Being in the Right Place at the Right Time?

Total Page:16

File Type:pdf, Size:1020Kb

Being in the Right Place at the Right Time? See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331592845 Being in the right place at the right time? Parallel diversification bursts favored by the persistence of ancient epizoochorous traits and hidden factors in Cynoglossoideae Article in American Journal of Botany · March 2019 DOI: 10.1002/ajb2.1251 CITATIONS READS 5 566 4 authors: Ana Otero Pedro Jiménez-Mejías Spanish National Research Council Universidad Autónoma de Madrid 13 PUBLICATIONS 38 CITATIONS 142 PUBLICATIONS 1,496 CITATIONS SEE PROFILE SEE PROFILE Virginia Valcárcel Pablo Vargas Universidad Autónoma de Madrid Spanish National Research Council 62 PUBLICATIONS 711 CITATIONS 539 PUBLICATIONS 7,084 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Evolutionary history of Antirrhinum genus View project Completion of the Euro+Med Plantbase View project All content following this page was uploaded by Pedro Jiménez-Mejías on 13 March 2019. The user has requested enhancement of the downloaded file. RESEARCH ARTICLE Being in the right place at the right time? Parallel diversification bursts favored by the persistence of ancient epizoochorous traits and hidden factors in Cynoglossoideae Ana Otero1,2,4,5 , Pedro Jiménez-Mejías3,4, Virginia Valcárcel3,4, and Pablo Vargas1 Manuscript received 8 October 2018; revision accepted 14 January PREMISE OF THE STUDY: Long- distance dispersal (LDD) syndromes, especially endozoochory, 2019. facilitate plant colonization of new territories that trigger diversification. However, few 1 Departamento de Biodiversidad, Real Jardín Botánico, CSIC. Pza. de studies have analyzed how epizoochorous fruits influence both range distribution and Murillo, 2, 28014 Madrid, Spain diversification rates. We examined the evolutionary history of a hyperdiverse clade of 2 Escuela Internacional de Doctorado, Universidad Rey Juan Boraginaceae (subfamily Cynoglossoideae, eight tribes, ~60 genera, ~1100 species) and Carlos, C/Tulipán s/n, 28933 Móstoles, Spain the evolution of fruit traits. We evaluated the evolutionary history of diaspore syndromes 3 Centro de Investigación en Biodiversidad y Cambio Global (CIBC- UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain correlated with geographic distribution and diversification rates over time. 4 Departamento de Biología (Botánica), Facultad de Ciencias METHODS: Plastid DNA regions and morphological traits associated with dispersal Biológicas, Universidad Autónoma de Madrid, C/ Darwin, 2, 28049 syndromes were analyzed for 71 genera (226 species). We employed trait- dependent Madrid, Spain diversification analysis (HiSSE) and biogeographic reconstruction (Lagrange) using a 5 Authors for correspondence (e-mail: [email protected], [email protected]) time- calibrated phylogeny. Citation: Otero, A., P. Jiménez-Mejías, V. Valcárcel, and P. Vargas. KEY RESULTS: Our results indicate that (1) the earliest divergence events in Cynoglossoideae 2019. Being in the right place at the right time? Parallel diversification occurred in the central- northeastern Palearctic during the Paleogene (early to middle bursts favored by the persistence of ancient epizoochorous traits Eocene); (2) an epizoochorous trait (specialized hooks named glochids) is ancestral and has and hidden factors in Cynoglossoideae. American Journal of Botany 106(3): 1–15. been maintained long term; and (3) glochids are correlated with increased diversification doi:10.1002/ajb2.1251 rates in two distantly related clades (Rochelieae and Cynoglossinae). Rapid speciation occurred for these two groups in the same area (central- eastern Palearctic) and same period (Oligocene- Miocene: Rochelieae, 30.82–13.69 mya; Cynoglossinae, 33.10–15.21 mya). Lower diversification rates were inferred for the remaining