 mm long with three adhesive papillae and ten ampullae. Eudistoma versicolor sp. nov. colonies are cushion-shaped, variable in color (blue, purple, brown, light green, gray or white) and zooids have six straight and parallel pyloric tubules; the larval trunk is 0.8 mm long with three adhesive papillae and six ampules. Three species – E. carolinense Van Name, 1945, E. recifense Millar, 1977, and E. vannamei Millar, 1977 – are known from northeastern Brazil. The identification of two additional species will require confirmation. We also propose a synonymy for E. carolinense with E. repens Millar, 1977, also previously described in Brazil. KEY WORDS. Atlantic; colonial ascidians; new species; taxonomy. Eudistoma Caullery, 1909 is the most species-rich genus and comment on the implications of species richness for the in Polycitoridae, with 124 valid species found in tropical and distribution of Eudistoma.
    [Show full text]
  • Spectrophotometric Studies of a Colonial Ascidian Ecteinascidia Venui Meenakshi, 2000 1S
    Available Online through www.ijpbs.com (or) www.ijpbsonline.com IJPBS |Volume 3| Issue 4 |OCT-DEC|2013|159-163 Research Article Pharmaceutical Sciences SPECTROPHOTOMETRIC STUDIES OF A COLONIAL ASCIDIAN ECTEINASCIDIA VENUI MEENAKSHI, 2000 1S. Sankaravadivu, 2R. Jothibai Margret* and 3V.K. Meenakshi* *1 Department of Chemistry, V.O.Chidambaram College, Tuticorin, Tamil Nadu, India. 2 Department of Chemistry, Pope’s College, Sawyerpuram, Tuticorin,Tamil Nadu, India. 3 Department of Zoology, A.P.C. Mahalaxmi College for Women, Tuticorin,Tamilnadu,India. *Corresponding Author Email: [email protected] ABSTRACT Ecteinascidia venui commonly available in Tuticorin coast was screened for its chemical value. Anlaysis of carbohydrates, proteins, lipids, phenols and flavonoids were done by Spectrophotometry method. A maximum of 45.82% flavonoids, 20.68% protein, 9.77% lipids, 9.21% phenols and 4.57% carbohydrates were observed in Ecteinascidia venui. Flavonoids are ubiquitous and serve as chemical messengers, antioxidants, antimicrobials and biological response modifiers in living organisms. Proteins lead to the formulation of a protein rich diet to fight against protein energy malnutrition. The present observation suggests need for further investigation of Ecteinascidia venui so as to isolate secondary metabolites. KEY WORDS Carbohydrates, Colonial ascidian, Ecteinascidia venui, Flavonoids, Lipids, Phenols, Protein INTRODUCTION of the people in certain parts of Mediterranean [6]. Ascidians are marine sedentary organisms. They occur The continued chemical interest in this group of as the major components of fouling community animals, has led to the isolation of an increasing settling on all kinds of surfaces, hard rocks, stone, hull number of non-nitrogen containing metabolites [7, 8]. of ships, branches, roots of trees, algae, floating Ascidians contain a wealth of interesting objects, sand and muddy surface [1, 2].
    [Show full text]
  • Marine Biology
    Marine Biology Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. --Manuscript Draft-- Manuscript Number: MABI-D-16-00297 Full Title: Spatial and temporal dynamics of ascidian invasions in the continental United States and Alaska. Article Type: S.I. : Invasive Species Keywords: ascidians, biofouling, biogeography, marine invasions, nonindigenous, non-native species, North America Corresponding Author: Christina Simkanin, Phd Smithsonian Environmental Research Center Edgewater, MD UNITED STATES Corresponding Author Secondary Information: Corresponding Author's Institution: Smithsonian Environmental Research Center Corresponding Author's Secondary Institution: First Author: Christina Simkanin, Phd First Author Secondary Information: Order of Authors: Christina Simkanin, Phd Paul W. Fofonoff Kristen Larson Gretchen Lambert Jennifer Dijkstra Gregory M. Ruiz Order of Authors Secondary Information: Funding Information: California Department of Fish and Wildlife Dr. Gregory M. Ruiz National Sea Grant Program Dr. Gregory M. Ruiz Prince William Sound Regional Citizens' Dr. Gregory M. Ruiz Advisory Council Smithsonian Institution Dr. Gregory M. Ruiz United States Coast Guard Dr. Gregory M. Ruiz United States Department of Defense Dr. Gregory M. Ruiz Legacy Program Abstract: SSpecies introductions have increased dramatically in number, rate, and magnitude of impact in recent decades. In marine systems, invertebrates are the largest and most diverse component of coastal invasions throughout the world. Ascidians are conspicuous and well-studied members of this group, however, much of what is known about their invasion history is limited to particular species or locations. Here, we provide a large-scale assessment of invasions, using an extensive literature review and standardized field surveys, to characterize the invasion dynamics of non-native ascidians in the continental United States and Alaska.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Occurrence of a New Species of Colonial Ascidian – Eudistoma Kaverium Sp
