Rbcl Gene Sequences Provide Evidence for the Evolutionary Lineages of Leptosporangiate Ferns

Total Page:16

File Type:pdf, Size:1020Kb

Rbcl Gene Sequences Provide Evidence for the Evolutionary Lineages of Leptosporangiate Ferns Proc. Nail. Acad. Sci. USA Vol. 91, pp. 5730-5734, June 1994 Evolution rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns (pteridophyte/molecular systematics/phylogenetls/ribulose-blsphosphate carboxylase) MITSUYASU HASEBE*, TOMOYUKI OMORI, MIYUKI NAKAZAWA, TOSHIO SANO, MASAHIRO KATO, AND KUNIO IWATSUKI Botanical Gardens, Faculty of Science, University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112, Japan Communicated by Warren H. Wagner, Jr., March 15, 1994 ABSTRACT Pteridophytes have a longer evolutionary his- gies, both live in aquatic habitats and are characterized by tory than any other vascular land plant and, therefore, have heterospory, the latter being extremely rare in the leptospo- endured greater loss of phylogenetically informative informa- rangiate ferns. The phylogenetic relationship ofthese aquatic tion. This factor has resulted in substantial disagreements in ferns to the homosporus ferns remains unsolved (8). evaluating characters and, thus, controversy in establishing a Classification and phylogenetic relationships of the stable classification. To compare competing casicatis, we leptosporangiate ferns above the family level are controver- obtained DNA sequences ofa chloroplast gene. The sequence of sial (1, 5, 6, 8-10). The reasons for discrepancy among 1206 nt of the large subunit of the ribulose-bisphosphate classification schemes include disagreements in evaluation of carboxylase gene (rbcL) was determined from 58 species, morphological characters used. It is often difficult to identify representing almost all families of leptosporangiate ferns. homologous characters because similar characters are found Phylogenetic trees were inferred by the neighbor-joining and in apparently different phylogenetic lineages; convergent or the parsimony methods. The two methods produced almost parallel evolution probably often occurred during the long identical phylogenetic trees that provided insights concerning evolutionary history of ferns (11). Furthermore, frequent major general evolutionary trends in the leptosporangiate extinctions produced missing links, which have resulted in ferns. Interesting findings were as follows: (i) two morpholog- difficulties elucidating phylogenetic interrelationships of ma- ically distinct heterosporous water ferns, Marula and Sal- jor groups (1, 11). Micromolecular information (12) also is not vinia, are sister genera; (iu) the tree ferns (Cyatheaceae, useful to infer familial relationships for the same reasons. Dicksoniaceae, and Metaxyaceae) are monophyletic; and (ui) Recently molecular systematics in plants has progressed polypodiolds are distantly related to the gleicheniolds in spite rapidly with in vitro DNA amplification (polymerase chain of the imilarit of their exindusiate soral morphology and are reaction, PCR) mediated by thermostable DNA polymerase close to the higher indusiate ferns In addition, the affiities of and the direct sequencing methods. In angiosperm system- several "problematic genera" were assessed. atics, this molecular approach has been effective in address- ing many phylogenetic questions that had not been solved The extant ferns include -10,000 species and 250 genera in using phenotypic characters (13). The gene for the large the world (1). They are the most conspicuous spore-bearing subunit of the ribulose-bisphosphate carboxylase (rbcL), land plants and the principal members of land flora after the located on the chloroplast genome, is an appropriate choice flowering plants. Ferns range' widely from tropical to cold for inference of phylogenetic relationships at higher taxo- temperate regions and from lowland to alpine zones, and their nomic levels (13-15). Because of its slow synonymous nu- habitats vary from xeric to aquatic conditions, although the cleotide substitution rate in comparison with nuclear genes center of their distribution is wet tropical and subtropical and its functional constraint that reduces the evolutionary mountains. rate ofnonsynonymous substitutions (16), rbcL is considered Ferns, or megaphyllus pteridophytes, are usually classified to be more useful than the isozymes (e.g., ref. 17) and the into three major groups: the Ophioglossaceae, the Maratti- restriction fragment length polymorphisms (e.g., ref. 18) at aceae, and the leptosporangiate ferns. Although