four glochid- bearing clades. CONCLUSIONS: One more example of “biogeographic congruence” in angiosperms is supported by a shared geographic (central- northeastern Palearctic) and temporal (28.60–21.59 mya, late Oligocene) opportunity window for two main clades’ diversification. Epizoochorous traits (fruit glochids) had an effect in higher diversification rates only with the joint effect of other unmeasured factors. KEY WORDS biogeography; Boraginaceae; diversification rates; HiSSE; hyperdiverse; phylogeny; trait-dependent reconstruction; historical contingency. Fleshy fruit innovations appearing in late Cretaceous angiosperms increases the chances of establishing new populations and con- have long been associated with the diversification of vertebrates sequently promoting speciation (see Beaulieu and Donoghue, that acted as seed dispersers (Regal, 1977). Indeed, mammal and 2013). Likewise, the acquisition of a trait related to biotic disper- bird diversification during the Cenozoic would have favored the sal is a key innovation that may have boosted diversification rates evolution of fruits specialized for both internal (endozoochory) in many taxonomic groups (e.g., endozoochory in Myrtaceae and external (epizoochory) dispersal by vertebrates (Burger, [Biffin et al., 2010] and endozoochory and epizoochory in Fagales 1981; Tiffney, 1986, 2004). Biotic dispersal also favors geographic [Larson- Johnson, 2016]). However, while the acquisition or loss range expansion through the colonization of new areas, which of a single trait may promote diversification, the cumulative action American Journal of Botany 106(3): 1–15, 2019; http://www.wileyonlinelibrary.com/journal/AJB © 2019 Botanical Society of America • 1 2 • American Journal of Botany of various factors must be invoked in the spatiotemporal context 2014). Interestingly, even though Cynoglossoideae is the most of each particular lineage (e.g., see “synnovation” in Donoghue diversified subfamily, a notable unevenness of species diversity and Sanderson, 2015). exists among the lineages. There are many rare, endemic genera Long- distance dispersal (LDD) has many biogeographic im- (e.g., Gyrocaryum, Myosotidium, Suchtelenia, Antiotrema) that plications; it explains the movement of diaspores over dispersal contrast with highly diversified and widely distributed lineages barriers to distant territories, between continent and islands, (e.g., Lappula, Cynoglossum, Myosotis, Mertensia) (Chacón et al., and within large continents. Previous studies indicated that LDD 2016). through epizoochory is relatively rare (<5% of all angiosperm Integrative analyses of historical biogeography and diversi- species studied in 10 regional floras [Sorensen, 1986]; 5.2% for the fication rates are needed to properly evaluate whether diaspore entire flora of Europe [Heleno and Vargas, 2015]), and that epizo- specializations related to LDD have been driving factors in mac- ochorous traits are less effective than endozoochorous traits, es- roevolutionary patterns of speciation, extinction, and dispersal pecially with avian vectors (Costa et al., 2014; Heleno and Vargas, (Beaulieu and Donoghue, 2013; Larson- Johnson, 2016). The high 2015). Despite low occurrence in angiosperms, epizoochorous number of widespread clades and lineages of Cynoglossoideae that traits have been invoked to explain species connections via in- occur in more than three continents (five lineages:Trichodesma , tercontinental (Vargas et al., 1999) and continent-island dispersal Myosotis, Lappula, Mertensia, and Hackelia; two clades: subtribe (Heleno and Vargas, 2015). Indeed, Sorensen (1986) proposed Cynoglossinae and tribe Omphalodeae) and the predominance of that epizoochory is able to successfully disperse diaspores over fruit specializations related to LDD syndromes (Otero et al., 2014) larger geographic scales than