Bsc Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transfer of Pseudomonas Plantarii and Pseudomonas Glumae to Burkholderia As Burkholderia Spp
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 235-245 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. TEIZI URAKAMI, ’ * CHIEKO ITO-YOSHIDA,’ HISAYA ARAKI,’ TOSHIO KIJIMA,3 KEN-ICHIRO SUZUKI,4 AND MU0KOMAGATA’T Biochemicals Division, Mitsubishi Gas Chemical Co., Shibaura, Minato-ku, Tokyo 105, Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Tayuhama, Niigatu 950-31, ’Plant Pathological Division of Biotechnology, Tochigi Agricultural Experiment Station, Utsunomiya 320, Japan Collection of Microorganisms, The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01,4 and Institute of Molecular Cell and Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113,’ Japan Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus Pseudomonas sensu stricto. Bacteria belonging to Pseudomonas rRNA group I1 are separated clearly from members of the genus Pseudomonas sensu stricto (Pseudomonasfluorescens rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hy- bridization data, and the sequences of 5s and 16s rRNAs. The transfer of Pseudomonas cepacia, Pseudomonas mallei, Pseudomonas pseudomallei, Pseudomonas caryophylli, Pseudomonas gladioli, Pseudomonas pickettii, and Pseudomonas solanacearum to the new genus Burkholderia is supported; we also propose that Pseudomonas plantarii and Pseudomonas glumae should be transferred to the genus Burkholderia. Isolate VA-1316T (T = type strain) was distinguished from Burkholderia species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, Burkholderia vandii sp. -
Chapter 1 Tropone and Tropolone
School of Molecular and Life Sciences New Routes to Troponoid Natural Products Jason Matthew Wells This thesis is presented for the Degree of Doctor of Philosophy of Curtin University November 2018 Declaration To the best of my knowledge and belief this thesis contains no material previously pub- lished by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any other university. Signature: Date: i Abstract Malaria is an infectious disease found in humans and other animals, it is caused by a single-cell parasite of the Plasmodium genus with many different substrains. Of these, P. falciparum is the most deadly to humans causing the majority of deaths. Although research into the area of antimalarial compounds is wide spread, few have been devel- oped with new structural features. Cordytropolone 37 is a natural product isolated in 2001 from the insect pathogenic fungus Cordyceps sp. BCC 1681 and has been shown to have antimalarial activity against P. falciparum. It has a structure unrelated to antimalarial com- pounds currently used in therapy. It does not contain a peroxide bridge as with artemisinin 25 or quinoline rings as with chloroquine 22. This unique structure indicates that it could possibly interact with the malaria parasite in a fashion unlike current treatments. In order for cordytropolone to be further developed as a potential treatment, it must first be synthe- sised in a laboratory environment. This study attempts to develop the first total synthesis of cordytropolone. H HO O N O O N O N H H H O O Cl HO O 22 25 37 Figure 0.0.1: Cordytropolone 37 has a unique structure compared to the current common malaria treatments The first method investigated towards the total synthesis of cordytropolone involved an intramolecular Buchner ring expansion. -
Alkyl Halides Work Best; Secondary Alkyl Halides Give Lower Yields
CHAPTER 21 ESTER ENOLATES ou have already had considerable experience with carbanionic compounds and their applications in synthetic organic chemistry. The first was acetylide ion in YChapter 9, followed in Chapter 14 by organometallic compounds—Grignard reagents, for example—that act as sources of negatively polarized carbon. In Chapter 18 you learned that enolate ions—reactive intermediates generated from aldehydes and ketones—are nucleophilic, and that this property can be used to advantage as a method for carbon–carbon bond formation. The present chapter extends our study of carbanions to the enolate ions derived from esters. Ester enolates