Hemiballismus in Patients with Poorly Controlled Type 2 Diabetes Mellitus

Total Page:16

File Type:pdf, Size:1020Kb

Hemiballismus in Patients with Poorly Controlled Type 2 Diabetes Mellitus CASE IN POINT Hemiballismus in Patients With Poorly Controlled Type 2 Diabetes Mellitus Pressley Chakales, MD; Ariel Park; Austin Amos, MS; Esther Baldinger, MD; Igor Sirotkin, MD; and Alfred Frontera, MD Swift identification of hemiballismus as a complication of poorly controlled type 2 diabetes mellitus may help facilitate optimal care through glycemic control and prevent debilitating loss of patients' function and autonomy, prolonged hospital stays, and overuse of resources. Austin Amos and Ariel emiballismus is an acquired hyperki- numerous case reports have described pa- Park are Medical Students, netic movement disorder character- tients with DM with acute and subacute Pressley Chakales was a ized by unilateral, involuntary, often onset of hemiballistic and hemichorei- Medical Student at the time H the article was written; large-amplitude limb movements. Ballis- form movements while in a hyperglyce- Esther Baldinger and tic movements are now considered to be mic state or after its resolution. Reported Alfred Frontera are on the choreiform spectrum.1 Movements cases have been limited to small numbers Associate Professors of Neurology; and Igor Sirotkin usually involve both the arm and leg, and of patients with only a few larger-scale re- 7,9 is an Assistant Professor of in half of cases, facial movements such as views of more than 20 patients. Most re- 2,3 Neurology; all at the tongue clucking and grimacing are seen. ported cases involve geriatric patients and University of Central Florida College of Medicine in Presentations of hemiballismus vary in more commonly, females of Eastern Asian Orlando. Igor Sirotkin is an severity from intermittent to nearly con- descent with an average age of onset of Assistant Professor of tinuous movements, which, in some cases, 71 years.4,10 Patients typically present with Radiology at the may lead to exhaustion, injury, or disability. glucose levels from 500 to 1,000 mg/dL University of Southern Florida in Tampa. Esther Some patients are unable to ambulate or and hemoglobin A1c (HbA1c) levels almost Baldinger and Alfred feed themselves with the affected limb. double the normal values. Interestingly, Frontera are Neurologists neuroimaging findings in these patients and Igor Sirotkin is a BACKGROUND have consistently shown hyperintense sig- Neuroradiologist, all at Bay Pines VA Healthcare System The 2 most common causes of nal in the contralateral basal ganglia on in Florida. hemichorea-hemiballismus are stroke and T1-weighted magnetic resonance images Correspondence: hyperglycemia, with an incidence of 4% (MRIs). Noncontrast computed tomogra- Pressley Chakales 1,3,4 ([email protected]) and unknown incidence, respectively. phy (CT) shows well-defined unilateral in- Other causes include HIV, traumatic brain creased density in the contralateral basal injury, encephalitis, vasculitis, mass effect, ganglia without mass effect.1,9,11 multiple sclerosis, and adverse drug reac- This report aims to illustrate and enhance tions.4-7 Acute or subacute hemiballismus is the understanding of hemiballismus associ- classically attributed to a lesion in subtha- ated with hyperglycemia. One patient pre- lamic nucleus (STN), but this is true only sented to the US Department of Veterans in a minority of cases. Hemiballismus can Affairs (VA) Bay Pines VA Healthcare System be caused by any abnormality in various (BPVAHCS) in Florida, which motivated us subnuclei of the basal ganglia, including the to search for other similar cases. We reviewed classic location in the STN, striatum, and the charts of 2 other patients who presented globus pallidus.4 Evidence shows the le- to BPVAHCS over the past 10 years. The sions typically involve a functional network first case presented with severe hypergly- connected to the posterolateral putamen.8 cemia and abnormal movements that were Although not commonly recognized, not clearly diagnosed as hemiballismus. MRI hyperglycemia in patients with type 2 findings were characteristic and assisted in diabetes mellitus (T2DM) is the sec- making the diagnosis. The second case was ond most common cause of hemichorea- misdiagnosed as hemiballismus secondary to hemiballismus.3 Over the past 90 years, ischemic stroke. The third case was initially 282 • FEDERAL