Schwa User Manual Version 1.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards a Portable and Mobile Scheme Interpreter
Towards a Portable and Mobile Scheme Interpreter Adrien Pi´erard Marc Feeley Universit´eParis 6 Universit´ede Montr´eal [email protected] [email protected] Abstract guage. Because Mobit implements R4RS Scheme [6], we must also The transfer of program data between the nodes of a distributed address the serialization of continuations. Our main contribution is system is a fundamental operation. It usually requires some form the demonstration of how this can be done while preserving the in- of data serialization. For a functional language such as Scheme it is terpreter’s maintainability and with local changes to the original in- clearly desirable to also allow the unrestricted transfer of functions terpreter’s structure, mainly through the use of unhygienic macros. between nodes. With the goal of developing a portable implemen- We start by giving an overview of the pertinent features of the tation of the Termite system we have designed the Mobit Scheme Termite dialect of Scheme. In Section 3 we explain the structure interpreter which supports unrestricted serialization of Scheme ob- of the interpreter on which Mobit is based. Object serialization is jects, including procedures and continuations. Mobit is derived discussed in Section 4. Section 5 compares Mobit’s performance from an existing Scheme in Scheme fast interpreter. We demon- with other interpreters. We conclude with related and future work. strate how macros were valuable in transforming the interpreter while preserving its structure and maintainability. Our performance 2. Termite evaluation shows that the run time speed of Mobit is comparable to Termite is a Scheme adaptation of the Erlang concurrency model. -
Towards a Portable and Mobile Scheme Interpreter
Towards a Portable and Mobile Scheme Interpreter Adrien Pi´erard Marc Feeley Universit´eParis 6 Universit´ede Montr´eal [email protected] [email protected] Abstract guage. Because Mobit implements R4RS Scheme [6], we must also The transfer of program data between the nodes of a distributed address the serialization of continuations. Our main contribution is system is a fundamental operation. It usually requires some form the demonstration of how this can be done while preserving thein- of data serialization. For a functional language such as Scheme it is terpreter’s maintainability and with local changes to the original in- clearly desirable to also allow the unrestricted transfer offunctions terpreter’s structure, mainly through the use of unhygienicmacros. between nodes. With the goal of developing a portable implemen- We start by giving an overview of the pertinent features of the tation of the Termite system we have designed the Mobit Scheme Termite dialect of Scheme. In Section 3 we explain the structure interpreter which supports unrestricted serialization of Scheme ob- of the interpreter on which Mobit is based. Object serialization is jects, including procedures and continuations. Mobit is derived discussed in Section 4. Section 5 compares Mobit’s performance from an existing Scheme in Scheme fast interpreter. We demon- with other interpreters. We conclude with related and futurework. strate how macros were valuable in transforming the interpreter while preserving its structure and maintainability. Our performance 2. Termite evaluation shows that the run time speed of Mobit is comparable to Termite is a Scheme adaptation of the Erlang concurrency model. -
Published with the Approbation of the Board of Trustees
JOHNS HOPKINS UNIVERSITY CIRCULARS Published with the approbation of the Board of Trustees VOL. V.—No. 46.] BALTIMORE, JANUARY, 1886. [PRICE, 10 CENTS. RECENT PUBLICATIONS. Photograph of the Normal Solar Spectrum. Made Reproduction in Phototype of a Syriac Manuscript by PROFESSOR H. A. ROWLAND. (Baltimore, Johns Hopkins University, 1886). (Williams MS.) with the Antilegomena Epistles. Edited by IsAAC H. HALL. (Baltimore, Johns Hopkins University, 1886). [Froma letter to Science, New York, December 18, 1885]. The photographic map of the spectrum, upon which Professor Rowland [Froman article by I. H. Hall in the Journal of the Society of Biblical Literature and has expended so much hard work during the past three years, is nearly Exegesis for 1885, with additions]. ready for publication. The map is issued in a series of seven plates, cover- In September last (1884) I announced in The Independent the discovery ing the region from wave-length 3100 to 5790. Each plate is three feet of a manuscript of the Acts and Epistles, among which occur also the long and one foot wide, and contains two strips of the spectrum, except Epistles that were antilegomena among the Syrians; namely the Second plate No. 2, which contains three. Most of the plates are on a scalethree Epistle of Peter, the Second and Third Epistles of John, and the Epistle of times that of Angstrdm’s map, and in definition are more than equal to any Jude, in the version usually printed with our Peshitto New Testaments. It map yet published, at least to wave-length 5325. The 1474 line is widely is well known that the printed copies of these Epistles in that version all double, as also are b rest upon one manuscriptonly, in the Bodleian Library at Oxford, England, 3 and b4, while E may be recognized as double by the from which they were first published by Edward Pococke (Leyden, Elzevirs) expert. -