are important reagents in synthetic organic chemistry. The stabilized enolates derived from -keto esters are particularly useful. OO C ␣ C  R CH2 ORЈ -Keto ester: a ketone carbonyl is  to the carbonyl group of the ester. A proton attached to the ␣-carbon atom of a -keto ester is relatively acidic. Typical Ϫ11 acid dissociation constants Ka for -keto esters are Ϸ10 (pKa 11). Because the ␣- carbon atom is flanked by two electron-withdrawing carbonyl groups, a carbanion formed at this site is highly stabilized. The electron delocalization in the anion of a -keto ester is represented by the resonance structures 831 832 CHAPTER TWENTY-ONE Ester Enolates Ϫ Ϫ O O O O O O C C C C C C R C ORЈ R ϪC ORЈ R C ORЈ H H H Principal resonance structures of the anion of a -keto ester We’ll begin by describing the preparation and properties of -keto esters, proceed to a discussion of their synthetic applications, continue to an examination of related species, and conclude by exploring some recent developments in the active field of synthetic car- banion chemistry. -
Caomatograpby
rOURNAL DF LIQUID CaOMATOGRAPBY VOLUME 18 NUMBER 7 1995 ~ditor: DR. JACK CAZES ~ssociate Editors: DR. HALEEM J. ISSAQ DR. STEVEN H. WONG Special Section on CAPILlARY ZONE ELECTROPHORESIS AND REIATED TECHNIQUES Edited by HALEEM J. ISSAQ NCI-Frederick Cancer Research & Development Center Frederick, Maryland JOURNAL OF LIQUID CHROMATOGRAPHY April 1995 Aims and Scope. The journal publishes papers involving the applications of liquid chromatography to the solution of problems in all areas of science and technology, both analytical and preparative, as well as papers that deal specifically with liquid chromatography as a science within itself. Included will be thin-layer chromatography and all models of liquid chromatography. IdentiilCation Statement. Journal of Liquid Chromatography (lSSN: 0148-3919) is published semimonthly except monthly in May, August, October, and December for the institutional rate of $1,450.00 and the individual rate of $725.00 by Marcel Dekker, Inc., P.O. Box 5005, Monticello, NY 12701-5185. Second Class postage paid at Monticello, NY. POSTMASTER: Send address changes to Journal ofLiquid Chromatography, P.O. Box 5005, Monticello, NY 12701-5185. Individual Foreign Postage Professionals' Institutional and Student Airmail Airmail Volume Issues Rate Rate Surface to Europe to Asia 18 20 $1,450.00 $725.00 $70.00 $110.00 $130.00 Individual professionals' and student orders must be prepaid by personal check or may be charged to MasterCard, VISA, or American Express. Please mail payment with your order to: Marcel Dekker Journals, P.O. Box 5017, Monticello, New York 12701-5176. CODEN: JLCHD8 18(7) i-iv, 1273-1494 (1995) ISSN: 0148-3919 Printed in the U.S.A. -
Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I by V
Landolt-Börnstein Indexes of Organic Compounds Subvolumes A-I By V. Vill, C. Bauhofer, G. Peters, H. Sajus, P. Weigner, LCI-Publisher and Chemistry Department of the University of Hamburg All printed index material has been used to build up the comprehensive Scidex database index developed by LCI Publisher GmbH, Hamburg For further information please visit www.lci-publisher.com From this database a CD-ROM and two online versions were derived. The first is attached to each of the printed subvolumes and the latter are offered for free use at the following addresses: Scidex Database online with graphical structure search on http://lb.chemie.uni-hamburg.de/ Or the easy to use html version on http://lb.chemie.uni-hamburg.de/static/ Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Index of Organic Compounds Subvolume A Compounds with 1 to 7 Carbon Atoms Editor: V. Vill Authors: V. Vill, G. Peters, H. Sajus 1 3 ISBN 3-540-66203-0 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging in Publication Data Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie Editor in Chief: W. Martienssen Index of Organic Compounds A: Editor: V. Vill At head of title: Landolt-Börnstein. Added t.p.: Numerical data and functional relationships in science and technology. Tables chiefly in English. Intended to supersede the Physikalisch-chemische Tabellen by H. Landolt and R. Börnstein of which the 6th ed. began publication in 1950 under title: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik. -
Journal of Inorganic Biochemistry 187 (2018) 73–84
Journal of Inorganic Biochemistry 187 (2018) 73–84 Contents lists available at ScienceDirect Journal of Inorganic Biochemistry journal homepage: www.elsevier.com/locate/jinorgbio New heterobimetallic ferrocenyl derivatives: Evaluation of their potential as prospective agents against trypanosomatid parasites and Mycobacterium T tuberculosis Feriannys Rivasa, Andrea Medeirosb,c, Esteban Rodríguez Arcea, Marcelo Cominib, ⁎ Camila M. Ribeirod, Fernando R. Pavand, Dinorah Gambinoa, a Área Química Inorgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay b Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay c Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay d Faculdade de Ciências Farmacêuticas, UNESP, Araraquara, Brazil ARTICLE INFO ABSTRACT Keywords: Searching for prospective agents against infectious diseases, four new ferrocenyl derivatives, [M(L)(dppf)4] Ferrocenyl compounds (PF6), with M = Pd(II) or Pt(II), dppf = 1,1′-bis(dipheny1phosphino) ferrocene and HL = tropolone (HTrop) or Tropolone derivatives hinokitiol (HHino), were synthesized and characterized. Complexes and ligands were evaluated against the Trypanosoma brucei bloodstream form of T. brucei, L. infantum amastigotes, M. tuberculosis (MTB) sensitive strain and MTB clinical Mycobacterium tuberculosis isolates. Complexes showed a significant increase of the anti-T. brucei activity with respect to the free ligands Leishmaniasis (> 28- and > 46-fold for Trop and 6- and 22-fold for Hino coordinated to Pt-dppf and Pd-dppf, respectively), yielding IC50 values < 5 μM. The complexes proved to be more potent than the antitrypanosomal drug Nifurtimox. The new ferrocenyl derivatives were more selective towards the parasite than the free ligands. The Pt compounds were less toxic on J774 murine macrophages (mammalian cell model), than the Pd ones, showing selectivity index values (SI = IC50 murine macrophage/IC50 T. -
Synthesis and Bioactivity of Analogues of the Marine Antibiotic Tropodithietic Acid
Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid Patrick Rabe1, Tim A. Klapschinski1, Nelson L. Brock1, Christian A. Citron1, Paul D’Alvise2, Lone Gram2 and Jeroen S. Dickschat*1 Letter Open Access Address: Beilstein J. Org. Chem. 2014, 10, 1796–1801. 1Kekulé-Institut für Organische Chemie, Rheinische doi:10.3762/bjoc.10.188 Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany and 2Department of Systems Biology, Received: 17 April 2014 Technical University of Denmark, Matematiktorvet bldg. 301, 2800 Accepted: 22 July 2014 Kongens Lyngby, Denmark Published: 06 August 2014 Email: This article is part of the Thematic Series "Natural products in synthesis Jeroen S. Dickschat* - [email protected] and biosynthesis". * Corresponding author Associate Editor: K. N. Ganesh Keywords: © 2014 Rabe et al; licensee Beilstein-Institut. antibiotics; natural products; Roseobacter; SAR study; tropodithietic License and terms: see end of document. acid; tropone Abstract Tropodithietic acid (TDA) is a structurally unique sulfur-containing antibiotic from the Roseobacter clade bacterium Phaeobacter inhibens DSM 17395 and a few other related species. We have synthesised several structural analogues of TDA and used them in bioactivity tests against Staphylococcus aureus and Vibrio anguillarum for a structure–activity relationship (SAR) study, revealing that the sulfur-free analogue of TDA, tropone-2-carboxylic acid, has an antibiotic activity that is even stronger than the bioactivity of the natural product. The synthesis of this compound and of several analogues is presented and the bioactivity of the synthetic compounds is discussed. Introduction Tropodithietic acid (TDA, 1a) is an antibiotic produced by the that are located on a plasmid [6,7], and the adjacent paaZ2 gene marine bacterium Phaeobacter inhibens. -
Identification and Analysis of Hepatitis C Virus NS3 Helicase Inhibitors Using Nucleic Acid Binding Assays Sourav Mukherjee1, Alicia M