all other LDD syndromes (i.e., fruit offer a unique opportunity to assess the role of diaspore traits in specializations related to LDD: anemochory, thalassochory, en- historical biogeography and diversification. dozoochory). However, no studies have addressed whether high Considering the worldwide distribution of Cynoglossoideae, diversification rates exhibited by widespread plant groups were its diaspore diversity (unique in the family), and the uneven initially promoted by the acquisition of certain diaspore traits. To diversification within clades, we hypothesize that LDD fruit better elucidate this relationship, new trait- dependent diversifi- specialization resulted in geographic range expansion and an in- cation analyses have been developed. Recently, Larson-Johnson creased rate of diversification. To test this hypothesis, we recon- (2016) has suggested that biotically dispersed lineages of Fagales structed the biogeographic history and morphological evolution display higher diversification rates than abiotically dispersed of fruits across a time- calibrated phylogeny of Cynoglossoideae. ones. Nevertheless, such investigations are still needed for other Specifically, we (1) characterized diaspore functional traits asso- hyperdiverse angiosperm groups. ciated with LDD syndromes using SEM, light microscopy, and The origin of Boraginaceae (105 genera, ~1600 species) has literature sources; (2) reconstructed the evolution of diaspore been dated to the late Cretaceous in Eurasia (Luebert et al., 2017). (typically fruits) syndromes across the phylogeny; and (3) eval- This family is characterized by schizocarpic fruits that split into uated whether diaspore traits related to LDD (epizoochorous) four one- seeded units (although some exceptional species have favored large geographic distributions and high diversification
Recommended publications
  • The Necessity for Testing Germination of Fresh Seeds in Studies on Diaspore Heteromorphism As a Life-History Strategy
    Seed Science Research (2013) 23, 83–88 doi:10.1017/S096025851300010X q Cambridge University Press 2013 RESEARCH OPINION The necessity for testing germination of fresh seeds in studies on diaspore heteromorphism as a life-history strategy Jerry M. Baskin1,2, Juan J. Lu1, Carol C. Baskin1,2,3* and Dun Y. Tan1 1Xinjiang Key Laboratory of Grassland Resources and Ecology and Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Uru¨mqi 830052, China; 2Department of Biology, University of Kentucky, Lexington, KY 40506, USA; 3Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA (Received 15 September 2012; accepted after revision 8 March 2013) Abstract Introduction and background Many studies have compared diaspore dispersal Diaspore heteromorphism is the production of two or ability and degree of dormancy in the two diaspores more seeds and/or fruits (sometimes with accessory of dimorphic plant species. A primary goal of these parts) on an individual plant that differ in many ways, studies was to determine if germination and dispersal such as morphology, mass, dispersal ability and characteristics of the two morphs fit within a high risk– degree of dormancy (Manda´k, 1997; Imbert, 2002). low risk (bet-hedging) life-history strategy, i.e. high There are two main categories of diaspore-hetero- dispersal/low dormancy in one morph versus low morphic plants: heterodiasporous and amphicarpous. dispersal/high dormancy in the other one. In a survey In heterodiaspory, two or more diaspore morphs are of 26 papers on 28 diaspore dimorphic species, we produced above ground, while in amphicarpy one or found that in 12 of the studies, which were published more diaspore morph(s) is (are) produced above between 1978 and 2008, seeds were stored, and thus ground and one or more below ground (Manda´k, 1997; possibly afterripened, before they were tested for Barker, 2005).