    Indian Journal of Marine Sciences Vol. 31(3), September 2002, pp. 201-206 Occurrence of a new species of colonial ascidian – Eudistoma kaverium sp. nov. and four new records of Eudistoma to Indian coastal waters V. K. Meenakshi Department of Zoology, A.P.C. Mahalaxmi College for Women, Tuticorin 628 002, Tamil Nadu, India [ E-mail: [email protected] ] Received 14 August 2001, revised 10 June 2002 Five species of colonial ascidians of the genus Eudistoma are reported of which Eudistoma kaverium sp. nov. is new to science and the other four ⎯ Eudistoma constrictum Kott, 1990; Eudistoma laysani (Sluiter, 1900); Eudistoma ovatum (Herdman, 1886); Eudistoma toealensis Millar, 1975 are new records to Indian waters. [ Key words: colonial ascidians, Eudistoma kaverium, new records ] So far only two species of the genus Eudistoma – long arising from a common basal test. The basal test Eudistoma viride Tokioka1, 1955 by Renganathan2, mass and about half of the base of the cylindrical 1984 and Eudistoma lakshmiani Renganathan3, 1986 lobes are intensely coated with sand and have sand have been reported from Indian waters. The present internally. The surface test of the head of the colony is study reports the occurrence of a new species – always free of sand. The free upper ends of the lobes Eudistoma kaverium sp. nov. and four more species – are usually circular to oval with 2 mm to 1 cm diame- Eudistoma constrictum Kott4, 1990; Eudistoma ter. The number of lobes in a colony range from laysani (Sluiter5, 1900); Eudistoma ovatum (Herd- 16-51. Occasionally the lobes show short branches. man6, 1886); Eudistoma toealensis Millar7, 1975 for Living colonies are translucent whitish (colour of cau- the first time from Indian waters.
    [Show full text]
  • And Description of a New Species, Ciona Interme
    An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimienti, Egidio Trainito, Carmela Gissi To cite this version: Francesco Mastrototaro, Federica Montesanto, Marika Salonna, Frédérique Viard, Giovanni Chimi- enti, et al.. An integrative taxonomic framework for the study of the genus Ciona (Ascidiacea) and description of a new species, Ciona intermedia. Zoological Journal of the Linnean Society, Linnean Society of London, 2020, 10.1093/zoolinnean/zlaa042. hal-02861027 HAL Id: hal-02861027 https://hal.archives-ouvertes.fr/hal-02861027 Submitted on 8 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Doi: 10.1093/zoolinnean/zlaa042 An integrative taxonomy framework for the study of the genus Ciona (Ascidiacea) and the description of the new species Ciona intermedia Francesco Mastrototaro1, Federica Montesanto1*, Marika Salonna2, Frédérique Viard3, Giovanni Chimienti1, Egidio Trainito4, Carmela Gissi2,5,* 1 Department of Biology and CoNISMa LRU, University of Bari “Aldo Moro” Via Orabona, 4 - 70125 Bari, Italy 2 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, Via Orabona, 4 - 70125 Bari, Italy 3 Sorbonne Université, CNRS, Lab.
    [Show full text]
  • Ascidians from Bocas Del Toro, Panama. I. Biodiversity
    Caribbean Journal of Science, Vol. 41, No. 3, 600-612, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Ascidians from Bocas del Toro, Panama. I. Biodiversity. ROSANA M. ROCHA*, SUZANA B. FARIA AND TATIANE R. MORENO Universidade Federal do Paraná, Departamento de Zoologia, CP 19020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: *[email protected] ABSTRACT.—An intensive survey of ascidian species was carried out in August 2003, in different environ- ments of the Bocas del Toro region, northwestern Panama. Most samples are from shallow waters (< 3 m) in coral reefs, among mangrove roots and in Thallasia testudines banks. Of the 58 species found, 14 are new species. Of the 26 sampling sites, the most diverse were Crawl Key Canal (9°15.050’N, 82°07.631’W), Solarte ,Island (9°17.929’N, 82°11.672’W), Wild Cane Key (9° 20؅40؅N, 82°10؅20؅W), Isla Pastores (9°14.332’N W), the bay behind the STRI Lab (9°21؅4.3؅ N, 82°15’25.6؅ W), and the entrance of Bocatorito Bay’82°19.968 (9°13.375’N, 82°12.555’W). Ascidians have been studied and reported from 31 locations within the Caribbean, and 139 species have been reported. This count will increase with the description of the 14 new species, and Bocas del Toro may be considered a region of high ascidian diversity since > 40% of the total known Caribbean ascidian fauna occurs there. KEYWORDS.—Ascidian taxonomy, Caribbean, checklist INTRODUCTION found and discuss the relationship of this fauna with that of other Caribbean loca- tions.