Published online 27 June 2012 Nucleic Acids Research, 2012, Vol. 40, No. 17 8607–8621 doi:10.1093/nar/gks623 Identification and analysis of hepatitis C virus NS3 helicase inhibitors using nucleic acid binding assays Sourav Mukherjee1, Alicia M. Hanson1, William R. Shadrick1, Jean Ndjomou1, Noreena L. Sweeney1, John J. Hernandez1, Diana Bartczak1, Kelin Li2, Kevin J. Frankowski2, Julie A. Heck3, Leggy A. Arnold1, Frank J. Schoenen2 and David N. Frick1,* 1Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, 2University of Kansas Specialized Chemistry Center, University of Kansas, 2034 Becker Dr., Lawrence, KS 66047 and 3Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA Received March 26, 2012; Revised May 30, 2012; Accepted June 4, 2012 Downloaded from ABSTRACT INTRODUCTION Typical assays used to discover and analyze small All cells and viruses need helicases to read, replicate and molecules that inhibit the hepatitis C virus (HCV) repair their genomes. Cellular organisms encode NS3 helicase yield few hits and are often con- numerous specialized helicases that unwind DNA, RNA http://nar.oxfordjournals.org/ founded by compound interference. Oligonucleotide or displace nucleic acid binding proteins in reactions binding assays are examined here as an alternative. fuelled by ATP hydrolysis. Small molecules that inhibit After comparing fluorescence polarization (FP), helicases would therefore be valuable as molecular homogeneous time-resolved fluorescence (HTRFÕ; probes to understand the biological role of a particular Cisbio) and AlphaScreenÕ (Perkin Elmer) assays, helicase, or as antibiotic or antiviral drugs (1,2). For an FP-based assay was chosen to screen Sigma’s example, several compounds that inhibit a helicase Library of Pharmacologically Active Compounds encoded by herpes simplex virus (HSV) are potent drugs in animal models (3,4). -
CH Functionalization Via Iron-Catalyzed Carbene
molecules Review C-H Functionalization via Iron-Catalyzed Carbene-Transfer Reactions Claire Empel, Sripati Jana and Rene M. Koenigs * Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52074 Aachen, Germany; [email protected] (C.E.); [email protected] (S.J.) * Correspondence: [email protected] Academic Editor: Hans-Joachim Knölker Received: 4 January 2020; Accepted: 5 February 2020; Published: 17 February 2020 Abstract: The direct C-H functionalization reaction is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. Over time, iron complexes have emerged as versatile catalysts for carbine-transfer reactions with diazoalkanes under mild and sustainable reaction conditions. In this review, we discuss the advances that have been made using iron catalysts to perform C-H functionalization reactions with diazoalkanes. We give an overview of early examples employing stoichiometric iron carbene complexes and continue with recent advances in the C-H functionalization of C(sp2)-H and C(sp3)-H bonds, concluding with the latest developments in enzymatic C-H functionalization reactions using iron-heme-containing enzymes. Keywords: iron; carbene; diazoalkane; C-H functionalization 1. Introduction C-H bonds belong to the most common motifs in organic molecules and their direct functionalization is one of the main challenges in synthesis methodology, which impacts on the step economy and sustainability of chemical processes. In recent decades, this research area has flourished and different approaches have been realized to enable C-H functionalization reactions via different strategies: (a) by the directing group-assisted C-H activation, (b) via the innate reactivity of organic molecules, or (c) via direct C-H functionalization (Scheme1)[ 1–4]. -
United States Patent (10) Patent No.: US 8,329,217 B2 Vergezz
US008329217B2 (12) United States Patent (10) Patent No.: US 8,329,217 B2 VergezZ. et all e 45) Date of Patent:e Dec.e 11, 2012 (54) DUAL CONTROLLED RELEASE DOSAGE 5, 190,765 A 3, 1993 Jao et al. FORM 5,208,037 A 5/1993 Wright et al. 5,252.338 A 10, 1993 Jao et al. 5,399,359 A 3, 1995 Baichwal (75) Inventors: Juan A. Vergez, Buenos Aires (AR): 5,543,155 A 8, 1996 Fekete et al. Marcelo A. Ricci, Buenos Aires (AR) 5,674,895 A 10/1997 Guittard et al. 5,788,987 A 8, 1998 Busetti et al. (73) Assignee: Osmotica Kereskedelmi es Szolgaltato 5,840,754. A 1 1/1998 Guittard et al. Kft, Budapest (HU) 5,866,164 A 2/1999 Kuczynski et al. s 5,912,268 A 6/1999 Guittard et al. 6,106,864 A 8, 2000 Dolan et al. (*) Notice: Subject to any disclaimer, the term of this 6,207,191 B1* 3/2001 Crison et al. .................. 424,472 patent is extended or adjusted under 35 2002/0010216 A1 1/2002 Rogosky et al. U.S.C. 154(b) by 1407 days. 2006/0177510 A1 8/2006 Vergez (21) Appl. No.: 11/355,315 FOREIGN PATENT DOCUMENTS y x- - - 9 JP 2646170 8, 1997 JP 2665858 10, 1997 (22) Filed: Feb. 15, 2006 WO 96.12477 5, 1996 WO 97.18814 5, 1997 (65) Prior Publication Data WO OOf 12069 3, 2000 WO OOf 18997 4/2000 US 2006/0204578 A1 Sep. 14, 2006 WO WOO1/51036 * 7/2OO1 Related U.S. -
Dissertation Enantioselective Β
DISSERTATION ENANTIOSELECTIVE β-FUNCTIONALIZATION OF ENALS VIA N-HETEROCYCLIC CARBENE CATALYSIS Submitted by Nicholas Andrew White Department of Chemistry In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Fall 2015 Doctoral Committee: Advisor: Tomislav Rovis Alan J. Kennan Eugene Y.-X. Chen Robert M. Williams Matt J. Kipper Copyright by Nicholas Andrew White 2015 All Rights Reserved ABSTRACT ENANTIOSELECTIVE β-FUNCTIONALIZATION OF ENALS VIA N-HETEROCYCLIC CARBENE CATALYSIS A series of δ-nitroesters were synthesized through the N-heterocyclic carbene catalyzed coupling of enals and nitroalkenes. The asymmetric coupling of these substrates via the homoenolate pathway afford δ-nitroesters in good yield, diastereoselectivity, and enantioselectivity. This methodology allows for the rapid synthesis of δ-lactams. Using this approach, we synthesized the pharmaceutically relevant piperidines paroxetine and femoxetine. A novel single-electron oxidation pathway for the N-heterocyclic carbene generated Breslow intermediate has been developed. Nitroarenes have been shown to transfer an oxygen from the nitro group to the β-position of an enal in an asymmetric fashion to generate β-hydroxy esters. This reaction affords desired β-hydroxy ester products in good yield and enantioselectivity and tolerates a wide range of enal substrates. A dimerization of aromatic enals to form 3,4-disubstituted cyclopentanones has been investigated. Using a single-electron oxidant, aromatic enals couple to form cyclopenanone products in good yield, good enantioselectivity, and excellent diastereoselectivity. A cross coupling has also been developed to afford non-symmetrical cyclopentanone products. ii ACKNOWLEDGEMENTS First, and foremost, I would like to thank my advisor, Professor Tomislav Rovis for his supervision and guidance over the past five years. -
Towards the Synthesis of Isocoronene
Department of Chemistry Towards the Synthesis of Isocoronene Iain William Currie This thesis is presented for the Degree of Doctor of Philosophy of Curtin University April 2018 Declaration To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any other university. Signature: Date: i Abstract The concept of aromaticity and its implications are fundamentally important to a wide range of applied sciences involving organic molecules. Aromaticity arises from the delocalisation of electrons through a cyclic conjugated system known as a conjugated circuit. Monocyclic aromatic compounds possess a single conjugated circuit while polycyclic aromatic hydrocarbons (PAHs) may have numerous potential conjugated circuits. The aromaticity of PAHs is complicated by the presence of multiple conjugated circuits which may have varying contribution to the overall properties depending on several factors such as geometry and topology. Isocoronene 105 is one example of a PAH classified as a non-benzenoid corannulene. Isocoronene is unique among corannulenes since the conjugated circuits are restricted to the peripheral and central rings only. Isocoronene has been used as a model compound for computational studies into aromaticity and may provide the first example of a superaromatic molecule. The synthesis of novel aromatic structures such as isocoronene is essential in providing unambiguous empirical data which can be used to verify and develop computational methods. In addition, the development of new synthetic methodologies towards PAHs is important in the field of organic electronics.