    [Show full text]
  • Plant Species of Special Concern and Vascular Plant Flora of the National
    Plant Species of Special Concern and Vascular Plant Flora of the National Elk Refuge Prepared for the US Fish and Wildlife Service National Elk Refuge By Walter Fertig Wyoming Natural Diversity Database The Nature Conservancy 1604 Grand Avenue Laramie, WY 82070 February 28, 1998 Acknowledgements I would like to thank the following individuals for their assistance with this project: Jim Ozenberger, ecologist with the Jackson Ranger District of Bridger-Teton National Forest, for guiding me in his canoe on Flat Creek and for providing aerial photographs and lodging; Jennifer Whipple, Yellowstone National Park botanist, for field assistance and help with field identification of rare Carex species; Dr. David Cooper of Colorado State University, for sharing field information from his 1994 studies; Dr. Ron Hartman and Ernie Nelson of the Rocky Mountain Herbarium, for providing access to unmounted collections by Michele Potkin and others from the National Elk Refuge; Dr. Anton Reznicek of the University of Michigan, for confirming the identification of several problematic Carex specimens; Dr. Robert Dorn for confirming the identification of several vegetative Salix specimens; and lastly Bruce Smith and the staff of the National Elk Refuge for providing funding and logistical support and for allowing me free rein to roam the refuge for plants. 2 Table of Contents Page Introduction . 6 Study Area . 6 Methods . 8 Results . 10 Vascular Plant Flora of the National Elk Refuge . 10 Plant Species of Special Concern . 10 Species Summaries . 23 Aster borealis . 24 Astragalus terminalis . 26 Carex buxbaumii . 28 Carex parryana var. parryana . 30 Carex sartwellii . 32 Carex scirpoidea var. scirpiformis .
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Linking Fruit Traits to Variation in Predispersal Vertebrate Seed Predation, Insect Seed Predation, and Pathogen Attack
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU Ecology, 92(11), 2011, pp. 2131–2140 Ó 2011 by the Ecological Society of America Linking fruit traits to variation in predispersal vertebrate seed predation, insect seed predation, and pathogen attack 1,2,3 1 NOELLE G. BECKMAN AND HELENE C. MULLER-LANDAU 1Smithsonian Tropical Research Institute, Unit 9100 Box 0948, DPO AA 34002 2Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, Saint Paul, Minnesota 55108 USA Abstract. The importance of vertebrates, invertebrates, and pathogens for plant communities has long been recognized, but their absolute and relative importance in early recruitment of multiple coexisting tropical plant species has not been quantified. Further, little is known about the relationship of fruit traits to seed mortality due to natural enemies in tropical plants. To investigate the influences of vertebrates, invertebrates, and pathogens on reproduction of seven canopy plant species varying in fruit traits, we quantified reductions in fruit development and seed germination due to vertebrates, invertebrates, and fungal pathogens through experimental removal of these enemies using canopy exclosures, insecticide, and fungicide, respectively. We also measured morphological fruit traits hypothesized to mediate interactions of plants with natural enemies of seeds. Vertebrates, invertebrates, and fungi differentially affected predispersal seed mortality depending on the plant species. Fruit morphology explained some variation among species; species with larger fruit and less physical protection surrounding seeds exhibited greater negative effects of fungi on fruit development and germination and experienced reduced seed survival integrated over fruit development and germination in response to vertebrates.
    [Show full text]
  • Cynoglossum L.: a Review on Phytochemistry and Received: 02-05-2016 Accepted: 03-06-2016 Chemotherapeutic Potential
    Journal of Pharmacognosy and Phytochemistry 2016; 5(4): 32-39 E-ISSN: 2278-4136 P-ISSN: 2349-8234 JPP 2016; 5(4): 32-39 Cynoglossum L.: A review on phytochemistry and Received: 02-05-2016 Accepted: 03-06-2016 chemotherapeutic potential Kalpana Joshi Devsthali Vidyapeeth College of Kalpana Joshi pharmacy, Rudrapur-263148, Uttarakhand, India. Abstract The genus Cynoglossum L. contains about 75 species found in hot and temperate regions of Asia, Africa Deepti Mehra Devsthali Vidyapeeth College of and Europe especially in Taiwan, Turkey, India, Kenya and China etc. The plants are mainly perennial pharmacy, Rudrapur-263148, with wide uniformity in external morphology which makes it most difficult taxonomical genus to study. Uttarakhand, India. The plants contains mainly pyrrolizidine alkaloids of many types and used as traditional medicines by tribals and vaids for cough, burns, wounds, ear infection, antibacterial and sometimes as veterinary Neeraj Kumar medicines. Some plants of this genus are scientifically validated for antioxidant, antihyperlipidaemic, Devsthali Vidyapeeth College of antidiabetic, antifertility, antitumor, anti-inflammatory, diuretic, analgesic and hepatoprotective activity. pharmacy, Rudrapur-263148, Uttarakhand, India. Keywords: Cynoglossum, pyrrozolidine, heliosupine, viridiflorine, heliotridine, echinatine Manoj Bisht Devsthali Vidyapeeth College of 1. Introduction pharmacy, Rudrapur-263148, The genus Cynoglossum L. represents about 75 known species distributed in Asia, Africa and Uttarakhand, India. Europe, 12 species in China [1] about 50 to 60 species in distributed widely in warmer and [2] [3] D. K. Sharma temperate regions of both hemispheres, 3 species in Taiwan , 8 species in Turkey but Devsthali Vidyapeeth College of recently revision in the plant list have increased the number of accepted species in this genus pharmacy, Rudrapur-263148, to over 86 species.