    [Show full text]
  • 1 Phylogeny of the Families Pyuridae and Styelidae (Stolidobranchiata
    * Manuscript 1 Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) 2 inferred from mitochondrial and nuclear DNA sequences 3 4 Pérez-Portela Ra, b, Bishop JDDb, Davis ARc, Turon Xd 5 6 a Eco-Ethology Research Unit, Instituto Superior de Psicologia Aplicada (ISPA), Rua 7 Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal 8 9 b Marine Biological Association of United Kingdom, The Laboratory Citadel Hill, PL1 10 2PB, Plymouth, UK, and School of Biological Sciences, University of Plymouth PL4 11 8AA, Plymouth, UK 12 13 c School of Biological Sciences, University of Wollongong, Wollongong NSW 2522 14 Australia 15 16 d Centre d’Estudis Avançats de Blanes (CSIC), Accés a la Cala St. Francesc 14, Blanes, 17 Girona, E-17300, Spain 18 19 Email addresses: 20 Bishop JDD: [email protected] 21 Davis AR: [email protected] 22 Turon X: [email protected] 23 24 Corresponding author: 25 Rocío Pérez-Portela 26 Eco-Ethology Research Unit, Instituto Superior de Psicologia Aplicada (ISPA), Rua 27 Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal 28 Phone: + 351 21 8811226 29 Fax: + 351 21 8860954 30 [email protected] 31 1 32 Abstract 33 34 The Order Stolidobranchiata comprises the families Pyuridae, Styelidae and Molgulidae. 35 Early molecular data was consistent with monophyly of the Stolidobranchiata and also 36 the Molgulidae. Internal phylogeny and relationships between Styelidae and Pyuridae 37 were inconclusive however. In order to clarify these points we used mitochondrial and 38 nuclear sequences from 31 species of Styelidae and 25 of Pyuridae. Phylogenetic trees 39 recovered the Pyuridae as a monophyletic clade, and their genera appeared as 40 monophyletic with the exception of Pyura.
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • Distribution of Alien Tunicates (Ascidians) in Tuticorin Coast, India
    World Journal of Zoology 6 (2): 164-172, 2011 ISSN 1817-3098 © IDOSI Publications, 2011 Distribution of Alien Tunicates (Ascidians) in Tuticorin Coast, India 1M. Tamilselvi, 23V. Sivakumar, H. Abdul Jaffar Ali and 4R.D. Thilaga 1Department of Zoology, V.V.Vanniaperumal College for Women, Virudhunagar, Tamilnadu, India 2Department of Zoology, V.O. Chidambaram College, Tuticorin, Tamilnadu, India 3Department of Biotechnology, Islamiah College, Vaniyambadi-635 752, Tamilnadu, India 4Department of Zoology, St. Mary’s College, Tuticorin, India Abstract: Ascidians or tunicates are dominant members of many sessile marine communities throughout the world. They are sedentary, efficient filter feeders having hermaphrodite gonads and their larval stages are planktonic contributing to dispersal of species. In the past decade many aquatic invasive species have been introduced into Indian coastal waters resulting in alteration of ecosystem at various levels. Hence the present study focused on the invasive species of the tunicates in different sites of Tuticorin coast, India. A total of 32 ascidian species have been identified at four stations situated along the Tuticorin coast. Of the 32 species, 22 species are believed to be invasive / alien, which include 10 simple and 12 colonial ascidians. The occurrence of alien tunicates are more at Station 1 (72%) followed by Station 3 (71%), Station 4 (67%),and Station 2 (55%). The present study suggested that a thorough long term study is needed to assess the impact of alien on native species. Key words: Alien / Invasive ascidians Tuticorin coast India INTRODUCTION very important potential source for the introduction of non-native species and these species affects the quality Introduction of non-indigenous species into new and quantity of cultured organisms causing economical regions, fortuitously or intentionally, causing severe loss to the aquaculturers [8].
    [Show full text]
  • Bottlenecks and Loss of Genetic Diversity: Spatio-Temporal Patterns
    1 Bottlenecks and loss of genetic diversity: spatio-temporal patterns 2 of genetic structure in an ascidian recently introduced in Europe 3 1 2 3 4 PÉREZ-PORTELA R *, TURON X & BISHOP JDD 5 6 1 Department of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona, 08028 Barcelona, 7 Spain 2 Center for Advanced Studies of Blanes (CEAB-CSIC), Blanes, 17300 Girona, Spain 3 Marine Biological Association of United Kingdom, The Laboratory Citadel Hill, PL1 2PB, Plymouth, UK 8 9 * Corresponding author: [email protected] 10 11 Short running title: Spatio-temporal genetic variation during introduction 12 13 ABSTRACT 14 15 We explore temporal patterns of genetic diversity and spatial genetic structure of the recently 16 introduced ascidian Perophora japonica Oka, 1927 in Europe. A fragment of the 17 mitochondrial gene Cytochrome c Oxidase subunit I (COI) was sequenced for 291colonies of 18 one population in Plymouth (UK), which was monitored for nine years from its initial 19 discovery. A total of 238 colonies from 12 localities were also sequenced for population 20 structure analyses. The temporal monitoring of the Plymouth population showed a progressive 21 loss of genetic diversity over time attributable to a strong initial bottleneck followed by 22 genetic drift and/or selection. Population genetic structure was consistent with the historical 23 records of this introduction, which probably originated from oyster farming activities in 1 24 France, from where the species spread further to UK and Spain. Only one population in 25 France displayed high levels of genetic diversity, and most of the remaining populations 26 presented very low variability.
    [Show full text]