Central Islip Union Free School District and Central Islip Teachers Association (2005)
NYS PERB Contract Collection – Metadata Header This contract is provided by the Martin P. Catherwood Library, ILR School, Cornell University. The information provided is for noncommercial educational use only. Some variations from the original paper document may have occurred during the digitization process, and some appendices or tables may be absent. Subsequent changes, revisions, and corrections may apply to this document. For more information about the PERB Contract Collection, see http://digitalcommons.ilr.cornell.edu/perbcontracts/ Or contact us: Catherwood Library, Ives Hall, Cornell University, Ithaca, NY 14853 607-254-5370 [email protected] Contract Database Metadata Elements Title: Central Islip Union Free School District and Central Islip Teachers Association (2005) Employer Name: Central Islip Union Free School District Union: Central Islip Teachers Association Effective Date: 07/01/05 Expiration Date: 06/30/15 PERB ID Number: 4733 Unit Size: Number of Pages: 142 For additional research information and assistance, please visit the Research page of the Catherwood website - http://www.ilr.cornell.edu/library/research/ For additional information on the ILR School - http://www.ilr.cornell.edu/ CENTRAL,ISLIP ···TEACHERS·Xs§'6e!ATION TABLE OF CONTENTS ARTICLE Preamble 1 I Recognition 2 II Negotiation Procedure '" . 4 III Teacher Association & Board Rights 6 IV Grievance Procedure '" '" 10 V Teacher-Administration Liaison 15 VI Salaries , 16 VII Teaching Hours and Teaching Load................... ...18 VIII Class Size , 22 IX Specialists -
Implementing Concurrency Abstractions for Programming Multi-Core Embedded Systems in Scheme
Faculty of Engineering Implementing Concurrency Abstractions for Programming Multi-Core Embedded Systems in Scheme Graduation thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering: Applied Computer Science Ruben Vandamme Promotor: Prof. Dr. Wolfgang De Meuter Advisors: Dr. Coen De Roover Christophe Scholliers 2010 Faculteit Ingenieurswetenschappen Implementing Concurrency Abstractions for Programming Multi-Core Embedded Systems in Scheme Eindwerk ingediend voor het behalen van de graad van Master in de Ingenieurswetenschappen: Toegepaste Computerwetenschappen Ruben Vandamme Promotor: Prof. Dr. Wolfgang De Meuter Begeleiders: Dr. Coen De Roover Christophe Scholliers 2010 Acknowledgements This thesis would not have been possible without the support of various people. First, I would like to thank Professor Wolfgang De Meuter for promoting this thesis. In particular I would like to thank my advisors Christophe and Coen for their extensive and essential support throughout the year. Without their effort, this thesis would not have been what it is today. I thank my parents for making all this possible and for supporting me during my education at the Vrije Universiteit Brussel and during previous educations. And I cannot forget to thank Jennifer for her indispensable support during this undertaking. 1 Abstract This dissertation presents a study of the limitations and problems related to the prevalent way embedded systems handle signals from the outside world. Such signals are frequently handled using either polling or interrupts. Polling software will continually check whether a signal needs handling. In interrupt- driven embedded systems, on the other hand, the CPU will generate an asynchronous signal when an event from the outside arrives. -
This Is the Author's Version of a Work Accepted for Publication by Elsevier
NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. A definitive version was subsequently published in the Journal of Systems and Software, Volume 86, Issue 2, pp. 278-301, February 2013. Efficient Support of Dynamic Inheritance for Class- and Prototype-based Languages Jose Manuel Redondo, Francisco Ortin University of Oviedo, Computer Science Department, Calvo Sotelo s/n, 33007, Oviedo, Spain Abstract Dynamically typed languages are becoming increasingly popular for different software devel- opment scenarios where runtime adaptability is important. Therefore, existing class-based plat- forms such as Java and .NET have been gradually incorporating dynamic features to support the execution of these languages. The implementations of dynamic languages on these platforms com- monly generate an extra layer of software over the virtual machine, which reproduces the reflective prototype-based object model provided by most dynamic languages. Simulating this model fre- quently involves a runtime performance penalty, and makes the interoperation between class- and prototype-based languages difficult. Instead of simulating the reflective model of dynamic languages, our approach has been to extend the object-model of an efficient class-based virtual machine with prototype-based seman- tics, so that it can directly support both kinds of languages. Consequently, we obtain the runtime performance improvement of using the virtual machine JIT compiler, while a direct interoperation between languages compiled to our platform is also possible. In this paper, we formalize dynamic inheritance for both class- and prototype-based languages, and implement it as an extension of an efficient virtual machine that performs JIT compilation. -