PRACTITIONER • JUNE 2020 mdedge.com/fedprac FIGURE 1 Noncontrast Axial T1-Weighted Magnetic Resonance Imaging of Case 1 Head A B C Contiguous axial slices demonstrate the varying levels of basal ganglia involvement. Arrows indicate increased signal in the right basal ganglia putamen (A), globus pallidus (B), and caudate (C). diagnosed as conversion disorder until move- Case 2 ments worsened and the correct diagnosis of A white male aged 71 years with a history hyperglycemia-induced hemichorea hemibal- of T2DM, hypertension, and hyperlipid- lismus was confirmed by the pathognomonic emia was admitted due to increased jerky neuroimaging findings. movements in the left upper extremity. On admission, his vital signs were within nor- CASE PRESENTATIONS mal limits and his physical examination dem- Case 1 onstrated choreoathetoid movements with A 65-year-old male with a history of un- ballistic components of his left upper extrem- controlled T2DM presented with repetitive ity. His laboratory results showed a glucose twitching and kicking movements that in- level of 528 mg/dL with a HbA1c of 16.3%. volved his left upper and lower extremities An initial CT obtained in the emergency de- for 3 weeks. The patient reported that he did partment (ED) demonstrated a well-defined not take his medications or follow the rec- hyperdensity in the striatal (caudate and len- ommended diabetes diet. His HbA1c on ad- tiform nucleus) region (Figure 2). There was mission was 12.2% with a serum glucose of no associated edema/mass effect that would 254 mg/dL. The MRI showed a hyperintense be typical for an intracranial hemorrhage. T1 signal within the right basal ganglia in- An MRI obtained 1 week later showed cluding the right caudate with sparing of the hyperintense TI signal corresponding to the internal capsule (Figure 1). There was no as- basal ganglia (Figure 3). In addition, there sociated mass effect or restricted diffusion. It was a questionable lacunar infarct in the was compatible with a diagnosis of hypergly- right internal capsule. Due to lack of aware- cemia-induced hemichorea-hemiballismus. ness regarding hyperglycemic associated The patient was advised to resume taking basal ganglia changes, the patient’s move- glipizide 10 mg daily, metformin 1,000 mg ment disorder was presumed to be ischemic by mouth twice daily, and to begin 10 units in etiology. The patient was prescribed oral of 70/30 insulin aspart 15 minutes before amantadine 100 mg 3 times daily for the meals twice daily, and to follow a low car- hemiballismus in conjunction with treat- bohydrate diet, with reduce dietary intake ment of his T2DM. The only follow-up oc- of sugar. At his 1-month follow-up visit, the curred 5 weeks later, which showed no patient reported an improvement in his in- improvement of uncontrollable movements. voluntary movements. At the 5-month Imaging at that time (not available) indi- follow-up, the patient’s HbA1c level was cated the persistence of the abnormal signal 10.4% and his hyperkinetic movements had in the right basal ganglia. This patient died completely resolved. later that year without further follow-up. mdedge.com/fedprac JUNE 2020 • FEDERAL PRACTITIONER • 283 Hemiballismus in Type 2 Diabetes FIGURE 2 Noncontrast Axial Computed FIGURE 3 Noncontrast Axial T1-Weighted Tomography Image of Case 2 Head Magnetic Resonance Image of Case 2 Head Arrow shows a well-defined region of increased Arrow shows a well-defined region of increased signal in the attenuation in the right basal ganglia (putamen, right basal ganglia. globus pallidus, and caudate head). Case 3 ceding the onset of his symptoms. A 78-year-old white male with a history of On admission a MRI showed a uni- syncope, transient ischemic attacks (TIAs), lateral right-sided T1 hyperintensity and poorly controlled T2DM presented with in the basal ganglia, no acute ischemia a 1-month history of progressively worsen- (Figure 4). In retrospect, subtle increased ing involuntary, left-sided movements that T1 signal can be seen on the earlier MRI began in his left shoulder and advanced to in- (Figure 5). In view of the patient’s left-sided volve his arm, hand, and leg, and the left side symptoms, DM, and MRI findings, a diag- of his face with grimacing and clucking of his nosis of hyperglycemia-induced hemicho- tongue. Three weeks earlier, the patient had rea-hemiballismus was made as the etiology been discharged from the ED with a diag- of the patient’s