    [Show full text]
  • Two New Genera in the Omphalodes Group (Cynoglosseae, Boraginaceae)
    Nova Acta Científica Compostelana (Bioloxía),23 : 1-14 (2016) - ISSN 1130-9717 ARTÍCULO DE INVESTIGACIÓN Two new genera in the Omphalodes group (Cynoglosseae, Boraginaceae) Dous novos xéneros no grupo Omphalodes (Cynoglosseae, Boraginaceae) M. SERRANO1, R. CARBAJAL1, A. PEREIRA COUTINHO2, S. ORTIZ1 1 Department of Botany, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela , Spain 2 CFE, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal *[email protected]; [email protected]; [email protected]; [email protected] *: Corresponding author (Recibido: 08/06/2015; Aceptado: 01/02/2016; Publicado on-line: 04/02/2016) Abstract Omphalodes (Boraginaceae, Cynoglosseae) molecular phylogenetic relationships are surveyed in the context of the tribe Cynoglosseae, being confirmed that genusOmphalodes is paraphyletic. Our work is focused both in the internal relationships among representatives of Omphalodes main subgroups (and including Omphalodes verna, the type species), and their relationships with other Cynoglosseae genera that have been related to the Omphalodes group. Our phylogenetic analysis of ITS and trnL-trnF molecular markers establish close relationships of the American Omphalodes with the genus Mimophytum, and also with Cynoglossum paniculatum and Myosotidium hortensia. The southwestern European annual Omphalodes species form a discrete group deserving taxonomic recognition. We describe two new genera to reduce the paraphyly in the genus Omphalodes, accommodating the European annual species in Iberodes and Cynoglossum paniculatum in Mapuchea. The pollen of the former taxon is described in detail for the first time. Keywords: Madrean-Tethyan, phylogeny, pollen, systematics, taxonomy Resumo Neste estudo analisamos as relacións filoxenéticas deOmphalodes (Boraginaceae, Cynoglosseae) no contexto da tribo Cynoglosseae, confirmándose como parafilético o xéneroOmphalodes .
    [Show full text]
  • The Influence of Fruit Morphology and Habitat Structure on Ant-Seed
    1 The Influence of Fruit Morphology and Habitat Structure on Ant-Seed Interactions: A Study with Artificial Fruits by Rafael Luís Galdini Raimundo1,4, Paulo Roberto Guimarães Jr.2,4, Mãrio Almeida-Neto1,4 & Marco Aurélio Pizo3 ABSTRACT Artificial fruits chemically designed to simulate lipid-rich diaspores were used to test for the effect of fruit morphology and habitat structure on ant-seed interactions in the Atlantic Forest of SE Brazil. The outcome of the interaction (i.e., if the “fruit” was removed, cleaned by ants on the spot or had no interaction with ants) and the time of ant response were the investigated variables. Two fruit models simulating “drupes” and “arilate” diaspores were used to test for morphological effects and four habitat attributes (litter depth, number of logs, number of trees, and percentage of bromeliad coverage on the forest floor), which are likely to be correlated with the diversity and abundance of ants in the study site, were measured to test for the effect of habitat structure. The proportion of fruits removed or cleaned did not differ between the two morphological models. Sites in which fruits were cleaned had a higher number of trees than those in which no interaction occurred, which may be a result of the foraging behavior of arboreal ants that frequently descend to the forest floor to exploit fleshy diaspores. Sites in which model removal occurred had lower litter depth than both those in which models were cleaned and those in which no interaction occurred. A negative correlation was observed between litter depth and ant response time.