Keyword and Optional Arguments in PLT Scheme
Keyword and Optional Arguments in PLT Scheme Matthew Flatt Eli Barzilay University of Utah and PLT Northeastern University and PLT mfl[email protected] [email protected] Abstract (define rectangle The lambda and procedure-application forms in PLT Scheme sup- (lambda (width height #:color color) port arguments that are tagged with keywords, instead of identified ....)) by position, as well as optional arguments with default values. Un- or like previous keyword-argument systems for Scheme, a keyword is not self-quoting as an expression, and keyword arguments use (define (rectangle width height #:color color) ....) a different calling convention than non-keyword arguments. Con- sequently, a keyword serves more reliably (e.g., in terms of error This rectangle procedure could be called as reporting) as a lightweight syntactic delimiter on procedure argu- (rectangle 10 20 #:color "blue") ments. Our design requires no changes to the PLT Scheme core compiler, because lambda and application forms that support key- A keyword argument can be in any position relative to other argu- words are implemented by macros over conventional core forms ments, so the following two calls are equivalent to the preceding that lack keyword support. one: (rectangle #:color "blue" 10 20) 1. Using Keyword and Optional Arguments (rectangle 10 #:color "blue" 20) The #:color formal argument could have been in any position A rich programming language offers many ways to abstract and among the arguments in the definition of rectangle, as well. In parameterize code. In Scheme, first-class procedures are the pri- general, keyword arguments are designed to look the same in both mary means of abstraction, and procedures are unquestionably the the declaration and application of a procedure. -
4 European Lisp Symposium
Proceedings of ELS 2011 4th European Lisp Symposium Special Focus on Parallelism and Efficiency March 31 – April 1 2011 TUHH, Hamburg, Germany Preface Message from the Programme Chair Welcome to ELS 2011, the 4th European Lisp Symposium. In the recent years, all major academic events have suffered from a decreasing level of atten- dance and contribution, Lisp being no exception to the rule. Organizing ELS 2011 in this context was hence a challenge of its own, and I’m particularly happy that we have succeeded again. For the first time this year, we had a “special focus” on parallelism and efficiency, all very im- portant matters for our community with the advent of multi-core programming. It appears that this calling has been largely heard, as half of the submissions were along these lines. Another notable aspect of this year’s occurrence is the fact that four dialects of Lisp are represented: Common Lisp, Scheme, Racket and Clojure. This indicates that ELS is successful in attempting to gather all crowds around Lisp “the idea” rather than around Lisp “one particular language”. The European Lisp Symposium is also more European than ever, and in fact, more international than ever, with people coming not only from western Europe and the U.S.A., but also from such countries as Croatia and Bulgaria. While attending the symposium is just seeing the tip of the iceberg, a lot have happened under- water. First of all, ELS 2011 would not have been possible without the submissions we got from the authors and the careful reviews provided by the programme committee members; I wish to thank them for that. -
Benchmarking Implementations of Functional Languages With
Benchmarking Implementations of Functional Languages with Pseudoknot a FloatIntensive Benchmark Pieter H Hartel Marc Feeley Martin Alt Lennart Augustsson Peter Baumann Marcel Beemster Emmanuel Chailloux Christine H Flo o d Wolfgang Grieskamp John H G van Groningen Kevin Hammond Bogumil Hausman Melo dy Y Ivory Richard E Jones Jasp er Kamp erman Peter Lee Xavier Leroy Rafael D Lins Sandra Lo osemore Niklas Rojemo Manuel Serrano JeanPierre Talpin Jon Thackray Stephen Thomas Pum Walters Pierre Weis Peter Wentworth Abstract Over implementation s of dierent functional languages are b enchmarked using the same program a oating p ointintensive application taken from molecular biology The principal asp ects studied are compile time and Dept of Computer Systems Univ of Amsterdam Kruislaan SJ Amsterdam The Netherlands email pieterfwiuvanl Depart dinformatique et ro Univ de Montreal succursale centreville Montreal HC J Canada email feeleyiroumontrealca Informatik Universitat des Saarlandes Saarbruc ken Germany email altcsunisbde Dept of Computer Systems Chalmers Univ of Technology Goteb org Sweden email augustsscschalmersse Dept of Computer Science Univ of Zurich Winterthurerstr Zurich Switzerland email baumanniunizh ch Dept of Computer Systems Univ of Amsterdam Kruislaan SJ Amsterdam The Netherlands email b eemsterfwiuvanl LIENS URA du CNRS Ecole Normale Superieure rue dUlm PARIS Cedex France email EmmanuelChaillou xensfr Lab oratory for Computer Science MIT Technology Square Cambridge Massachusetts -
Bugloo: a Source Level Debugger for Scheme Programs Compiled Into JVM Bytecode
Bugloo: A Source Level Debugger for Scheme Programs Compiled into JVM Bytecode Damien Ciabrini Manuel Serrano INRIA Sophia Antipolis INRIA Sophia Antipolis 2004 route des Lucioles - BP 93 2004 route des Lucioles - BP 93 F-06902 Sophia Antipolis, Cedex F-06902 Sophia Antipolis, Cedex [email protected] [email protected] ABSTRACT strated by a static debugger. Our work focuses on the dy- namic debugging approach and on the Scheme [20] program- This paper presents Bugloo, a source level debugger for ming language. Scheme programs. It enables debugging of programs com- piled into JVM bytecode by the Bigloo compiler. It aims 1.1 Motivation of Our Work at being easy to use because it provides a user interface. It In practice, programmers hardly use debuggers. Obviously, aims at being practical to use because it is easy to deploy they prefer ad hoc debugging techniques such as inserting and because it is efficient enough to debug large programs prints in the source code. We think that the reason of such as the Bigloo compiler itself. this disinterest is twofold: (i) many debuggers are not ef- ficient enough to debug large programs, (ii), features of- The JVM platform provides two standard APIs for imple- fered by many debuggers are unsufficient for the type of bug menting debuggers and profilers: JVMDI and JVMPI. One programmers have to correct. In consequence, they often of the motivations for providing the Bigloo compiler with a conclude that “prints are simpler and quicker”. In other JVM back-end was to benefit from these two APIs to imple- words, the overall benefits of debuggers might not be worth ment a debugger for Scheme. -
Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference
USENIX Association Proceedings of the FREENIX Track: 2002 USENIX Annual Technical Conference Monterey, California, USA June 10-15, 2002 THE ADVANCED COMPUTING SYSTEMS ASSOCIATION © 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association: Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: [email protected] WWW: http://www.usenix.org Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein. Biglook: a Widget Library for the Scheme Programming Language Erick Gallesio Manuel Serrano Universite´ de Nice – Sophia Antipolis Inria Sophia Antipolis 950 route des Colles, B.P. 145 2004 route des Lucioles – B.P. 93 F-06903 Sophia Antipolis, Cedex F-06902 Sophia-Antipolis, Cedex EÖickºGaÐÐe×iÓ@ÙÒiceºfÖ ÅaÒÙeкËeÖÖaÒÓ@iÒÖiaºfÖ Abstract Biglook is an Object Oriented Scheme library for constructing GUIs. It uses classes of a CLOS- like object layer to represent widgets and Scheme closures to handle events. Combining functional and object-oriented programming styles yields an original application programming interface that advocates a strict separation between the implementation of the graphical interfaces and the user-associated commands, enabling compact source code. The Biglook implementation separates the Scheme programming interface and the na- Figure 1: Two Biglook applications: a code tive back-end. This permits different ports browser on the left, “dock” applications on the for Biglook. The current version uses GTK· right and Swing graphical toolkits, while the pre- vious release used Tk. -
Section E.2.3 Hesiod Name Service by Stephen P
PROJECT ATHENA TECHNICAL PLAN Section E.2.3 Hesiod Name Service by Stephen P. Dyer and Felix S. Hsu Hesiod: 8th century B.C. Greek farmer and poet. His Theogony was the first work that systematically recorded the names of the gods and the myths surrounding them. Status This document describes the technical plan for Hesiod, the Athena Name Service. As of this writing, the initial implementation of the Hesiod name resolution library has been integrated into several production network applications (remote disk, remote file, printer service, login service, and post office service) in anticipation of campus-wide deployment in Fall, 1987. 1. Purpose Hesiod, the Athena name server, provides access to services in a distributed environment, allowing centralized administration of information via the Athena Service Management System (SMS) or other sources of authoritative information. More specifically, it replaces databases which heretofore have had to be duplicated on each workstation and timesharing machine (rvdtab, clustertab, printcap, services) and is a flexible mechanism to provide new information to services as the need arises. It also allows subsidiary organizational entities under Athena to manage their own information. The Athena Name Server is NOT the Athena SMS, although it may obtain much of its information from the SMS. In brief, it provides a content-addressible memory where certain strings can be mapped to others depending on the type of query made. The name server has no knowledge about the data it stores, meaning that queries and responses are simple key/content interactions; ad-hoc, generalized queries are not supported. 2.Scope The Hesiod name service is logically distinct from the Internet name service which provides host name and internet address lookup, as well as other information related to mail handling.