symptoms. nosis of conversion disorder particularly be- The patient was prescribed numerous cause he experienced decreased movements medications to control his hyperkinesia in- when given a dose of Vitamin D. It was over- cluding (and in combination): benztropine, looked that administration of haloperidol gabapentin, baclofen, diphenhydramine, had occurred a few hours before, and because benzodiazepines, risperidone, olanzapine, the sounds made by his tongue were not felt and valproic acid, which did not control his to be consistent with a known movement movements. Ultimately, his hyperglycemic disorder. A MRI of the brain was read as hemiballismus improved with tight glycemic normal. control and oral tetrabenazine 12.5 mg twice The patient returned 3 weeks later (the daily. This patient underwent a protracted original presentation)
Recommended publications
  • The Rigid Form of Huntington's Disease U
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.24.1.71 on 1 February 1961. Downloaded from J. Neurol. Neurosurg. Psychiat., 1961, 24, 71. THE RIGID FORM OF HUNTINGTON'S DISEASE BY A. M. G. CAMPBELL, BERYL CORNER, R. M. NORMAN, and H. URICH From the Department ofNeurosurgery and Child Health, Bristol Royal Hospital, and the Burden Neuropathological Laboratory, Frenchay Hospital, Bristol Although the majority of cases of hereditary genetic study of Entres (1925) to belong to a typical chorea correspond accurately to the classical pattern Huntington family. More recent contributions are described by Huntington (1872), a number of those of Rotter (1932), Hempel (1938), and atypical forms have been recorded in children and Lindenberg (1960). Bielschowsky (1922) gave a adults which are characterized by rigidity rather detailed account of the pathological findings in a than by hyperkinesia. Most of these have been patient who was choreic at the age of 6 years and reported in the continental literature and we thought from the age of 9 gradually developed Parkinsonian it was of interest to draw attention to two atypical rigidity. Our own juvenile case is remarkable in juvenile cases occurring in an English family. From Reisner's (1944) review of these juvenile U cases the fact emerges that although the majority A present with typical choreiform movements, two Protected by copyright. atypical variants also occur: one in which the clinical picture is that of progressive extrapyramidal BC rigidity without involuntary movements, the other in which the disease starts as a hyperkinetic syn- drome and gradually changes into a hypokinetic one with progressive rigidity.
    [Show full text]
  • Clinical Manifestation of Juvenile and Pediatric HD Patients: a Retrospective Case Series
    brain sciences Article Clinical Manifestation of Juvenile and Pediatric HD Patients: A Retrospective Case Series 1, , 2, 2 1 Jannis Achenbach * y, Charlotte Thiels y, Thomas Lücke and Carsten Saft 1 Department of Neurology, Huntington Centre North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, 44791 Bochum, Germany; [email protected] 2 Department of Neuropaediatrics and Social Paediatrics, University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; [email protected] (C.T.); [email protected] (T.L.) * Correspondence: [email protected] These two authors contribute to this paper equally. y Received: 30 April 2020; Accepted: 1 June 2020; Published: 3 June 2020 Abstract: Background: Studies on the clinical manifestation and course of disease in children suffering from Huntington’s disease (HD) are rare. Case reports of juvenile HD (onset 20 years) describe ≤ heterogeneous motoric and non-motoric symptoms, often accompanied with a delay in diagnosis. We aimed to describe this rare group of patients, especially with regard to socio-medical aspects and individual or common treatment strategies. In addition, we differentiated between juvenile and the recently defined pediatric HD population (onset < 18 years). Methods: Out of 2593 individual HD patients treated within the last 25 years in the Huntington Centre, North Rhine-Westphalia (NRW), 32 subjects were analyzed with an early onset younger than 21 years (1.23%, juvenile) and 18 of them younger than 18 years of age (0.69%, pediatric). Results: Beside a high degree of school problems, irritability or aggressive behavior (62.5% of pediatric and 31.2% of juvenile cases), serious problems concerning the social and family background were reported in 25% of the pediatric cohort.