    [Show full text]
  • Exotic Plants in the Australian Alps Including a Case Study of the Ecology of Achillea Millefolium, in Kosciuszko National Park
    Exotic Plants in the Australian Alps Including a Case Study of the Ecology of Achillea Millefolium, in Kosciuszko National Park Author Johnston, Frances Mary Published 2006 Thesis Type Thesis (PhD Doctorate) School School of Environmental and Applied Science DOI https://doi.org/10.25904/1912/3730 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/365860 Griffith Research Online https://research-repository.griffith.edu.au EXOTIC PLANTS IN THE AUSTRALIAN ALPS INCLUDING A CASE STUDY OF THE ECOLOGY OF ACHILLEA MILLEFOLIUM, IN KOSCIUSZKO NATIONAL PARK Frances Mary Johnston B.Sc. (Hons) A thesis submitted in fulfilment of the requirements of the Degree of Doctor of Philosophy School of Environmental and Applied Sciences Faculty of Environmental Sciences Griffith University Gold Coast August 2005 DECLARATION OF ORIGINALITY This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, this thesis represents my original research except where otherwise acknowledged in the text. Frances Johnston August 2005 FORWARD “In a small section of the garden a tiny weed spoke to the blooms that grew there. ‘Why,’ he asked, ‘does the gardener seek to kill me? Do I not have a right to life? Are my leaves not green, as yours are? Is it too much to ask that I be allowed to grow and see the sun?’ The blooms pondered on this, and decided to ask the gardener to spare the weed. He did so. Day by day the weed grew, stronger and stronger, taller and taller, its leaves covering the other plants, its roots spreading.
    [Show full text]
  • A Common Threat to IUCN Red-Listed Vascular Plants in Europe
    Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe Author Ballantyne, Mark, Pickering, Catherine Marina Published 2013 Journal Title Biodiversity and Conservation DOI https://doi.org/10.1007/s10531-013-0569-2 Copyright Statement © 2013 Springer. This is an electronic version of an article published in Biodiversity and Conservation, December 2013, Volume 22, Issue 13-14, pp 3027-3044. Biodiversity and Conservation is available online at: http://link.springer.com/ with the open URL of your article. Downloaded from http://hdl.handle.net/10072/55792 Griffith Research Online https://research-repository.griffith.edu.au Manuscript 1 Tourism and recreation: a common threat to IUCN red-listed vascular 1 2 3 4 2 plants in Europe 5 6 7 8 3 *Mark Ballantyne and Catherine Marina Pickering 9 10 11 12 4 Environmental Futures Centre, School of Environment, Griffith University, Gold Coast, 13 14 5 Queensland 4222, Australia 15 16 17 18 6 *Corresponding author email: [email protected], telephone: +61(0)405783604 19 20 21 7 22 23 8 24 25 9 26 27 28 10 29 30 11 31 32 12 33 34 13 35 36 37 14 38 39 15 40 41 16 42 43 17 44 45 46 18 47 48 19 49 50 20 51 52 21 53 54 55 22 56 57 23 58 59 24 60 61 62 63 64 65 25 Abstract 1 2 3 4 26 Tourism and recreation are large industries employing millions of people and contribute over 5 6 27 US$2.01 trillion to the global economy.