the former these taxonomic levels. Whereas rbcL sequence data have two eusporangiate families have formerly been classified in a been accumulated for angiosperms, only a few rbcL se- single group, recent analyses ofmorphological and molecular quences have been reported for ferns (3), because of the characters revealed that they are not monophyletic (2, 3). In difficulty of finding appropriate primers to amplify or se- contrast, leptosporangiate ferns were inferred to be a mono- quence the gene. Ferns include much more ancient groups phyletic group, because leptosporangia are present only in than angiosperms (19), and their nucleotide sequences are leptosporangiate ferns and this is considered an apomorphic diversified among fern groups. character (2). The eusporangiate condition, however, is a 'In this study, we produced effective primers for fern rbcL plesiomorphic character, observed in the other vascular gene sequencing, with which we could sequence represen- plants. Monophyly of the leptosporangiate ferns is also tatives from >90% ofextant fern families sensu Kramer (8).t supported by unusual gene arrangements on the chloroplast We attempted to (i) identify major evolutionary lineages of genome (4). ferns and infer relationships of the families, (ii) evaluate Based on morphology, the leptosporangiate ferns are usu- previous taxonomic schemes and propose a working hypoth- ally classified into three major groups, Marsileaceae, Salvin- esis for future studies, and (iii) determine the phylogenetic iaceae including Azollaceae, and the rest, which are often positions of problematic taxa. treated as different orders (5-7). Although both the Mar- sileaceae and the Salviniaceae have distinctive morpholo- Abbreviation: NJ, neighbor joining. *To whom reprint requests should be sent at present address: Department of Botany and Plant Pathology, Purdue University, The publication costs of this article were defrayed in part by page charge Lilly Hall of Life Sciences, West Lafayette, IN 47907. payment. This article must therefore be hereby marked "advertisement" tThe sequences reported in this paper have been deposited in the in accordance with 18 U.S.C. §1734 solely to indicate this fact. GenBank data base (accession nos. U05601-U05658). 5730 Downloaded by guest on September 25, 2021 Evolution: Hasebe et al. Proc. Natl. Acad. Sci. USA 91 (1994) 5731 MATERIALS AND METHODS PARS on, STEEPEST DESCENT on, and NNI branch swapping. The trees obtained in the analysis were then used as starting Sixty-four species were selected (see Fig. 2) representing trees to search more parsimonious trees under the equal >90%o offern families sensu Kramer (8). Voucher specimens weighting criterion using MULPARS on, STEEPEST DESCENT sequenced in this study have been deposited at the University on, and TBR branch swapping. We also used the heuristic of Tokyo (TI). Metaxia total DNA was kindly provided by search with the weighting criterion of Albert et al. (32) with Diana Stein (Mount Holyoke College) and David Conant 10 random sequence additions, MULPARS on, STEEPEST DE- (Lyndon State College, Lyndonville, VT), and the voucher SCENT on, and TBR branch swapping. The search was re- specimen is deposited at Lyndon State College. peated five times with different random seeds. We used the Total DNA was isolated (20) from single plants and usually bootstrap analyses (27, 28) and the decay analyses (33) to purified by CsCl density gradient centrifugation (21). Three measure the degree of support for given branches. The overlapping fragments, which cover most of the rbcL gene, bootstrap analysis was performed under unweighting crite- were amplified (22) by Taq polymerase-mediated PCRs. Two rion with 228 bootstrap replicates with simple sequence synthetic primers for each region (aF and aR, bF and bR, and additions, MULPARS on, STEEPEST DESCENT on, and NNI cF and cR in Fig. 1) were designed based on the reported rbcL branch swapping. sequences (3). We usually obtained a single amplified product using these primers. If amplification failed, we used other primers (effective primer arrangements for each taxon can be RESULTS AND DISCUSSION obtained from authors upon request). The amplified frag- Phylogenetic Analyses. We sequenced PCR-amplified frag- ments were electrophoresed on 1% agarose gel, sliced out, ments of rbcL gene from 58 leptosporangiate ferns and used and purified by Geneclean II (Bio 101). The purified double- previously published sequences from Angiopteris, Adiantum stranded DNA fragments were directly sequenced using the capillus-veneris, Botrypus, and Osmunda (3). Sequences of AutoCycle sequencing kit (Pharmacia). The same primers two species in the Aspleniaceae were kindly provided by N. were employed as those used in amplifications but their 5' Murakami (University of Tokyo). In our previous studies of ends were chemically labeled by the fluorescein amidite land plants (3, 34), we used the translated amino acid se- (FluoroPrime; Pharmacia) followed by column purification quences to construct phylogenetic trees, because this elim- (NAP-10 column; Pharmacia). We sequenced the fragments inates bias caused by variation in the GC content of land in both directions
Recommended publications
  • DENNSTAEDTIACEAE 1. MONACHOSORUM Kunze, Bot. Zeitung (Berlin) 6: 119. 1848
    This PDF version does not have an ISBN or ISSN and is not therefore effectively published (Melbourne Code, Art. 29.1). The printed version, however, was effectively published on 6 June 2013. Yan, Y. H., X. P. Qi, W. B. Liao, F. W. Xing, M. Y. Ding, F. G. Wang, X. C. Zhang, Z. H. Wu, S. Serizawa, J. Prado, A. M. Funston, M. G. Gilbert & H. P. Nooteboom. 2013. Dennstaedtiaceae. Pp. 147–168 in Z. Y. Wu, P. H. Raven & D. Y. Hong, eds., Flora of China, Vol. 2–3 (Pteridophytes). Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. DENNSTAEDTIACEAE 碗蕨科 wan jue ke Yan Yuehong (严岳鸿)1, Qi Xinping (齐新萍)2, Liao Wenbo (廖文波)3, Xing Fuwu (邢福武)4, Ding Mingyan (丁明艳)3, Wang Faguo (王发国)4, Zhang Xianchun (张宪春)5, Wu Zhaohong (吴兆洪 Wu Shiew-hung)4; Shunshuke Serizawa6, Jefferson Prado7, A. Michele Funston8, Michael G. Gilbert9, Hans P. Nooteboom10 Plants terrestrial, sometimes climbing. Rhizome usually long creeping, solenostelic, siphonostelic, or polystelic, usually covered with multicellular hairs, less often with few-celled, cylindrical, glandular hairs or multicellular bristles, scales absent. Fronds medium-sized to large, sometimes indeterminate, monomorphic; stipes not articulate to rhizome, usually hairy, rarely glabrous; lamina 1–4-pinnately compound, thinly herbaceous to leathery, hairy or glabrous, without scales; rachis grooved adaxially, some- times with buds (Monachosorum); pinnae opposite or alternate; veins usually free, pinnate or forked, not reaching margin, reticulate without included veinlets in Histiopteris. Sori marginal or intramarginal, linear or orbicular, terminal on a veinlet or on a vascular commissure joining apices of veins; indusia linear or bowl-shaped, sometimes double with outer false indusium formed from thin reflexed lamina margin and inconspicuous inner true indusium; paraphyses present or not.
    [Show full text]
  • A Revision of the Fern Genus Oleandra (Oleandraceae) in Asia 1 Doi: 10.3897/Phytokeys.11.2955 Monograph Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal PhytoKeys 11: 1–37 (2012)A revision of the fern genus Oleandra (Oleandraceae) in Asia 1 doi: 10.3897/phytokeys.11.2955 MONOGRAPH www.phytokeys.com Launched to accelerate biodiversity research A revision of the fern genus Oleandra (Oleandraceae) in Asia Peter H. Hovenkamp1, Boon-Chuan Ho2 1 Netherlands Centre for Biodiversity Naturalis (section NHN), Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands 2 Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms- Universität Bonn, Meckenheimer Allee 170, D-53115 Bonn, Germany Corresponding author: Peter H. Hovenkamp ([email protected]) Academic editor: T. Ranker | Received 16 February 2011 | Accepted 29 March 2012 | Published 6 April 2012 Citation: Hovenkamp PH, Ho B-C (2012) A revision of the fern genus Oleandra (Oleandraceae) in Asia. PhytoKeys 11: 1–37. doi: 10.3897/phytokeys.11.2955 Abstract The Asiatic species of Oleandra (Oleandraceae) are revised. We reduce a large number of species to O. neriiformis and O. sibbaldii, we provide a revised circumscription of O. cumingii and O. undulata and we establish the identity of O. vulpina. In total, we recognize 9 species, with full synonymy, descriptions and distribution maps. A list of identifications is appended. Keywords Oleandra, systematics Introduction Virtually all authors who have dealt with the genus Oleandra Cav. have commented on its distinctness or naturalness. The shrubby growth form, particularly distinct in O. neriiformis Cav., prompted Cavanilles (1799; 1802) not only to derive the genus name, but also the species name from Nerium oleander L. (Apocynaceae). From this it should be clear that he saw the aerial stems of Oleandra neriiformis, of which the forms with distinctly whorled fronds are indeed strongly reminiscent of branches of Nerium olean- der.
    [Show full text]
  • Blue Tier Reserve Background Report 2016File
    Background Report Blue Tier Reserve www.tasland.org.au Tasmanian Land Conservancy (2016). The Blue Tier Reserve Background Report. Tasmanian Land Conservancy, Tasmania Australia. Copyright ©Tasmanian Land Conservancy The views expressed in this report are those of the Tasmanian Land Conservancy and not the Federal Government, State Government or any other entity. This work is copyright. It may be reproduced for study, research or training purposes subject to an acknowledgment of the sources and no commercial usage or sale. Requests and enquires concerning reproduction and rights should be addressed to the Tasmanian Land Conservancy. Front Image: Myrtle rainforest on Blue Tier Reserve - Andy Townsend Contact Address Tasmanian Land Conservancy PO Box 2112, Lower Sandy Bay, 827 Sandy Bay Road, Sandy Bay TAS 7005 | p: 03 6225 1399 | www.tasland.org.au Contents Acknowledgements ................................................................................................................................. 1 Acronyms and Abbreviations .......................................................................................................... 2 Introduction ............................................................................................................................................ 3 Location and Access ................................................................................................................................ 4 Bioregional Values and Reserve Status ..................................................................................................
    [Show full text]
  • (<I>Lindsaeaceae</I>) from New Guinea
    Blumea 56, 2011: 216–217 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651911X604142 A new species of Odontosoria (Lindsaeaceae) from New Guinea S. Lehtonen1 Key words Abstract A new fern species, Odontosoria quadripinnata, is described from New Guinea. The new species re- sembles O. retusa, but has quadripinnate laminas, short sori and monolete spores in contrast to tripinnate laminar Lindsaeaceae division, continuous sori and trilete spores in O. retusa. new species Odontosoria Published on 29 September 2011 taxonomy INTRODUCTION c. 0.7 mm wide, 1 mm long, reaching the margin. Sporangia c. 200 by 150 µm, annulus with 15–20 indurated cells. Spores Recent studies on Lindsaeaceae systematics (Lehtonen et al. monolete, bean-shaped, pale, smooth, c. 50 by 30 µm. 2010) revealed two collections of a morphologically unusual Distribution & Ecology — New Guinea, wet tropical montane Odontosoria from New Guinea. These specimens probably forests at elevations between c. 800–2000 m. Terrestrial or represent the ‘quadripinnate form’ of Sphenomeris retusa (Cav.) epiphytic on fallen trunks. Maxon (1913: 144) [now Odontosoria retusa (Cav.) J.Sm. (1857: Additional specimen. NEW GUINEA, Morobe Province, Kuper Range, along 430)], mentioned by Kramer (1971) without a specific citation of unpaved track to Biaru, wet montane forest; on muddy banks of gently flowing any specimen. However, the specimens in question differ from stream, 2021 m, 7°31'S 146°48'E, 29 Sept. 1988, Takeuchi 4081 (BISH). O. retusa not only by laminar dissection, but they also have uninerval sori and monolete spores in contrast to the continuous Note — Kramer (1971) mentioned that several collections of sori and trilete spores in O.
    [Show full text]
  • Native and Exotic “Boston Ferns” and “Sword Ferns” (Nephrolepis Spp.)
    A Case of Mistaken Identity Native and Exotic “Boston Ferns” and “Sword Ferns” (Nephrolepis spp.) Figure 1. Florida’s native sword fern, also known as wild Boston fern, is a dominant feature of south Florida hammocks and a popular native landscape plant (Nephrolepis exaltata). Shown here in DuPuis Preserve (Palm Beach/Martin County). Ken Langeland desired plants of grow- University of Florida Center for ers and yearly sales Aquatic and Invasive Plants soared in the hundred Figure 2. st 7922 NW 71 Street, Gainesville, FL 32653 thousands.” In 1894, a Fronds of [email protected] cultivar of N. exaltata Florida’s was discovered in a native giant Introduction shipment from a Phil- sword fern Florida’s native sword fern, also adelphia grower to a (Nephrolepis know as wild Boston fern, (Nephrolepis Boston distributer and biserrata) are exaltata) (Figure 1) and giant sword fern named N. exaltata cv. often 2 m (Nephrolepis biserrata) (Figure 2), were ‘Bostoniensis’, hence the long. Shown highly admired by early botanists, commonly used name here in Fern naturalists, and horticulturists (Small Boston fern (Foster Forest, 1918a, 1918b, Simpson 1920, Foster 1984). Other derivatives Pompano 1984). Charles Torrey Simpson (1920) of N. exaltata cv. ‘Bosto- Beach wrote: “But the real glory of the ham- niensis’, ranging from (Broward mock is the two species of Nephrolepis, 1-5-pinnate, and with County). one being the well known “Boston“ such descriptive names fern.” According to Foster (1984) as N. exaltata cv. ‘Florida “—they [N. exaltata] could be seen in [Fluffy] Ruffles’ were homes and public buildings almost developed and are still known from native sword fern and giant sword everywhere.
    [Show full text]
  • Rare Plant Survey Triple A-CR 510-Red Road-Sleepy Hollow
    Rare Plant Survey Triple A-CR 510-Red Road-Sleepy Hollow Marquette County, Michigan Prepared for: Kennecott Eagle Minerals Company Marquette County, Michigan Prepared by: King & MacGregor Environmental, Inc. 2520 Woodmeadow SE Grand Rapids, Michigan 49546 www.king-macgregor.com DRAFT DATE: April 2011 TABLE OF CONTENTS INTRODUCTION & BACKGROUND ........................................................................................... 1 METHODS .................................................................................................................................... 1 RESULTS ..................................................................................................................................... 2 DISCUSSION ................................................................................................................................ 2 REFERENCES FIGURES Figure 1. Overall Project Location-Land Cover Map Figure 2. Rare Plant Location Map TABLES Table 1. MNFI Element Occurrence List for Marquette County Table 2. Rare Plant Species by Habitat Type for Marquette County APPENDIX: Photographs INTRODUCTION & BACKGROUND King & MacGregor Environmental, Inc. (KME) was retained by Kennecott Eagle Minerals Company to conduct botanical assessments along various potential roadway alignments within Marquette County. Initial surveys of potential road routes were completed in 2008 and data was included within a report that was issued to Kennecott Eagle Minerals Company (KME, 2009). This report is an addendum to that original report
    [Show full text]
  • Glenda Gabriela Cárdenas Ramírez
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES A II 353 Glenda Gabriea Cárdenas Ramírez EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriea Cárdenas Ramírez Painosaama Oy, Turku , Finand 2019 , Finand Turku Oy, Painosaama ISBN 978-951-29-7645-4 (PRINT) TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) SARJA - SER. A II OSA - TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriela Cárdenas Ramírez TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. A II OSA – TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 University of Turku Faculty of Science and Engineering Doctoral Programme in Biology, Geography and Geology Department of Biology Supervised by Dr Hanna Tuomisto Dr Samuli Lehtonen Department of Biology Biodiversity Unit FI-20014 University of Turku FI-20014 University of Turku Finland Finland Reviewed by Dr Helena Korpelainen Dr Germinal Rouhan Department of Agricultural Sciences National Museum of Natural History P.O. Box 27 (Latokartanonkaari 5) 57 Rue Cuvier, 75005 Paris 00014 University of Helsinki France Finland Opponent Dr Eric Schuettpelz Smithsonian National Museum of Natural History 10th St. & Constitution Ave. NW, Washington, DC 20560 U.S.A. The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-7645-4 (PRINT) ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) Painosalama Oy – Turku, Finland 2019 Para Clara y Ronaldo, En memoria de Pepe Barletti 5 TABLE OF CONTENTS ABSTRACT ...........................................................................................................................
    [Show full text]
  • Spores of Serpocaulon (Polypodiaceae): Morphometric and Phylogenetic Analyses
    Grana, 2016 http://dx.doi.org/10.1080/00173134.2016.1184307 Spores of Serpocaulon (Polypodiaceae): morphometric and phylogenetic analyses VALENTINA RAMÍREZ-VALENCIA1,2 & DAVID SANÍN 3 1Smithsonian Tropical Research Institute, Center of Tropical Paleocology and Arqueology, Grupo de Investigación en Agroecosistemas y Conservación de Bosques Amazonicos-GAIA, Ancón Panamá, Republic of Panama, 2Laboratorio de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia, 3Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia Caquetá, Colombia Abstract The morphometry and sculpture pattern of Serpocaulon spores was studied in a phylogenetic context. The species studied were those used in a published phylogenetic analysis based on chloroplast DNA regions. Four additional Polypodiaceae species were examined for comparative purposes. We used scanning electron microscopy to image 580 specimens of spores from 29 species of the 48 recognised taxa. Four discrete and ten continuous characters were scored for each species and optimised on to the previously published molecular tree. Canonical correspondence analysis (CCA) showed that verrucae width/verrucae length and verrucae width/spore length index and outline were the most important morphological characters. The first two axes explain, respectively, 56.3% and 20.5% of the total variance. Regular depressed and irregular prominent verrucae were present in derived species. However, the morphology does not support any molecular clades. According to our analyses, the evolutionary pathway of the ornamentation of the spores is represented by depressed irregularly verrucae to folded perispore to depressed regular verrucae to irregularly prominent verrucae. Keywords: character evolution, ferns, eupolypods I, canonical correspondence analysis useful in phylogenetic analyses of several other Serpocaulon is a fern genus restricted to the tropics groups of ferns (Wagner 1974; Pryer et al.
    [Show full text]
  • Phylogenetic Diversity of Ferns Reveals Different Patterns of Niche Conservatism and Habitat Filtering Between Epiphytic and Terrestrial Assemblages†
    a Frontiers of Biogeography 2021, 13.3, e50023 Frontiers of Biogeography RESEARCH ARTICLE the scientific journal of the International Biogeography Society Phylogenetic diversity of ferns reveals different patterns of niche conservatism and habitat filtering between epiphytic and terrestrial assemblages† Adriana C. Hernández-Rojas1* , Jürgen Kluge1 , Sarah Noben2 , Johan D. Reyes Chávez3 , Thorsten Krömer4 , César I. Carvajal-Hernández5 , Laura Salazar6 and Michael Kessler2 1 Faculty of Geography, Philipps University Marburg, Germany; 2 Systematic and Evolutionary Botany, University of Zurich, Switzerland; 3 Escuela Agrícola Panamericana Zamorano, Centro Zamorano de Biodiversidad, Carrera de Ambiente y Desarrollo, Valle de Yeguare, Francisco Morazán, Honduras; 4 Centro de Investigaciones Tropicales (CITRO), Universidad Veracruzana, México; 5 Instituto de Investigaciones Biológicas, Universidad Veracruzana, México;6 Centro de Investigación de la Biodiversidad y Cambio Climático e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias del Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador. *Corresponding author: Adriana C. Hernández-Rojas, [email protected], [email protected] This paper is part of an Elevational Gradients and Mountain Biodiversity Special Issue. Abstract Highlights Much attention has been directed to understanding • Epiphytic and terrestrial fern assemblages across species richness patterns, but adding an evolutionary elevational and latitudinal
    [Show full text]
  • Pdf/A (670.91
    Phytotaxa 164 (1): 001–016 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2014 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.164.1.1 On the monophyly of subfamily Tectarioideae (Polypodiaceae) and the phylogenetic placement of some associated fern genera FA-GUO WANG1, SAM BARRATT2, WILFREDO FALCÓN3, MICHAEL F. FAY4, SAMULI LEHTONEN5, HANNA TUOMISTO5, FU-WU XING1 & MAARTEN J. M. CHRISTENHUSZ4 1Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China. E-mail: [email protected] 2School of Biological and Biomedical Science, Durham University, Stockton Road, Durham, DH1 3LE, United Kingdom. 3Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8075 Zurich, Switzerland. 4Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 4DS, United Kingdom. E-mail: [email protected] (author for correspondence) 5Department of Biology, University of Turku, FI-20014 Turku, Finland. Abstract The fern genus Tectaria has generally been placed in the family Tectariaceae or in subfamily Tectarioideae (placed in Dennstaedtiaceae, Dryopteridaceae or Polypodiaceae), both of which have been variously circumscribed in the past. Here we study for the first time the phylogenetic relationships of the associated genera Hypoderris (endemic to the Caribbean), Cionidium (endemic to New Caledonia) and Pseudotectaria (endemic to Madagascar and Comoros) using DNA sequence data. Based on a broad sampling of 72 species of eupolypods I (= Polypodiaceae sensu lato) and three plastid DNA regions (atpA, rbcL and the trnL-F intergenic spacer) we were able to place the three previously unsampled genera.
    [Show full text]
  • Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2021 Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris Sylvia P. Kinosian Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Kinosian, Sylvia P., "Insights on Reticulate Evolution in Ferns, with Special Emphasis on the Genus Ceratopteris" (2021). All Graduate Theses and Dissertations. 8159. https://digitalcommons.usu.edu/etd/8159 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INSIGHTS ON RETICULATE EVOLUTION IN FERNS, WITH SPECIAL EMPHASIS ON THE GENUS CERATOPTERIS by Sylvia P. Kinosian A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: Zachariah Gompert, Ph.D. Paul G. Wolf, Ph.D. Major Professor Committee Member William D. Pearse, Ph.D. Karen Mock, Ph.D Committee Member Committee Member Karen Kaphiem, Ph.D Michael Sundue, Ph.D. Committee Member Committee Member D. Richard Cutler, Ph.D. Interim Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2021 ii Copyright © Sylvia P. Kinosian 2021 All Rights Reserved iii ABSTRACT Insights on reticulate evolution in ferns, with special emphasis on the genus Ceratopteris by Sylvia P. Kinosian, Doctor of Philosophy Utah State University, 2021 Major Professor: Zachariah Gompert, Ph.D.
    [Show full text]
  • Growth of Fern Gametophytes After 20 Years of Storage in Liquid Nitrogen
    FERN GAZ. 20(8): 337-346. 2018 337 GROWTH OF FERN GAMETOPHYTES AFTER 20 YEARS OF STORAGE IN LIQUID NITROGEN V. C. Pence Center for Conservation and Research of Endangered Wildlife (CREW) Cincinnati Zoo & Botanical Garden, 3400 Vine Street, Cincinnati, OH 45220, USA email: [email protected] Key words: cryopreservation, ex situ conservation, gametophyte; in vitro; long-term storage ABSTRACT In vitro grown gametophytes of six species of ferns, which had been cryopreserved using the encapsulation dehydration procedure, were evaluated for survival after 20 yrs of storage in liquid nitrogen. Tissues were rewarmed and transferred to a recovery medium with the same methods originally used to test pre-storage viability. All six species resumed growth. Post-storage viability was not consistently higher or lower than pre-storage viability of LN exposed tissues, likely reflecting the small sample sizes. However, these results demonstrate that long-term storage in liquid nitrogen is a viable option for preserving gametophytes of at least some fern species and could be utilized as an additional tool for preserving valuable gametophyte collections and for the ex situ conservation of fern biodiversity. INTRODUCTION For many species of ferns, gametophyte tissues have proven to be highly adaptable to growth in vitro (Table 1) . Most of these have been initiated through the aseptic germination of spores, although the aseptic germination of gemmae has also been demonstrated (Raine & Sheffield, 1997). As in vitro cultures, gametophytes can provide tissues for research and for propagation, both for ornamental ferns as well as for ferns of conservation concern. The ex situ conservation of ferns has traditionally relied on living collections and spore banks (Ballesteros, 2011).
    [Show full text]