Research on Viruses of Fish and Shellfish

Total Page:16

File Type:pdf, Size:1020Kb

Research on Viruses of Fish and Shellfish MINISTRY OF AGRICULTURE, FISHERIES AND FOOD CSG 15 Research and Development Final Project Report (Not to be used for LINK projects) Two hard copies of this form should be returned to: Research Policy and International Division, Final Reports Unit MAFF, Area 6/01 1A Page Street, London SW1P 4PQ An electronic version should be e-mailed to [email protected] Project title Research on viruses of fish and shellfish MAFF project code FC1105 Contractor organisation CEFAS Weymouth Laboratory and location Barrack Road The Nothe Weymouth Dorset DT4 8UB Total MAFF project costs £ Project start date 01/04/96 Project end date 31/03/00 Executive summary (maximum 2 sides A4) Viruses cause many serious diseases in both wild and cultivated fish in the freshwater and marine environments. The diseases are of importance because they are can cause very high mortality in fish populations, can spread rapidly and cannot be controlled by therapeutic measures. In Great Britain they are controlled by movement restrictions and by control of importation of fish and fish products, and to that end several virus diseases have been made notifiable: viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN), infectious salmon anaemia (ISA), spring viraemia of carp (SVC) and infectious pancreatic necrosis (IPN) in salmon. The aims of this project were to support the policy objectives of preventing the introduction and spread of serious fish and shellfish diseases in Great Britain, improving methods of dealing with diseases, and helping to create the conditions in which an efficient GB fish/shellfish industry can develop and in which freshwater fisheries can flourish. This was achieved by characterisation of newly isolated strains/variants of viruses, monitoring and improving methods for detection and identification of the viruses, and monitoring non-notifiable virus diseases exotic to GB to determine the threat they pose to GB fish stocks. Much of the work concerned virus diseases of cyprinids, and one of the problems that was resolved was the relationship between the virus causing the notifiable disease SVC (SVCV) and the non-notifiable pike fry rhabdovirus (PFR). The two viruses are reported to have overlapping host ranges: SVCV affects carp and other species, mainly cyprinids, and according to the scientific literature, PFR affects pike, cyprinids (but not carp under natural conditions) and other fish species. During investigations into cyprinid mortalities, viruses have been isolated at the laboratory that, on the basis of serological tests, were related to both SVCV and PFR but could not be classified as either; they were provisionally termed “intermediate” viruses. Because they were associated with cyprinid mortalities it was important to determine their relationship to SVCV, so as to CSG 15 (Rev. 12/99) 1 Project Research on viruses of fish and shellfish MAFF FC1105 title project code provide advice as to whether they should be controlled. The isolates were compared by immunoassays and neutralisation tests using antisera against SVCV and PFR, and by nucleotide sequence analysis. The isolates could be allocated to one of three related groups by the serological tests, but the precise grouping of certain isolates varied according to which serological test was used. However, nucleotide sequence comparisons showed that they formed four distinct genogroups. The majority of the viruses were isolates of SVCV, which formed Genogroup I. The bulk of the other isolates, from fish such as tench, roach and bream, formed Genogroup IV. Only two isolates were classified as PFR (Genogroup III), and a single isolate from grass carp formed Genogroup II. Many isolates obtained from other laboratories, and originally classified as PFR, were allocated to Genogroup IV. Although the isolates in Genogroups II, III and IV are distinct from SVCV, many have been associated with SVC-like diseases and high mortality, particularly the isolates in Genogroup IV. We are recommending to the scientific community that the name for the disease caused by all these isolates should be spring viraemia of cyprinids, and that spring viraemia of carp is no longer an appropriate name. An immunoassay for detecting SVCV antibodies in cyprinids that had been developed prior to this project has been used to screen several hundred carp sera. Antibodies were found but they could not be correlated with the presence of viruses in antibody-positive fish. This does not mean that the immunoassay is prone to giving false positive results, but taken together with preliminary results from in situ hybridisation studies may mean that virus isolation in cell culture is a less sensitive method, or is targeting the wrong tissues when testing for carrier fish. As virus isolation in cell culture is the currently accepted method for detecting SVCV-positive fish, that