    [Show full text]
  • Boraginaceae), with an Emphasis on the Popcornflowers (Plagiobothrys)
    Diversification, biogeography, and classification of Amsinckiinae (Boraginaceae), with an emphasis on the popcornflowers (Plagiobothrys) By Christopher Matthew Guilliams A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Bruce G. Baldwin, Chair Professor David Ackerly Professor Brent Mishler Professor Patrick O'Grady Summer 2015 Abstract Diversification, biogeography, and classification of Amsinckiinae (Boraginaceae), with an emphasis on the popcornflowers (Plagiobothrys) by Christopher Matthew Guilliams Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Bruce G. Baldwin, Chair Amsinckiinae is a diverse and ecologically important subtribe of annual herbaceous or perennial suffrutescent taxa with centers of distribution in western North America and southern South America. Taxa in the subtribe occur in all major ecosystems in California and more broadly in western North America, from the deserts of Baja California in the south where Johnstonella and Pectocarya are common, north to the ephemeral wetland ecosystems of the California Floristic Province where a majority of Plagiobothrys sect. Allocarya taxa occur, and east to the Basin and Range Province of western North America, where Cryptantha sensu stricto (s.s.) and Oreocarya are well represented. The subtribe minimally includes 9 genera: Amsinckia, Cryptantha s.s., Eremocarya, Greeneocharis, Harpagonella, Johnstonella, Oreocarya, Pectocarya, and Plagiobothrys; overall minimum-rank taxonomic diversity in the subtribe is ca. 330-342 taxa, with ca. 245--257 taxa occurring in North America, 86 in South America, and 4 in Australia. Despite their prevalence on the landscape and a history of active botanical research for well over a century, considerable research needs remain in Amsinckiinae, especially in one of the two largest genera, Plagiobothrys.
    [Show full text]
  • Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants
    diversity Review Diversity of the Mountain Flora of Central Asia with Emphasis on Alkaloid-Producing Plants Karimjan Tayjanov 1, Nilufar Z. Mamadalieva 1,* and Michael Wink 2 1 Institute of the Chemistry of Plant Substances, Academy of Sciences, Mirzo Ulugbek str. 77, 100170 Tashkent, Uzbekistan; [email protected] 2 Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +9-987-126-25913 Academic Editor: Ipek Kurtboke Received: 22 November 2016; Accepted: 13 February 2017; Published: 17 February 2017 Abstract: The mountains of Central Asia with 70 large and small mountain ranges represent species-rich plant biodiversity hotspots. Major mountains include Saur, Tarbagatai, Dzungarian Alatau, Tien Shan, Pamir-Alai and Kopet Dag. Because a range of altitudinal belts exists, the region is characterized by high biological diversity at ecosystem, species and population levels. In addition, the contact between Asian and Mediterranean flora in Central Asia has created unique plant communities. More than 8100 plant species have been recorded for the territory of Central Asia; about 5000–6000 of them grow in the mountains. The aim of this review is to summarize all the available data from 1930 to date on alkaloid-containing plants of the Central Asian mountains. In Saur 301 of a total of 661 species, in Tarbagatai 487 out of 1195, in Dzungarian Alatau 699 out of 1080, in Tien Shan 1177 out of 3251, in Pamir-Alai 1165 out of 3422 and in Kopet Dag 438 out of 1942 species produce alkaloids. The review also tabulates the individual alkaloids which were detected in the plants from the Central Asian mountains.
    [Show full text]
  • Preliminary Checklist of the Terrestrial Flora and Fauna of Fern Cave
    Preliminary Checklist of the Terrestrial Flora and Fauna of Fern Cave National Wildlife Refuge ______________________________________________ Prepared for: United States Fish & Wildlife Service Prepared by: J. Kevin England, MAT David Richardson, MS Completed: as of 22 Sep 2019 All rights reserved. