Poeae), a New South American Genus Based on Poa Subg
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TERRESTRIAL VEGETATION and ENVIRONMENTS on HEARD ISLAND by D.M
Papers and Proceedings of the Royal Society of Tasmania, Volume 133(2), 2000 33 TERRESTRIAL VEGETATION AND ENVIRONMENTS ON HEARD ISLAND by D.M. Bergstrom and P.M. Selkirk (with three tables, one text-figure, one plate and an appendix) BERGSTROM, D.M. & SELKIRK, P.M., 2000 (30:vi): Terrestrial vegetation and environments on Heard Island. In Banks, M.R. & Brown, M.J. (Eds): HEARD ISLAND PAPERS. Pap. Proc. R. Soc. Tasm. 133(2): 33-46. https://doi.org/10.26749/rstpp.133.2.33 ISSN 0080-4703. Department ofBotany, The University of Queensland, Brisbane, Queensland, Australia 4072 (DMB); and Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia 2019 (PMS). Significantly ice-covered and with a very small flora (11 vascular species and about 60 bryophyte taxa), Heard Island is still emerging from the effects of the last glacial maximum. This study presents the results of a general vegetation survey. A baseline framework of environmental conditions that affect vegetation on the island is described and a classification (TWINS PAN) analysis based on presence/ absence data of both vascular plant species and bryophyte taxa is provided. Distinct suites of taxa were identified on the island, some containing bryophytes only. Fifreen ecological groups were delineated. A discussion of ecological amplitude ofimportant bryophyte and vascular plant taxa on Heard Island is included. Key Words: Subantarctic, tundra, vegetation, bryophytes, cushion plants, Heard Island. INTRODUCTION during the Tertiary and included a variety of ferns and a podocarp (Quilty et al. 1983). Subantarctic Heard Island (53°06'S, 73°32'E) is approxi There have been few studies of terrestrial plant ecology mately 4850 km southeast of southern Africa, 4350 km on Heard Island. -
Distribution of Barley Yellow Dwarf Virus-PAV in the Sub-Antarctic
Distribution of Barley yellow dwarf virus-PAV in the Sub-Antarctic Kerguelen Islands and characterization of two new [i]Luteovirus[/i] species Laurence Svanella-Dumas, Thierry Candresse, Maurice Hullé, Armelle Marais-Colombel To cite this version: Laurence Svanella-Dumas, Thierry Candresse, Maurice Hullé, Armelle Marais-Colombel. Distribution of Barley yellow dwarf virus-PAV in the Sub-Antarctic Kerguelen Islands and characterization of two new [i]Luteovirus[/i] species. PLoS ONE, Public Library of Science, 2013, 8 (6), pp.e67231. 10.1371/journal.pone.0067231. hal-01208609 HAL Id: hal-01208609 https://hal.archives-ouvertes.fr/hal-01208609 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distribution of Barley yellow dwarf virus-PAV in the Sub- Antarctic Kerguelen Islands and Characterization of Two New Luteovirus Species Laurence Svanella-Dumas1,2, Thierry Candresse1,2, Maurice Hulle´ 3, Armelle Marais1,2* 1 INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d9Ornon, France, 2 Univ. Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS20032 Villenave d9Ornon, France, 3 Institut de Ge´ne´tique, Environnement et Protection des Plantes, Agrocampus Rennes, UMR INRA 1349, BP 35327, Le Rheu, France Abstract A systematic search for viral infection was performed in the isolated Kerguelen Islands, using a range of polyvalent genus- specific PCR assays. -
Breeding System Diversification and Evolution in American Poa Supersect. Homalopoa (Poaceae: Poeae: Poinae)
Annals of Botany Page 1 of 23 doi:10.1093/aob/mcw108, available online at www.aob.oxfordjournals.org Breeding system diversification and evolution in American Poa supersect. Homalopoa (Poaceae: Poeae: Poinae) Liliana M. Giussani1,*, Lynn J. Gillespie2, M. Amalia Scataglini1,Marıa A. Negritto3, Ana M. Anton4 and Robert J. Soreng5 1Instituto de Botanica Darwinion, San Isidro, Buenos Aires, Argentina, 2Research and Collections Division, Canadian Museum of Nature, Ottawa, Ontario, Canada, 3Universidad de Magdalena, Santa Marta, Colombia, 4Instituto Multidisciplinario de Biologıa Vegetal (IMBIV), CONICET-UNC, Cordoba, Argentina and 5Department of Botany, Smithsonian Institution, Washington, DC, USA *For correspondence. E-mail [email protected] Received: 11 December 2015 Returned for revision: 18 February 2016 Accepted: 18 March 2016 Downloaded from Background and Aims Poa subgenus Poa supersect. Homalopoa has diversified extensively in the Americas. Over half of the species in the supersection are diclinous; most of these are from the New World, while a few are from South-East Asia. Diclinism in Homalopoa can be divided into three main types: gynomonoecism, gynodioe- cism and dioecism. Here the sampling of species of New World Homalopoa is expanded to date its origin and diver- sification in North and South America and examine the evolution and origin of the breeding system diversity. Methods A total of 124 specimens were included in the matrix, of which 89 are species of Poa supersect. http://aob.oxfordjournals.org/ Homalopoa sections Acutifoliae, Anthochloa, Brizoides, Dasypoa, Dioicopoa, Dissanthelium, Homalopoa sensu lato (s.l.), Madropoa and Tovarochloa, and the informal Punapoa group. Bayesian and parsimony analyses were conducted on the data sets based on four markers: the nuclear ribosomal internal tanscribed spacer (ITS) and exter- nal transcribed spacer (ETS), and plastid trnT-L and trnL-F. -
Insects of Macquarie Island. Introduction1
Pacific Insects 4 (4) : 905-915 December, 15, 1962 INSECTS OF MACQUARIE ISLAND. INTRODUCTION1 By J. Linsley Gressitt BISHOP MUSEUM, HONOLULU Abstract: Collections of land arthropods were made on Macquarie Island by J. L. Gres sitt and J. H. Calaby, 4-10 December 1960, and by Keith Watson, December 1960-Decem- ber 1961. This paper is a brief discussion of the geography and environment of Macquarie, introductory to the systematic papers describing the fauna. Watson, of the Australian Na tional Antarctic Research Expeditions, will later publish his general ecological studies, when the species are all identified. INTRODUCTION This paper is a brief description of the geography and environment of Macquarie Is land, as related to land arthropods. It is presented by way of introduction to the series of reports by various specialists on the land arthropod fauna of the island. The bulk of these reports immediately follow this article. (One Macquarie mite is discussed in the third of the preceding articles by Wallwork on Antarctic mites, and another is mentioned in his second article.) Others will appear in later issues, when they are completed. After publication of the bulk of these taxonomic reports, Keith Watson will publish his general report on the land arthropod fauna of Macquarie, incorporating his ecological studies on the fauna. Through the kindness of Mr. P. G. Law, Director of the Antarctic Division, Australian Department of External Affairs, I was permitted to join the Australian National Antarctic Research Expedition for the annual resupply trip to Macquarie Island in early December 1960. The operation, supported by the chartered Danish ice-breaker Magga Dan, was car ried on at Macquarie from 4th to lOth December. -
Vascular Plant Species Diversity of Mt. Etna
Vascular plant species diversity of Mt. Etna (Sicily): endemicity, insularity and spatial patterns along the altitudinal gradient of the highest active volcano in Europe Saverio Sciandrello*, Pietro Minissale* and Gianpietro Giusso del Galdo* Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy * These authors contributed equally to this work. ABSTRACT Background. Altitudinal variation in vascular plant richness and endemism is crucial for the conservation of biodiversity. Territories featured by a high species richness may have a low number of endemic species, but not necessarily in a coherent pattern. The main aim of our research is to perform an in-depth survey on the distribution patterns of vascular plant species richness and endemism along the elevation gradient of Mt. Etna, the highest active volcano in Europe. Methods. We used all the available data (literature, herbarium and seed collections), plus hundreds of original (G Giusso, P Minissale, S Sciandrello, pers. obs., 2010–2020) on the occurrence of the Etna plant species. Mt. Etna (highest peak at 3,328 mt a.s.l.) was divided into 33 belts 100 m wide and the species richness of each altitudinal range was calculated as the total number of species per interval. In order to identify areas with high plant conservation priority, 29 narrow endemic species (EE) were investigated through hot spot analysis using the ``Optimized Hot Spot Analysis'' tool available in the ESRI ArcGIS software package. Results. Overall against a floristic richness of about 1,055 taxa, 92 taxa are endemic, Submitted 7 November 2019 of which 29 taxa are exclusive (EE) of Mt. -