work should be continued. Immunoassays for detecting SVCV directly in infected fish tissues were refined and can be used as preliminary diagnostic tests in suspected outbreaks of those diseases. This means that control measures to stop the movement of infected fish can be applied sooner and thus help reduce the spread of the disease. Work has been done to identify the cause of mortalities reported in koi carp, but no viruses were isolated in diagnostic tests. However in the USA, a herpesvirus was isolated from similarly affected koi carp, and that virus was obtained for familiarisation studies. Work with that virus has been impeded because it has only been cultured in one specific cell line derived from koi carp. That cell line was obtained from it’s originators in the USA, and another koi carp cell line was developed at this laboratory; the latter cell line was also found to be susceptible to the herpesvirus. As this was only achieved toward the end of the project, further work will have to be continued in a new project. An agent has been isolated on many occasions during diagnostic testing on carp, and attempts were made to identify it. The agent is very slow growing and does not appear to be produced in large amounts. The agent has not yet been identified, and may not be a virus. It has usually been isolated from carp that have shown a wide and variable range of clinical and histpathological signs and may not be a primary pathogen, but only occur in them when they are stressed or suffering from other diseases. In recent years VHSV has been isolated from an increasing number of fish from the marine environment, including salmonids, but little is known about the properties of the viruses, and to what extent they differ form isolates from freshwater fish; it is known that the marine isolates are generally avirulent or of low virulence for salmonids, but can be virulent for marine fish. Two months prior to the start of this project VHSV was isolated at this laboratory from Atlantic herring from Rye Bay, and work commenced under this proposal to characterise that and other marine VHSV isolates. As VHSV had previously been considered a pathogen of freshwater fish, there had been no measurement of its survival time in the seawater, but that information is crucial when undertaking risk analyses of its spread in the marine environment. Laboratory tests were therefore undertaken to measure the survival time of nine VHSV isolates in seawater at 4, 10, 15 and 20°C. The survival time was inversely proportion to temperature, and ranged from 3 - 35 days at 4°C and from <1 – 7 days at 20°C for the different isolates. The preferred cell lines for the growth of the marine VHSV isolates was investigated, as there was evidence that one cell line used for isolating VHSV from freshwater fish was initially refractory to a VHSV isolate from a marine fish. The relative sensitivity of 12 fish cell lines to 13 VHSV isolates from both the marine and freshwater environments were compared. There were differences in susceptibility of the cell lines, but all four of the lines specified by the EU for screening for VHSV and IHNV (bluegill fry, BF-2, Epithelioma papulosum carpio, EPC, fathead minnow, FHM, and rainbow trout gonad, RTG-2) were susceptible to the isolates. The BF-2 and FHM cells were the most sensitive cell lines to VHSV isolates of any origin, whereas some marine isolates grew poorly in RTG-2 or EPC cells. Experiments were done to determine whether a laboratory test could be devised that might be used to predict whether a VHSV isolate was virulent or not. Preliminary tests showed that measuring the pH optimum for causing fusion in cell cultures after infection with a VHSV isolate may be of value, but work is needed with more isolates to confirm this. CSG 15 (1/00) 2 Project Research on viruses of fish and shellfish MAFF FC1105 title project code In 1997 and 1998 marine fish from around the coast of England and Wales were again screened for the presence of VHSV as part of a wider fish disease survey. VHSV was not isolated, but birnaviruses were isolated from Atlantic herring from Liverpool Bay and from Atlantic cod from Camarthen Bay and Rye Bay, and an aquareovirus was isolated from haddock from Off Amble. The fish from which the viruses were isolated did not exhibit any clinical signs of disease, and the significance of the viruses is not known. A watching brief has kept on the emergence and/or spread of virus diseases that may pose a threat to GB fish stocks. The salmon head kidney (SHK-1) cell line used for isolation of ISA virus and the striped snakehead (SSN-1) cell line used for isolation of nervous necrosis viruses have been obtained and used for familiarisation studies with the viruses and as diagnostic tools. This also enabled sensitivity and specificity testing of primers developed for the reverse transcription-polymerase chain reaction for those viruses under another project to be conducted.