    [Show full text]
  • Restless Legs Syndrome: Keys to Recognition and Treatment
    REVIEW JAIME F. AVECILLAS, MD JOSEPH A. GOLISH, MD CARMEN GIANNINI, RN, BSN JOSÉ C. YATACO, MD Department of Pulmonary and Critical Department of Pulmonary and Critical Department of Pulmonary and Critical Care Department of Pulmonary and Critical Care Care Medicine, The Cleveland Clinic Care Medicine and Department of Medicine, The Cleveland Clinic Foundation Medicine, The Cleveland Clinic Foundation Foundation Neurology, The Cleveland Clinic Foundation Restless legs syndrome: Keys to recognition and treatment ■ ABSTRACT ESTLESS LEGS SYNDROME (RLS) is not a R new diagnosis: it was first described com- Restless legs syndrome (RLS) is a common and clinically prehensively 60 years ago.1 However, it con- significant motor disorder increasingly recognized by tinues to be underdiagnosed, underreported, physicians and the general public, yet still and undertreated. Effective therapies for this underdiagnosed, underreported, and undertreated. motor disorder are available, but a high index Effective therapies are available, but a high index of of suspicion is necessary to identify the condi- suspicion is required to make the diagnosis and start tion and start treatment in a timely fashion. treatment quickly. We now have enough data to support Evidence from clinical trials supports the the use of dopaminergic agents, benzodiazepines, use of dopaminergic agents, benzodiazepines, antiepileptics, and opioids in these patients. antiepileptics, and opioids in these patients. The clinician must be familiar with the benefits ■ KEY POINTS and risks of these therapies to be able to provide optimal treatment in patients with RLS. RLS is characterized by paresthesias, usually in the lower extremities. Patients often describe them as “achy” or ■ CLINICAL DEFINITION: “crawling” sensations.
    [Show full text]
  • Paroxysmal Hyperkinesia with Diurnal Fluctuations Due to Sepiapterin-Reductase Deficiency Tina Mainka, Jessica Hoffmann, Andrea A
    Published Ahead of Print on June 26, 2020 as 10.1212/WNL.0000000000009901 RESIDENT & FELLOW SECTION Teaching Video NeuroImages: Paroxysmal hyperkinesia with diurnal fluctuations due to sepiapterin-reductase deficiency Tina Mainka, MD, Jessica Hoffmann, Andrea A. Kuhn,¨ MD, Saskia Biskup, MD, and Christos Ganos, MD Correspondence Dr. Ganos Neurology 2020;95:1-e3. doi:10.1212/WNL.0000000000009901 ® [email protected] A 42-year-old man, born of consanguineous parents, presented with long-standing severe, MORE ONLINE nonepileptic jerky movements of the upper body, pronounced during the second half of the day Video and improving after sleep (video, A and B). There was a history of neurodevelopmental disorder with axial hypotonia, delayed milestones, intellectual disability, and poor speech Teaching slides production. The combination of a neurodevelopmental syndrome and a movement disorder links.lww.com/WNL/ with diurnal fluctuations1 led to targeted exome sequencing for monoamine metabolism dis- B131 orders. A homozygous nonsense variant in the SPR gene was identified (figure), confirmed by Sanger sequencing (figure). Treatment with levodopa led to marked improvement of abnormal movements (video, C). Acknowledgment The authors thank the patient for his participation and support. Study funding Academic research support from the VolkswagenStiftung (Freigeist Fellowship; C. Ganos). Disclosure T. Mainka, J. Hoffmann, A.A. K¨uhn,S. Biskup, and C. Ganos report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures. From the Department of Neurology (T.M., A.A.K., C.G.), Charit´e University Medicine Berlin; Berlin Institute of Health (T.M.); and Center for Genomics and Transcriptomics (J.H., S.B.), Tubingen,¨ Germany.
    [Show full text]
  • Hyperpolarization of the Subthalamic Nucleus Alleviates Hyperkinetic
    www.nature.com/scientificreports OPEN Hyperpolarization of the subthalamic nucleus alleviates hyperkinetic movement disorders Chun-Hwei Tai1, Ming-Kai Pan 2, Sheng-Hong Tseng3, Tien-Rei Wang1 & Chung-Chin Kuo1,4 ✉ Modulation of subthalamic nucleus (STN) fring patterns with injections of depolarizing currents into the STN is an important advance for the treatment of hypokinetic movement disorders, especially Parkinson’s disease (PD). Chorea, ballism and dystonia are prototypical examples of hyperkinetic movement disorders. In our previous study, normal rats without nigro-striatal lesion were rendered hypokinetic with hyperpolarizing currents injected into the STN. Therefore, modulation of the fring pattern by injection of a hyperpolarizing current into the STN could be an efective treatment for hyperkinetic movement disorders. We investigated the efect of injecting a hyperpolarizing current into the STNs of two diferent types of hyperkinetic animal models and a patient with an otherwise uncontrollable hyperkinetic disorder. The two animal models included levodopa-induced hyperkinetic movement in parkinsonian rats (L-DOPA-induced dyskinesia model) and hyperkinesia induced by an intrastriatal injection of 3-nitropropionic acid (Huntington disease model), covering neurodegeneration- related as well as neurotoxin-induced derangement in the cortico-subcortical re-entrant loops. Delivering hyperpolarizing currents into the STN readily alleviated the hyperkinetic behaviors in the two animal models and in the clinical case, with an evident increase in subthalamic burst discharges in electrophysiological recordings. Application of a hyperpolarizing current into the STN via a Deep brain stimulation (DBS) electrode could be an efective general therapy for a wide spectrum of hyperkinetic movement disorders. Movement disorders may be divided into two broad categories: hypokinetic and hyperkinetic.
    [Show full text]
  • Hemiballismus: /Etiology and Surgical Treatment by Russell Meyers, Donald B
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.13.2.115 on 1 May 1950. Downloaded from J. Neurol. Neurosurg. Psychiat., 1950, 13, 115. HEMIBALLISMUS: /ETIOLOGY AND SURGICAL TREATMENT BY RUSSELL MEYERS, DONALD B. SWEENEY, and JESS T. SCHWIDDE From the Division of Neurosurgery, State University of Iowa, College ofMedicine, Iowa City, Iowa Hemiballismus is a relatively uncommon hyper- 1949; Whittier). A few instances are on record in kinesia characterized by vigorous, extensive, and which the disorder has run an extended chronic rapidly executed, non-patterned, seemingly pur- course (Touche, 1901 ; Marcus and Sjogren, 1938), poseless movements involving one side of the body. while in one case reported by Lea-Plaza and Uiberall The movements are almost unceasing during the (1945) the abnormal movements are said to have waking state and, as with other hyperkinesias con- ceased spontaneously after seven weeks. Hemi- sidered to be of extrapyramidal origin, they cease ballismus has also been known to cease following during sleep. the supervention of a haemorrhagic ictus. Clinical Aspects Terminology.-There appears to be among writers on this subject no agreement regarding the precise Cases are on record (Whittier, 1947) in which the Protected by copyright. abnormal movements have been confined to a single features of the clinical phenomena to which the limb (" monoballismus ") or to both limbs of both term hemiballismus may properly be applied. sides (" biballismus ") (Martin and Alcock, 1934; Various authors have credited Kussmaul and Fischer von Santha, 1932). In a majority of recorded (1911) with introducing the term hemiballismus to instances, however, the face, neck, and trunk as well signify the flinging or flipping character of the limb as the limbs appear to have been involved.
    [Show full text]
  • Motor Systems Basal Ganglia
    Motor systems 409 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution. What you don’t know is that the cortical areas involved in movement control need “help” from other brain circuits in order to smoothly orchestrate motor behaviors. One of these circuits involves a group of structures deep in the brain called the basal ganglia. While their exact motor function is still debated, the basal ganglia clearly regulate movement. Without information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and related movement disorders become apparent. Let’s start with the anatomy of the basal ganglia. The important “players” are identified in the adjacent figure. The caudate and putamen have similar functions, and we will consider them as one in this discussion. Together the caudate and putamen are called the neostriatum or simply striatum. All input to the basal ganglia circuit comes via the striatum. This input comes mainly from motor cortical areas. Notice that the caudate (L. tail) appears twice in many frontal brain sections. This is because the caudate curves around with the lateral ventricle. The head of the caudate is most anterior. It gives rise to a body whose “tail” extends with the ventricle into the temporal lobe (the “ball” at the end of the tail is the amygdala, whose limbic functions you will learn about later). Medial to the putamen is the globus pallidus (GP).
    [Show full text]
  • EXTRAPYRAMIDAL MOVEMENT DISORDERS (GENERAL) Mov1 (1)
    EXTRAPYRAMIDAL MOVEMENT DISORDERS (GENERAL) Mov1 (1) Extrapyramidal Movement Disorders (GENERAL) Last updated: July 12, 2019 PATHOPHYSIOLOGY ..................................................................................................................................... 1 CLINICAL FEATURES .................................................................................................................................... 2 DIAGNOSIS ................................................................................................................................................... 3 TREATMENT ................................................................................................................................................. 4 MORPHOLOGIC CORRELATIONS ................................................................................................................... 4 TREMOR ......................................................................................................................................................... 5 ESSENTIAL TREMOR ..................................................................................................................................... 6 ORTHOSTATIC TREMOR ................................................................................................................................ 7 PRIMARY WRITER'S TREMOR ........................................................................................................................ 7 PHYSIOLOGIC TREMOR ................................................................................................................................
    [Show full text]
  • Cytosolic Non-Vesicular Dopamine Accumulation As the Predominant Mechanism for Developing Non-DOPA Responsive Parkinsonism in Late-Stage T Huntington Disease
    Medical Hypotheses 132 (2019) 109377 Contents lists available at ScienceDirect Medical Hypotheses journal homepage: www.elsevier.com/locate/mehy Cytosolic non-vesicular dopamine accumulation as the predominant mechanism for developing non-DOPA responsive parkinsonism in late-stage T Huntington disease Rafael Vincent M. Manalo College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines ARTICLE INFO ABSTRACT Keywords: Disturbances in motor movement can have similar clinical presentations, albeit having different pathways and Chorea temporal onset. Hypokinetic movements present with rigidity, resting tremors, postural instability and brady- Dyskinesia kinesia, as seen in parkinsonism, while hyperkinetic movements typically present with chorea, ballismus, tic, Nigrostriatal pathway athetosis and dystonia. Nonetheless, movement disorders are thought to be a continuum. Long-term therapy of GABA parkinsonism with L-DOPA or dopamine (DA) agonists leads to late-onset dyskinesia – a hyperkinetic movement Glutamate excitotoxicity disorder, while patients with late-stage Huntington disease (HD) often develop non-DOPA responsive parkin- Substantia nigra sonism. In this paper, it is proposed that late-onset parkinsonism is driven by the overactivity of the nigrostriatal dopaminergic pathway. The excessive synthesis, storage, release, reuptake and degradation of dopamine in the presynaptic terminal and synaptic clefts lead to cellular stress and damage, resulting to progressive neuroa- poptosis aggravated by pro-parkinsonism drugs used to treat hyperkinesia. Glutamate excitotoxicity may provide initial stress to neurons during early HD – but as the disease advances, lower glutamate levels are observed, making it less likely to cause the hypokinetic shift on its own. Over time, dopaminergic neurons are depleted and cholinergic influence to striatal GABA release is unopposed, leading to late-onset parkinsonism that is un- responsive to DOPA challenge, due to drastic DA neuron loss previously masked by the dominating choreic presentation.
    [Show full text]
  • Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias
    International Journal of Molecular Sciences Review Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias Giacomo Garone 1,2 , Alessandro Capuano 2 , Lorena Travaglini 3,4 , Federica Graziola 2,5 , Fabrizia Stregapede 4,6, Ginevra Zanni 3,4, Federico Vigevano 7, Enrico Bertini 3,4 and Francesco Nicita 3,4,* 1 University Hospital Pediatric Department, IRCCS Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, 00165 Rome, Italy; [email protected] 2 Movement Disorders Clinic, Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (A.C.); [email protected] (F.G.) 3 Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] (L.T.); [email protected] (G.Z.); [email protected] (E.B.) 4 Laboratory of Molecular Medicine, IRCCS Bambino Gesù Children’s Hospital, 00146 Rome, Italy; [email protected] 5 Department of Neuroscience, University of Rome Tor Vergata, 00133 Rome, Italy 6 Department of Sciences, University of Roma Tre, 00146 Rome, Italy 7 Neurology Unit, Department of Neuroscience and Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +0039-06-68592105 Received: 30 April 2020; Accepted: 13 May 2020; Published: 20 May 2020 Abstract: Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs).
    [Show full text]
  • Movement Disorders and Frontotemporal Dementia
    8/17/2017 Movement Disorders and Frontotemporal Dementia Michael K. Cooper Neuropsychiatry Conference September 8, 2017 Samantha Holden, MD Assistant Professor of Neurology Movement Disorders and FTD • FTD can present with various hyperkinetic or hypokinetic movements – Abnormal movements can precede, coincide or follow cognitive impairments • Clinical overlap diagnostic challenges • No clear clinical-pathological correlations Classification of FTLD by Clinical Manifestations Park et al 2013 1 8/17/2017 Movement Disorders and FTD Baizabal-Carvallo et al 2016 MD and FTD: Pathophysiology • Loss of afferent input from frontal cortex to subcortical gray matter – Dorsolateral and dorsomedial frontal cortices project to central band in striatum – Anterior cingulate, orbitofrontal and temporal polar cortices project to medial striatum and nucleus accumbens MD and FTD: Pathophysiology • Basal ganglia volume loss in FTLD – bvFTD: 25% loss – nfPPA: 21% loss – svPPA: 8% loss Looi et al 2008 2 8/17/2017 MD and FTD: Clinical Phenotypes Hypokinetic: Hyperkinetic: • Parkinsonism • Stereotypies • Primary freezing of gait • Chorea • Progressive supranuclear palsy • Dystonia • Corticobasal syndrome • Myoclonus • Multiple system atrophy • Dementia with Lewy bodies MD and FTD: Genetics • Various genetic mutations underlie mixed presentations – No direct genotype-phenotype correlations • FTD and parkinsonism linked to chromosome 17 (FTDP-17) – Term introduced at international consensus conference in 1996 FTDP-17 • By 1996, 13 families described with autosomal
    [Show full text]
  • Evidence of Thalamic Disinhibition in Patients with Hemichorea
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.72.3.329 on 1 March 2002. Downloaded from 329 PAPER Evidence of thalamic disinhibition in patients with hemichorea: semiquantitative analysis using SPECT J-S Kim, K-S Lee, K-H Lee, Y-I Kim, B-S Kim, Y-A Chung, S-K Chung ............................................................................................................................. J Neurol Neurosurg Psychiatry 2002;72:329–333 Objectives: Hemichorea sometimes occurs after lesions that selectively involve the caudate nucleus, putamen, and globus pallidus. Some reports have hypothesised that the loss of subthalamic nucleus control on the internal segment of the globus pallidus, followed by the disinhibition of the thalamus may contribute to chorea. However, the pathophysiology is poorly understood. Therefore, clinicoradiologi- cal localisation was evaluated and a comparison of the haemodynamic status of the basal ganglia and See end of article for thalamus was made. authors’ affiliations Methods: Six patients presenting with acute onset of hemichorea were assessed. Neuroimaging stud- ....................... ies, including MRI and SPECT examinations in addition to detailed biochemical tests, were performed. Correspondence to: A semiquantitative analysis was performed by comparing the ratio of blood flow between patients and Dr K-S Lee, Movement normal controls. In addition, the ratio of perfusion asymmetry was calculated as the ratio between each Clinic, Department of Neurology, Kangnam St area contralateral to the chorea and that homolateral to the chorea. The comparison was made with a Mary’s Hospital, 505 two sample t test. Banpo-Dong, Seocho-Ku, Results: The causes of hemichorea found consisted of four cases of acute stroke, one non-ketotic Seoul, 130–701, South hyperglycaemia, and one systemic lupus erythematosus.
    [Show full text]