ITEX Discoveries
Plant Response to Climate Change: Integration of ITEX Discoveries Proceedings from the 9th ITEX Meeting AEL REPORT 1 ARCTIC ECOLOGY LABORATORY DEPARTMENT OF BOTANY & PLANT PATHOLOGY MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824 Plant Response to Climate Change: Integration of ITEX Discoveries Proceedings from the 9th ITEX Meeting Compiled and edited by Robert D. Hollister Suggested Citation: Hollister, R.D. (editor). 1999. Plant Response to Climate Change: Integration of ITEX Discoveries. Proceedings from the 9th ITEX Meeting January 5-9, 1999. Arctic Ecology Laboratory Report 1, Michigan State University. East Lansing, MI. 117 p. This Report is available from: The Arctic Ecology Laboratory Department of Botany & Plant Pathology Michigan State University East Lansing, MI 48824 Telephone: 517 432-2399 i Foreword This compilation from the 1999 meeting of the International Tundra Experiment (ITEX) held at Michigan State University (MSU) demonstrates the considerable progress made since the 1990 founding meeting of ITEX which was also held at MSU. In the intervening nine years ITEX has become an established and well-known project. It has been used as a model for related endeavors. This document is intended to serve as an update on ITEX activities and an encouragement for continued integration and cooperation in the study of tundra plant response, and the linked feedback of this response, to climate change. The ITEX Steering Committee and I wish to thank Bob Hollister for his unflagging efforts as Conference Coordinator and compiler and editor of this report. The meeting was made possible with funding from the United States National Science Foundation Office of Polar Programs (grant number OPP 9714103). -
Poa Billardierei
Poa billardierei COMMON NAME Sand tussock, hinarepe SYNONYMS Festuca littoralis Labill.; Schedonorus littoralis (Labill.) P.Beauv.; Triodia billardierei Spreng.; Poa billardierei (Spreng.)St.-Yves; Schedonorus billardiereanus Nees; Arundo triodioides Trin.; Schedonorus littoralis var. alpha minor Hook.f.; Austrofestuca littoralis (Labill.) E.B.Alexev. FAMILY Poaceae AUTHORITY Poa billardierei (Spreng.)St.-Yves FLORA CATEGORY Vascular – Native ENDEMIC TAXON No Austrofestuca littoralis. Photographer: Kevin Matthews ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Grasses NVS CODE POABIL CHROMOSOME NUMBER 2n = 28 CURRENT CONSERVATION STATUS 2012 | At Risk – Declining | Qualifiers: SO PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Declining | Qualifiers: SO 2004 | Gradual Decline DISTRIBUTION Austrofestuca littoralis. Photographer: Geoff North Island, South Island, Chatham Island (apparently absent from Walls Chatham Island now despite being formerly abundant). Also found in temperate Australia. HABITAT Coastal dunes; sandy and rocky places near the shore, especially foredunes and dune hollows. FEATURES Yellow-green tussocks up to about 70 cm tall. Leaves fine, rolled, somewhat drooping (coarser than silver tussock), initially green, often fading at tips to silver, and drying to golden-straw colour. Seed heads no longer than leaves; seeds relatively large, barley-like, leaving a characteristic zig-zag look to the remaining head when fallen. Flowers in early summer and the seed are produced in late summer. It could be confused with Poa chathamica which has blue- green or grass-green flat leaves and an open seed head which overtops the foliage. It could also be confused with marram grass which has similar foliage but large cat’stail-like seed heads which overtop the foliage. SIMILAR TAXA Ammophila arenaria (marram grass) is often confused with sand tussock because they grow in the same habitat. -
Resupinate Fungi (Basidiomycetes, Aphyllophoraies) of Macquarie Island, Australia