Recommended publications
  • Ichthyophthirius Multifiliis As a Potential Vector of Edwardsiella
    RESEARCH LETTER Ichthyophthirius multifiliis as a potential vector of Edwardsiella ictaluri in channel catfish De-Hai Xu, Craig A. Shoemaker & Phillip H. Klesius U.S. Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA Correspondence: De-Hai Xu, U.S. Abstract Department of Agriculture, Agricultural Research Service, Aquatic Animal Health There is limited information on whether parasites act as vectors to transmit Research Unit, 990 Wire Road, Auburn, bacteria in fish. In this trial, we used Ichthyophthirius multifiliis and fluorescent AL 36832, USA. Tel.: +1 334 887 3741; Edwardsiella ictaluri as a model to study the interaction between parasite, bac- fax: +1 334 887 2983; terium, and fish. The percentage (23–39%) of theronts fluorescing after expo- e-mail: [email protected] sure to E. ictaluri was significantly higher than control theronts (~ 6%) using À flow cytometry. Theronts exposed to E. ictaluri at 4 9 107 CFU mL 1 showed Received 4 January 2012; accepted 30 ~ January 2012. a higher percentage ( 60%) of fluorescent theronts compared to those (42%) 9 3 À1 Final version published online 23 February exposed to 4 10 CFU mL at 4 h. All tomonts (100%) carried the bacte- 2012. rium after exposure to E. ictaluri. Edwardsiella ictaluri survived and replicated during tomont division. Confocal microscopy demonstrated that E. ictaluri was DOI: 10.1111/j.1574-6968.2012.02518.x associated with the tomont surface. Among theronts released from tomonts exposed to E. ictaluri,31–66% were observed with attached E. ictaluri. Sixty À Editor: Jeff Cole percent of fish exposed to theronts treated with 5 9 107 E.
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • FIELD GUIDE to WARMWATER FISH DISEASES in CENTRAL and EASTERN EUROPE, the CAUCASUS and CENTRAL ASIA Cover Photographs: Courtesy of Kálmán Molnár and Csaba Székely
    SEC/C1182 (En) FAO Fisheries and Aquaculture Circular I SSN 2070-6065 FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA Cover photographs: Courtesy of Kálmán Molnár and Csaba Székely. FAO Fisheries and Aquaculture Circular No. 1182 SEC/C1182 (En) FIELD GUIDE TO WARMWATER FISH DISEASES IN CENTRAL AND EASTERN EUROPE, THE CAUCASUS AND CENTRAL ASIA By Kálmán Molnár1, Csaba Székely1 and Mária Láng2 1Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary 2 National Food Chain Safety Office – Veterinary Diagnostic Directorate, Budapest, Hungary FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Ankara, 2019 Required citation: Molnár, K., Székely, C. and Láng, M. 2019. Field guide to the control of warmwater fish diseases in Central and Eastern Europe, the Caucasus and Central Asia. FAO Fisheries and Aquaculture Circular No.1182. Ankara, FAO. 124 pp. Licence: CC BY-NC-SA 3.0 IGO The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Viral Diseases—Spring Viraemia of Carp
    Diseases of finfish Viral diseases—Spring viraemia of carp Signs of disease Important: animals with disease may show one or more of the signs below, but disease may still be present in the absence of any signs. Disease signs at the farm level • mortality of 30%–100% Disease signs at the tank and pond level • separation from shoal Clinical signs of disease in an infected animal • exophthalmus (pop eye) Spring viraemia of carp in European carp. Note • swollen abdomen (dropsy) characteristic haemorrhagic skin, swollen stomach and exophthalmus (‘pop eye’) • petechial (pinpoint) haemorrhages in the fatty Source: HJ Schlotfeldt tissue and muscle surrounding organs and stomach wall • haemorrhages on skin Gross signs of disease in an infected animal • haemorrhages in gills, abdominal tissue, swim bladder and other internal organs • ascites (abdominal cavity filled with fluid) Disease agent Spring viraemia of carp (SVC) virus is a rhabdovirus closely related to infectious haematopoietic necrosis virus and viral haemorrhagic septicaemia virus. Sourced from AGDAFF–NACA (2007) Aquatic Animal Diseases Significant to Asia-Pacific: Identification Field Guide. Australian Government Department of Agriculture, Fisheries and Forestry. Canberra. © Commonwealth of Australia 2007 This work is copyright. It may be reproduced in whole or in part subject to the inclusion of an acknowledgment of the source and no commercial usage or sale. PAGE 1 Spring viraemia of carp continued Host range Fish known to be susceptible to SVC: bighead carp* (Aristichthys nobilis)
    [Show full text]
  • First Evidence of Carp Edema Virus Infection of Koi Cyprinus Carpio in Chiang Mai Province, Thailand
