Prolongation, Expanding Variation, and Pitch Hierarchy: a Study of Fred Lerdahl’S Waves and Coffin Hollow
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Theory of Spatial Acquisition in Twelve-Tone Serial Music
A Theory of Spatial Acquisition in Twelve-Tone Serial Music Ph.D. Dissertation submitted to the University of Cincinnati College-Conservatory of Music in partial fulfillment of the requirements for the degree of Ph.D. in Music Theory by Michael Kelly 1615 Elkton Pl. Cincinnati, OH 45224 [email protected] B.M. in Music Education, the University of Cincinnati College-Conservatory of Music B.M. in Composition, the University of Cincinnati College-Conservatory of Music M.M. in Music Theory, the University of Cincinnati College-Conservatory of Music Committee: Dr. Miguel Roig-Francoli, Dr. David Carson Berry, Dr. Steven Cahn Abstract This study introduces the concept of spatial acquisition and demonstrates its applicability to the analysis of twelve-tone music. This concept was inspired by Krzysztof Penderecki’s dis- tinctly spatial approach to twelve-tone composition in his Passion According to St. Luke. In the most basic terms, the theory of spatial acquisition is based on an understanding of the cycle of twelve pitch classes as contiguous units rather than discrete points. Utilizing this theory, one can track the gradual acquisition of pitch-class space by a twelve-tone row as each of its member pitch classes appears in succession, noting the patterns that the pitch classes exhibit in the pro- cess in terms of directionality, the creation and filling in of gaps, and the like. The first part of this study is an explanation of spatial acquisition theory, while the se- cond part comprises analyses covering portions of seven varied twelve-tone works. The result of these analyses is a deeper understanding of each twelve-tone row’s composition and how each row’s spatial characteristics are manifested on the musical surface. -
Cognition, Constraints and Conceptual Blends in Modernist Music the Pleasure of Modernism: Intention, Meaning, and the Compositional Avant-Garde, Ed
“Tone-color, movement, changing harmonic planes”: Cognition, Constraints and Conceptual Blends in Modernist Music The Pleasure of Modernism: Intention, Meaning, and the Compositional Avant-Garde, ed. Arved Ashby (Rochester: University of Rochester Press, 2004), 121–152. Amy Bauer I. Ligeti and the “Listenability” of Modernist Music György Ligeti has discussed his "micropolyphonic" music of the mid-1960s at some length, in an attempt to explain why its composed structure seems to bear no relation to its actual sound. Although works such as Lontano are based on strict canons, their compositional method assumes a listener will 'mishear' its structure: [In the large orchestral work Lontano] I composed . an extensively branching and yet strictly refined polyphony which, however, veers suddenly into something else. I don’t have a name for it and I don’t want to create a term for it. A kind of complex of tone-color, movement, changing harmonic planes. The polyphonic structure does not actually come through, you cannot hear it; it remains hidden in a microscopic underwater world, to us inaudible. I have retained melodic lines in the process of composition, they are governed by rules as strict as Palestrina's or those of the Flemish school, but the rules of polyphony are worked out by me. the polyphony is dissolved, like the harmony and the tone-color – to such an extent that it does not manifest itself, and yet it is there, just beneath the threshold.1 In the above passages, Ligeti appears to ally himself with modernists such as Boulez and Babbit, composers who use twelve-tone and other methods to systematically organize pitch structure. -
Composing Each Time Robert Morris
Composing Each Time Robert Morris Introduction Each time I finish a piece, there is little time to rest or reflect; something else demands my attention, and I attend to it. Of course, finishing a piece is not really abrupt; after the first draft, there is revision, computer engraving, and editing. During these tasks, new ideas and conceptions begin to enter consciousness so the experience of writing a particular piece fades even before all the work is done. Later, when I return to a work—to coach a performance or lecture on it—I try to reconstruct the process of composition and return to the way it felt to write it, but much of the passion and clarity that brought the work into being is lost. With some thought of addressing this problem I decided immediately after completing my piano piece Each Time to write about it while the experience of its composition was still fresh in my memory. In this way, I hope to express as vividly as possible what I try to put into a piece and how and why—something which might be useful to future performers or listeners. In some respects, Each Time is not very different from my other piano pieces; however, I wanted to express in music some new insights I had into the phenomenology of time derived from Buddhist philosophy. Rather than spelling this out now, I’ll just say that I composed the piece so it might suggest to an attentive listener that impermanence is at the root of experience and that time is both flowing and discontinuous at once. -
The Biological Foundations of Music
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Volume 930 THE BIOLOGICAL FOUNDATIONS OF MUSIC Edited by Robert J. Zatorre and Isabelle Peretz The New York Academy of Sciences New York, New York 2001 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Volume 930 June 2001 THE BIOLOGICAL FOUNDATIONS OF MUSIC Editors ROBERT J. ZATORRE AND ISABELLE PERETZ This volume is the result of a conference entitled The Biological Foundations of Music held by the New York Academy of Sciences on May 20-22, 2000 at The Rockefeller Uni- versity, New York, New York. CONTENTS Preface. By ROBERT J. ZATORRE AND ISABELLE PERETZ ix Part L The Origins of Music Musical Predispositions in Infancy. By SANDRA E. TREHUB 1 The Quest for Universals in Temporal Processing in Music. By CAROLYN DRAKE AND DAISY BERTRAND 17 Music, Cognition, Culture, and Evolution. By IAN CROSS 28 Is Music an Evolutionary Adaptation? By DAVID HURON 43 Part II. The Musical Mind Similarity, Invariance, and Musical Variation. By STEPHEN MCADAMS AND DANIEL MATZKIN 62 Tonal Cognition. By CAROL L. KRUMHANSL AND PETRI TOIVI AINEN 77 Part III. The Neurons of Music Neurobiological Foundations for the Theory of Harmony in Western Tonal Music. By MARK JUDE TRAMO, PETER A. CARIANI, BERTRAND DELGUTTE, AND LOUIS D. BRAIDA 92 Intracerebral Evoked Potentials in Pitch Perception Reveal a Functional Asymmetry of the Human Auditory Cortex. By CATHERINE LIEGEOIS- CHAUVEL, KIMBERLY GIRAUD, JEAN-MICHEL BADIER, PATRICK MARQUIS, AND PATRICK CHAUVEL 117 The Neural Processing of Complex Sounds. By TIMOTHY D. GRIFFITHS 133 Part IV. The Musical Brain Music and the Neurologist: A Historical Perspective. -
Edited by KAREN PAINTER JOHN HAILE and CLAUDIA
Edited by KAREN PAINTER ARTICLES JOHN HAILE AND 3 A Generative Textsetting Model FRED LERDAHL CLAUDIA MACDONALD 24 Critical Perception and the Woman Composer: The Early Reception of Piano Concertos by Clara Wieck Schumann and Amy Beach MARK DEBELLIS 56 Is There an Observation/Theory Distinction in Music? REVIEWS FLOYD GRAVE 88 Elaine R. Sisman, Haydn and the Classi- cal Variation. CHRISTOPHER HAILEY 94 Bryan Gilliam, ed. Richard Strauss and His World, and Richard Strauss: New Perspectives on the Composer and His Work. SANDER GILMAN 102 Alexander Ringer. Arnold Schoenberg: The Composer as Jew. NADINE SINE 105 James Zychowicz, ed. The Seventh Symphony of Gustav Mahler: A Symposium. REPORTS 113 from Madrid, Brussels, and Bangor 121 COMMUNICATION A Generative Textsetting Model ByJohn Halle and Fred Lerdahl One aspect of musical practice that has received comparatively little attention in recent years is the system of intuitions operating when a com- poser assigns notes to words. In contrast to the extremely varied composi- tional techniques of Western music, composers' impulses are narrowly constrained by both musical and linguistic intuitions in textsetting. That this is the case can be seen by attempting to match the lines of poetry with their associated rhythmic settings: (Ia) Tell me not in mournful numbers. -Longfellow, "A Psalm of Life," line 1 (1 b) Through all the compass of the notes. -Dryden, "A Song for St. Cecilia's Day," line 15 (Ic) I J! J! J! J! I J! J! J! J! I (Id) I 'I J! J! J! I J! J! J! J! I J! One need not have had much musical training to know to pair (Ia) with (Ic), and (Ib) with (Id). -
Modal Pitch Space
Modal pitch space COSTAS TSOUGRAS Affiliation: Aristotle University of Thessaloniki, Faculty of Fine Arts, School of Music Abstract The Tonal Pitch Space Theory was introduced in 1988 by Fred Lerdahl as an expansion of the Generative Theory of Tonal Music with the purpose of providing explicit stability conditions and optimally clarified preference rules for the construction of GTTM's Time-Span Reduction and Prolongational Reduction analysis parts. The Diatonic Pitch Space model is based largely on experimental work in the Music Psychology field, mainly by Krumhansl and Deutch & Feroe and conforms successfully to models from the Music Theory field, mainly by Weber, Riemann, Schoenberg and Lewin. This paper explores the Pitch Space of the seven diatonic modes. The model developed comes up as an expansion and adaptation of Fred Lerdahl’s Tonal Pitch Space model, with the purpose of being able to describe more accurately the situations involved in the analysis of diatonic modal music. The original methodology and set of algebraic calculating formulas is kept, but it is applied on Modal instead of Tonal Space, considering the latter to be a subset of the former. After the calculation of the chordal and regional space algebraic representations, geometrical representations of the Modal Pitch Space model are attempted. 1. Introduction - Background This paper examines the Pitch Space of the seven diatonic modes. The model emerges as an expansion and adaptation of Fred Lerdahl’s Tonal Pitch Space, with the purpose of describing more accurately the situations involved in the analysis of diatonic modal music. The original methodology and set of algebraic calculating formulas is retained, but it is applied to Modal instead of Tonal Diatonic Space, considering the latter a subset of the former. -
The Cognitive Neuroscience of Music
THE COGNITIVE NEUROSCIENCE OF MUSIC Isabelle Peretz Robert J. Zatorre Editors OXFORD UNIVERSITY PRESS Zat-fm.qxd 6/5/03 11:16 PM Page i THE COGNITIVE NEUROSCIENCE OF MUSIC This page intentionally left blank THE COGNITIVE NEUROSCIENCE OF MUSIC Edited by ISABELLE PERETZ Départment de Psychologie, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada and ROBERT J. ZATORRE Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada 1 Zat-fm.qxd 6/5/03 11:16 PM Page iv 1 Great Clarendon Street, Oxford Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide in Oxford New York Auckland Bangkok Buenos Aires Cape Town Chennai Dar es Salaam Delhi Hong Kong Istanbul Karachi Kolkata Kuala Lumpur Madrid Melbourne Mexico City Mumbai Nairobi São Paulo Shanghai Taipei Tokyo Toronto Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries Published in the United States by Oxford University Press Inc., New York © The New York Academy of Sciences, Chapters 1–7, 9–20, and 22–8, and Oxford University Press, Chapters 8 and 21. Most of the materials in this book originally appeared in The Biological Foundations of Music, published as Volume 930 of the Annals of the New York Academy of Sciences, June 2001 (ISBN 1-57331-306-8). This book is an expanded version of the original Annals volume. The moral rights of the author have been asserted Database right Oxford University Press (maker) First published 2003 All rights reserved. -
Divisions of the Tetrachord Are Potentially Infinite in Number
EDITOR'S INTRODUCTION ''''HEN I WAS A young student in California, Lou Harrison suggested that I send one of my first pieces, Piano Study #5 (forJPR) to a Dr. Chalmers, who might publish it in his journal Xenbarmonikon. Flattered and fascinated, I did, and John did, and thus began what is now my twenty year friendship with this polyglot fungus researcher tuning guru science fiction devotee and general everything expert. Lou first showed me the box of papers, already called Divisions ofthe Tetracbord, in 1975. I liked the idea of this grand, obsessive project, and felt that it needed to be availablein a way that was, likeJohn himself, out of the ordinary. When Jody Diamond, Alexis Alrich, and I founded Frog Peak Music (A Composers' Collective) in the early 80S, Divisions (along with Tenney's then unpublished Meta + Hodos) was in my mind as one of the publishing collective's main reasons for existing, and for calling itself a publisher of"speculative theory." The publication of this book has been a long and arduous process. Re vised manuscripts traveled with me from California to Java and Sumatra (John requested we bring him a sample of the local fungi), and finally to our new home in New Hampshire. The process of writing, editing, and pub lishing it has taken nearly fifteen years, and spanned various writing tech nologies. (When John first started using a word processor, and for the first time his many correspondents could actually read his long complicated letters, my wife and I were a bit sad-we had enjoyed reading his com pletely illegible writing aloud as a kind of sound poetry). -
Semiótica, Semiótica De La Música Y Semiótica Cognitivo- Enactiva De La Música Notas Para Un Manual De Usuario
Semiótica, semiótica de la música y semiótica cognitivo- enactiva de la música Notas para un manual de usuario. Rubén López Cano [email protected], www.lopezcano.net Escola Superior de Música de Catalunya Rubén López Cano 2007 Los contenidos de este texto están bajo una licencia Creative Commons. Consúltela antes de usarlo. The content on this text is under a Creative Commons license. Consult it before using this article. Cómo citar este artículo: How to cite this article: López Cano, Rubén. 2007. “Semiótica, semiótica de la música y semiótica cognitivo-enactiva de la música. Notas para un manual de usuario”. Texto didáctico (actualizado junio 2007). www.lopezcano.net (Consultado o descargado [día, mes y año]) (Accessed [Day Month Year of access]) Semiótica de la música Rubén López Cano Índice: • Advertencia • Semiótica de la Música • El Signo • ¿Qué es significado en música? • Fundamentos • Saussure y Peirce • Semiótica cognitiva de la música • ¿Semiología o semiótica? • Persuasiones y disuasiones: oferta y problemas de la semiótica de la música • Las ciencias cognitivas • La musicología cognitiva • La cognición enactiva • Como introducirse en el estudio de esto… o Semiótica de la música Algunos autores importantes en el ámbito de la semiótica de la música: Primer encontronazo con la semiótica Introducción a la semiótica general Semiótica de Peirce Semióticas particulares: Eco y Greimas Historia de la semiótica musical Introducción a la semiótica de la música Bibliografia fundamental de algunos maestros de la semiótica musical -
Bibliography and Index
Bibliography Books [1] Bear, Connors and Paradiso Neuroscience: Exploring the Brain Williams & Wilkins 1996 [2] Francis Crick The Astonishing Hypothesis Simon & Schuster 1994 [3] Charles Darwin The Origin of Species 1859 [4] Charles Darwin The Descent of Man 1871 [5] Diana Deutsch The Psychology of Music, 2nd Edition Academic Press, 1999 [6] Donald A. Hodges Handbook of Music Psychology, 2nd Edition Institute for Music Research, 1996 [7] Robert Jourdain Music, the Brain and Ecstasy: How Music Captures Our Imagination William Morrow, 1997 [8] Patrik N. Juslin and John A. Sloboda Music and Emotion: Theory and Re- search Oxford University Press, 2001 [9] Fred Lerdahl and Ray Jackendoff A Generative Theory of Tonal Music MIT Press, 1983 [10] Paul Lorrain and Dale Corson Electromagnetic Fields and Waves WH Freeman and Co, 1970 [11] Leonard B. Meyer Emotion and Meaning in Music University of Chicago Press, 1956 [12] Isabelle Peretz and Robert Zatorre The Cognitive Neuroscience of Music Oxford University Press, 2003 [13] Vilayanur Ramachandran The Emerging Mind Profile Books, 2003 [14] John S. Rigden Hydrogen: The Essential Element Harvard University Press, 2002 [15] Oliver Sacks An Anthropologist On Mars: Seven Paradoxical Tales Random House Inc, 1995 312 Copyright c 2004, 2005 Philip Dorrell [16] Anthony Storr Music and the Mind Free Press, 1992 [17] Nils L.Wallin, Bj¨orn Merker and Steven Brown The Origins of Music MIT Press, 2000 [18] Semir Zeki A Vision of the Brain Blackwell Science, 1993 Papers [19] Frank Biocca and J.P. Rolland “Virtual -
Spatial and Psychoacoustic Factors in Atonal Prolongation
Spatial and Psychoacoustic Factors in Atonal Prolongation By Fred Lerdahl Consider the sequences of letters in example 1 and think of them as strings of objects perceived and parsed in space or time. In case (a), each object is distinct. There may be degrees of similarity among them, meas ured by whatever means, but no member of the string is a point of refer ence for the others. In case (b), Xl repeats literally as X2. One might say that X extends in space or is prolonged in time. In cases (c) and (d), the repetition of X creates a frame or context for Y. The two Xs connect per ceptually and Y is perceived inside that connection. In other words, Y is subordinate within the context XC X2. If moving from one object to the next is experienced as a path, the motion XI~Y represents a departure and Y~X2 represents a return. If for some reason, say relative temporal proximity, Y groups with Xl' as in case (c), Y belongs to Xl in the context XC X2; similarly, in case (d) Y belongs to X2 in the context XC X2. In these instances one can speak of a constituent hierarchy (that is, the subordi nate element is not merely subordinate within its context but is subordi nate to a single superordinate element). Sometimes it is not proximity but patterns of repetition· that cause the internal grouping, as in case (e). But let us leave to one side the issue of subsegments within a string and look at a few other whole patterns. -
Bacci and Melcher-Ch-16.Indd 297 3/15/2010 1:49:37 PM OUP UNCORRECTED PROOF – FIRST-PROOF, 15/03/2010, GLYPH
OUP UNCORRECTED PROOF – FIRST-PROOF, 15/03/2010, GLYPH chapter 16 MUSICAL TENSION carol l. krumhansl and fred lerdahl Introduction The arts offer a rich and largely untapped resource for the study of human behav- iour. This collection of essays points to the potential of studying the various art forms from a variety of disciplinary perspectives. The present essay describes a project involving a music theorist-composer and a cognitive scientist who conducts empir- ical research on music. From a psychological point of view, the arts can extend our understanding of the physical, sensory, and perceptual processes that enable us to apprehend the world around us. Art works are special cases that, at a somewhat higher level, can yield insights into processes such as memory and attention, and show how knowledge shapes our interactions with, and interpretations of, artistic objects. At a still higher level, they raise questions about emotional, social, and cultural factors at work in the aesthetic realm. Finally, perspectives from neuroscience, genetics, and evolutionary theory illuminate questions about the underpinnings of artistic creativity. Over the last 30 years, the cognitive science of music has become a mature fi eld with different branches. One important impulse has come from the intersection of music theory and experimental psychology. Empirical studies have demonstrated that music theory provide a description not only of structural regularities in music but also the way music is perceived, organized, and remembered by listeners. Descriptions of music employ a set of terms such as scale, chord (harmony), key (tonality), melody, and melodic contour. These terms are defi ned in the glossary at the end of this chapter (Thompson 2009; see also Melcher and Zampini, Chapter 14, this volume).