Hikobia 13: 745-750, 2002 Resupinate fungi (Basidiomycetes, Aphyllophoraies) of Macquarie Island, Australia GARY A. LAURSEN, HAROLD H. BURDSALL AND RODNEY D. SEPPELT LAURSEN, G. A., BURDSALL, H. H. & SEPPELT, R. D. 2002. Resupinate fungi (Basidiomycetes, Aphyllophorales) of Macquarie Island, Australia. Hikobia 13: 745-750. Fourteen collections of resupinate higher fungi in the order Aphyllophorales (Basidiomycetes) were made on Subantarctic Macquarie Island (54°30'S, 158°57' E) in 1995. Of the 14, three proved to lack species-determining characteristic basidiospores and 12 were determined to belong to three species in two genera; Athelopsis lembospora (Bourdot) Oberwinkler, Athelopsis subinconspicua (Lirschauer) Julich, the first report of this species from the Southern Hemisphere, and Epithele galzinii Bres., the first reportr of E. galzinii from an Australian territory and also representing a southern range extension by several hundred kilometers. None are endemic and all are suspected to have reached the Island by long-distance transoceanic wind dispersal from other southern continental sources. Their habitats are restricted to old and clustered culms, frond bracts, and leaf petioles of the fern Polystichum vestitum (G. Forst.) C. Presl, the raised pedestals of old giant russock grass stem bases of Poa foliosa (Hook. f-) Hook. f., and the woody, but thin, stems of Acaena magellanica (Lam.) Vahl (Rosaceae) and Coprosma perpusilla Colenso ssp. subantarcrica Orchard (Rubiaceae). Gary A. Laursen. University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775-6100, USA. Harold H. Burdrall, Jr.. retired Center for Forest Mycology Research, Forest Products Laboratory, Forest Service, USDA, Madison, WI 53705 USA. Rodney D. Seppelt, Australian Antarctic Division, Channel Highway, Kingston, 7050 Tasmania. -
Part 4 Appendices
Part 4 Appendices HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 139 Appendix 1. Proclamation of Heard Island and McDonald Islands Marine Reserve 140 MANAGEMENT PLAN HEARD ISLAND AND MCDONALD ISLANDS MARINE RESERVE 141 142 MANAGEMENT PLAN Appendix 2. Native Fauna of the HIMI Marine Reserve Listed Under the EPBC Act Scientific Name Common Name Birds recorded as breeding Aptenodytes patagonicus king penguin S Catharacta lonnbergi subantarctic skua S Daption capense cape petrel S Diomeda exulans wandering albatross V S M B J A Diomeda melanophrys black–browed albatross S M B A Eudyptes chrysocome southern rockhopper penguin S Eudyptes chrysolophus macaroni penguin S Larus dominicanus kelp gull S Macronectes giganteus southern giant petrel E S M B A Oceanites oceanicus Wilson’s storm petrel S M J Pachyptila crassirostris fulmar prion S Pachyptila desolata Antarctic prion S Pelecanoides georgicus South Georgian diving petrel S Pelecanoides urinatrix common diving petrel S Phalacrocorax atriceps (e) Heard Island cormorant V S Phoebetria palpebrata light mantled sooty albatross S M B A Pygoscelis papua gentoo penguin S Sterna vittata Antarctic tern V S Non–breeding birds Catharacta maccormicki south polar skua S M J Diomedea epomophora southern royal albatross V S M B A Fregetta grallaria white–bellied storm petrel S Fregetta tropica black–bellied storm petrel S Fulmarus glacialoides southern fulmar S Garrodia nereis grey–backed storm petrel S Halobaena caerulea blue petrel V S Macronectes halli northern giant petrel V S M B A Pachyptila belcheri -
Hans Walter Lack & Thomas Raus Hildemar Scholz
Fl. Medit. 22: 233-244 doi: 10.7320/FlMedit22.233 Version of Record published online on 28 December 2012 Hans Walter Lack & Thomas Raus Hildemar Scholz (1928 – 2012) Hildemar Scholz, aged 84, passed away on 5 June 2012 as a consequence of a bad fall he had suffered at home a few weeks earlier. He was a world authority on grasses, the adventive flora of Europe, and rust fungi from central Europe. From 1964 until his retire- ment in 1993 he was a member of staff of the Botanic Garden and Botanical Museum Berlin-Dahlem, rising from scientific collaborator to one of the directors at this institution. Hildemar was a born plant-collector active all over Europe, in North and West Africa with a special interest in grasses and the rust fungi parasitizing them. Born on 27 May 1928 in Berlin into a family of protestant clergymen Hildemar Scholz remained both in language and manners very much a Berliner, in the true and best sense of the word, and never ever considered leaving his home town, even during the many diffi- cult years this city encountered in the last century. Having belatedly finished his school training because of the Second World War in 1947, he tried to get enrolled at Berlin University, subsequently renamed Humboldt University, in the Soviet sector of the city, but was rejected – probably because his father was a clergyman. Hildemar had more success at the newly founded Free University in the American sector of Berlin, where he got admit- ted in 1949 and chose biology as his subject. -
Poa Tennantiana
Poa tennantiana COMMON NAME Muttonbird Poa SYNONYMS Poa foliosa var. tennantiana (Petrie) Cheeseman FAMILY Poaceae AUTHORITY Poa tennantiana Petrie FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS No ENDEMIC FAMILY No STRUCTURAL CLASS Grasses NVS CODE POATEN CHROMOSOME NUMBER 2n = 56 CURRENT CONSERVATION STATUS 2012 | At Risk – Naturally Uncommon | Qualifiers: RR PREVIOUS CONSERVATION STATUSES 2009 | At Risk – Naturally Uncommon 2004 | Range Restricted DISTRIBUTION Endemic. New Zealand: South (Otago (Taieri River Mouth), Stewart, Snares and Auckland Islands. It has not been seen on the Auckland Islands recently. HABITAT Coastal usually in or near sea bird nesting grounds, on forest margins, clearings, in low scrub, on cliff faces and damp banks. FEATURES Yellow-green, rather stout, stiff-leaved, perennial tussock-forming grass up to 1 m tall, arising from a strong rhizomatous base covered by abundant fibrous remnants of leaf-sheaths; branching intravaginal; leaf-blades persistent. Leaf-sheath submembranous, striate, densely, retrorsely, minutely pubescent-scabrid between ribs in basal leaves, glabrous in cauline leaves, very light brown, later becoming darker and shredding into fibres. Ligule 6-16 mm, apically glabrous, entire, narrowed to a long fine point, abaxially short-pubescent. Leaf-blade 160.0-380.0 x 4.5-9.0 mm, flat, finely striate, abaxially smooth, adaxially minutely papillose, very rarely minutely ciliate-scabrid on ribs; margins ciliate-fimbriate for a short distance above ligule, otherwise glabrous, gradually narrowed to straight-sided acute tip. Culm 150-330, internodes glabrous. Panicle 90-160 mm, broad, dense but much-branched, upper branches almost completely hidden by numerous, rather small spikelets, lower branches naked towards base; rachis smooth, branches and pedicels ¡¾ scabrid to occasionally smooth. -
Plant Press, Vol. 18, No. 3
Special Symposium Issue continues on page 12 Department of Botany & the U.S. National Herbarium The Plant Press New Series - Vol. 18 - No. 3 July-September 2015 Botany Profile Seed-Free and Loving It: Symposium Celebrates Pteridology By Gary A. Krupnick ern and lycophyte biology was tee Chair, NMNH) presented the 13th José of this plant group. the focus of the 13th Smithsonian Cuatrecasas Medal in Tropical Botany Moran also spoke about the differ- FBotanical Symposium, held 1–4 to Paulo Günter Windisch (see related ences between pteridophytes and seed June 2015 at the National Museum of story on page 12). This prestigious award plants in aspects of biogeography (ferns Natural History (NMNH) and United is presented annually to a scholar who comprise a higher percentage of the States Botanic Garden (USBG) in has contributed total vascular Washington, DC. Also marking the 12th significantly to flora on islands Symposium of the International Orga- advancing the compared to nization of Plant Biosystematists, and field of tropical continents), titled, “Next Generation Pteridology: An botany. Windisch, hybridization International Conference on Lycophyte a retired profes- and polyploidy & Fern Research,” the meeting featured sor from the Universidade Federal do Rio (ferns have higher rates), and anatomy a plenary session on 1 June, plus three Grande do Sul, was commended for his (some ferns have tree-like growth using additional days of focused scientific talks, extensive contributions to the systematics, root mantle or have internal reinforce- workshops, a poster session, a reception, biogeography, and evolution of neotro- ment by sclerenchyma instead of lateral a dinner, and a field trip.