    viruses Case Report First Evidence of Carp Edema Virus Infection of Koi Cyprinus carpio in Chiang Mai Province, Thailand Surachai Pikulkaew 1,2,*, Khathawat Phatwan 3, Wijit Banlunara 4 , Montira Intanon 2,5 and John K. Bernard 6 1 Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand 2 Research Center of Producing and Development of Products and Innovations for Animal Health and Production, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; [email protected] 3 Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand; [email protected] 4 Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; [email protected] 5 Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand 6 Department of Animal and Dairy Science, The University of Georgia, Tifton, GA 31793-5766, USA; [email protected] * Correspondence: [email protected]; Tel.: +66-(53)-948-023; Fax: +66-(53)-274-710 Academic Editor: Kyle A. Garver Received: 14 November 2020; Accepted: 4 December 2020; Published: 6 December 2020 Abstract: The presence of carp edema virus (CEV) was confirmed in imported ornamental koi in Chiang Mai province, Thailand. The koi showed lethargy, loss of swimming activity, were lying at the bottom of the pond, and gasping at the water’s surface. Some clinical signs such as skin hemorrhages and ulcers, swelling of the primary gill lamella, and necrosis of gill tissue, presented. Clinical examination showed co-infection by opportunistic pathogens including Dactylogyrus sp., Gyrodactylus sp.
    [Show full text]
  • QUARTERLY AQUATIC ANIMAL DISEASE REPORT (Asia and Pacific Region)
    2018/3 QUARTERLY AQUATIC ANIMAL DISEASE REPORT (Asia and Pacific Region) July – September 2018 Published by Network of Aquaculture Centres The OIE Regional Representation Food and Agriculture in Asia-Pacific for Asia and The Pacific Organization of the United Nations Suraswadi Building, Department of Fisheries Food Science Building 5F, The University Of Viale delle Terme di Caracalla Kasetsart University Campus, Ladyao, Tokyo, 1-1-1 Yayoi, Bunkyo-Ku Rome 00100 Jatujak, Bangkok 10900, Thailand Tokyo 113-8657, Japan Italy January 2019 Quarterly Aquatic Animal Disease Report (Asia-Pacific Region) – 2018/3 All content of this publication are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the publishing institutions of this report. The designations and denominations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the publishing institutions of this report concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by this report publishers in preference to others of a similar nature that are not mentioned. Network of Aquaculture Centres in Asia-Pacific, World Organisation for Animal Health (OIE) Regional Representation for Asia and the Pacific, and Food and Agriculture Organization of the United Nations.
    [Show full text]
  • Isolation of a Rhabdovirus During Outbreaks of Disease in Cyprinid Fish Species at Fishery Sites in England
    DISEASES OF AQUATIC ORGANISMS Vol. 57: 43–50, 2003 Published December 3 Dis Aquat Org Isolation of a rhabdovirus during outbreaks of disease in cyprinid fish species at fishery sites in England K. Way*, S. J. Bark, C. B. Longshaw, K. L. Denham, P. F. Dixon, S. W. Feist, R. Gardiner, M. J. Gubbins, R. M. Le Deuff, P. D. Martin, D. M. Stone, G. R. Taylor Centre for the Environment, Fisheries and Aquaculture Science (CEFAS), Barrack Road, Weymouth, Dorset DT4 8UB, UK ABSTRACT: A virus was isolated during disease outbreaks in bream Abramis brama, tench Tinca tinca, roach Rutilis rutilis and crucian carp Carassius carassius populations at 6 fishery sites in Eng- land in 1999. Mortalities at the sites were primarily among recently introduced fish and the predom- inant fish species affected was bream. The bream stocked at 5 of the 6 English fishery sites were found to have originated from the River Bann, Northern Ireland. Most fish presented few consistent external signs of disease but some exhibited clinical signs similar to those of spring viraemia of carp (SVC), with extensive skin haemorrhages, ulceration on the flanks and internal signs including ascites and petechial haemorrhages. The most prominent histopathological changes were hepatocel- lular necrosis, interstitial nephritis and splenitis. The virus induced a cytopathic effect in tissue cul- tures (Epithelioma papulosum cyprini [EPC] cells) at 20°C and produced moderate signals in an enzyme immunoassay (EIA) for the detection of SVC virus. The virus showed a close serological rela- tionship to pike fry rhabdovirus in both EIA and serum neutralisation assays and to a rhabdovirus iso- lated during a disease outbreak in a bream population in the River Bann in 1998.
    [Show full text]
  • Fish Vaccines – a Short, But
    FISH VACCINES – A SHORT, BUT REMARKABLE,JOURNEY Professor Patrick Smith Tethys Aquaculture Ltd Veterinary Vaccinology Network Meeting Birmingham ICC th February 16th-17 2015 Aquatic Animal Health Research An exciting new OR A ‘blind alley’ highway Patrick Smith Tethys Aquaculture Ltd Fish Vaccines and Fish Vaccine Research “From Zero to Hero” The Aquaculture Industry • 65 million tonnes • US$ 150 billion • 40% of whole fish consumption • Crossover (50/50) predicted between 2025 and 2030 already exceeded wild catch in Mediterranean • Growth at 10-12% per annum (1% = capture fish; 2.3% = other animal production • Fin-fish (30+ species), shellfish, crustaceans, algae • Becoming a key component of worldwide Food Security Programmes Commercially-Available Fish Vaccines 1982 2014 1 Enteric Redmouth (ERM) vaccine 1 Enteric Redmouth (ERM) vaccine 2 Vibrio anguillarum vaccine 2 Vibrio anguillarum vaccine 3 Furunculosis vaccine TOTAL = 2 4 Vibrio salmonicida vaccine 5 Combined Vibriosis/Furunculosis vaccine 6 Combined Vibriosis/Furunculosis/Coldwater Vibriosis/Moritella viscosa vaccine 7 Combined Vibriosis/Furunculosis/Coldwater Vibriosis/Moritella viscosa/IPNV vaccine 8 IPN Virus vaccine 9 Pasteurella vaccine 10 Combined Pasteurella/Vibriosis vaccine 11 Vibriosis vaccine for cod 12 Shrimp Vibriosis vaccine 13 Warmwater Vibrio spp vaccine 14 SVC virus vaccine 15 Lactococcus garvieae/Streptococcus iniae vaccine 16 KHV vaccine 17 Aeromonas hydrophila vaccine 18 Carp Erythrodermatitis/Ulcer disease vaccine 19 Piscirickettsia salmonis vaccine 20 ISA
    [Show full text]
  • Finfish Diseases
    SECTION 2 - FINFISH DISEASES Basic Anatomy of a Typical Bony Fish 48 SECTION 2 - FINFISH DISEASES F. 1 GENERAL TECHNIQUES 50 F.1.1 Gross Observations 50 F.1.1.1 Behaviour 50 F.1.1.2 Surface Observations 50 F.1.1.2.1 Skin and Fins 50 F.1.1.2.2 Gills 51 F.1.1.2.3 Body 52 F.1.1.3 Internal Observations 52 F.1.1.3.1 Body Cavity and Muscle 52 F.1.1.3.2 Organs 52 F.1.2 Environmental Parameters 53 F.1.3 General Procedures 53 F.1.3.1 Pre-Collection Preparation 53 F.1.3.2 Background Information 54 F.1.3.3 Sample Collection for Health Surveillance 54 F.1.3.4 Sample Collection for Disease Diagnosis 54 F.1.3.5 Live Specimen Collection for Shipping 55 F.1.3.6 Dead or Tissue Specimen Collection for Shipping 55 F.1.3.7 Preservation of Tissue Samples 56 F.1.3.8 Shipping Preserved Samples 56 F.1.4 Record-Keeping 57 F.1.4.1 Gross Observations 57 F.1.4.2 Environmental Observations 57 F.1.4.3 Stocking Records 57 F.1.5 References 57 VIRAL DISEASES OF FINFISH F.2 Epizootic Haematopoietic Necrosis (EHN) 59 F.3 Infectious Haematopoietic Necrosis (IHN) 62 F.4 Oncorhynchus masou Virus (OMV) 65 F.5 Infectious Pancreatic Necrosis (IPN) 68 F.6 Viral Encephalopathy and Retinopathy (VER) 72 F.7 Spring Viraemia of Carp (SVC) 76 F.8 Viral Haemorrhagic Septicaemia (VHS) 79 F.9 Lymphocystis 82 BACTERIAL DISEASE OF FINFISH F.10 Bacterial Kidney Disease (BKD) 86 FUNGUS ASSOCIATED DISEASE FINFISH F.11 Epizootic Ulcerative Syndrome (EUS) 90 ANNEXES F.AI OIE Reference Laboratories for Finfish Diseases 95 F.AII List of Regional Resource Experts for Finfish 98 Diseases in Asia-Pacific F.AIII List of Useful Diagnostic Manuals/Guides to 105 Finfish Diseases in Asia-Pacific 49 F.1 GENERAL TECHNIQUES infectious disease agent and should be sampled immediately.
    [Show full text]
  • Spring Viremia of Carp (SVC) Is a Contagious Viral Disease Mainly Seen in Farmed of Carp Carp and Related Species
    Spring Viremia Importance Spring viremia of carp (SVC) is a contagious viral disease mainly seen in farmed of Carp carp and related species. Outbreaks can cause substantial economic losses. SVC can be highly fatal in young fish, with mortality rates up to 90%. In Europe, where this Infectious Dropsy of Carp, disease has been endemic for at least fifty years, 10-15% of one-year-old carp are lost Infectious Ascites, Hydrops, to SVC each year. The causative virus can be spread by fomites and parasitic invertebrates, and is difficult to eradicate; once it is established in a pond, elimination Red Contagious Disease, of the virus may require the destruction of all aquatic life. Since 2002, several SVC Rubella, Hemorrhagic Septicemia outbreaks have been reported in U.S., with both cultivated and wild species affected. Etiology Spring viremia of carp is caused by the spring viremia of carp virus (SVCV), Last Updated: July 10, 2007 which is also known as Rhabdovirus carpio. This virus is a member of the family Rhabdoviridae and has been tentatively placed in the genus Vesiculovirus. SVCV is closely related to pike fry rhabdovirus, and these two viruses cross-react in some serologic tests. SVCV strains vary in their pathogenicity. Isolates can be divided into four genetic groups. Genogroup Ia viruses originate from Asia. Genogroups Ib and Ic are comprised of isolates from Russia, Moldova and Ukraine. Genogroup Id mainly contains viruses from the U.K., although a few isolates in this group are from the former U.S.S.R. SVCV strains from recent outbreaks in the U.S.
    [Show full text]
  • Fin Fish Farming Significant Diseases & Trends
    Fin Fish Farming Significant Diseases & Trends Leo Foyle MRCVS, Department of Veterinary Pathology, College of Natural Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin Dublin, September 21st, 2005 Overview • Putting aquaculture into context • Diseases of major economic importance • Impact of vaccination on disease profiles • Emerging trends in aquaculture Fisheries / aquaculture • Aquaculture’s potential • “Green” revolution • Emerging trend towards high value carnivores (“piscivores”) • Industrial scale, multinationals • Some sections due for reform Fisheries / aquaculture • Global fisheries production: 130 million tonnes 2001 (double that of 1970) † • Capture fisheries grew 1.2% p.a. • Currently 16% of animal protein consumed by the global population is derived from fish • 1 billion + people depend on fish as their main source of animal protein † FAOSTAT, 2001 Fisheries / aquaculture • c. “47% of main stocks…fully exploited…producing catches that have reached, or very close to their maximum sustainable limits” † • Additional means… † FAO, 2002. The State of world Fisheries and Aquaculture Aquaculture • 4,000 years? • 1960’s – Asia 3.9 • Aquaculture grew 9.1% p.a. (39.8 100 27.3 million tonnes 2002) 80 60 • Higher than other food production 96.1 † 40 72.7 systems Percentage 20 0 • USA – aquaculture exceeds 1970 2000 combined production lamb, Capture fisheries Aquaculture mutton and veal † FAO, 2003 Aquaculture • Majority of aquaculture growth – Chinese (>70% in 2002) • More moderate growth† Period 1970-1980 1980-1990 1990-2000 Growth rate 6.8% 6.7% 5.4% • Ye forecast: if 1996 per capita consumption remains static, population growth alone pushes demand over the available 99 million tonnes to 126 million tonnes2.
    [Show full text]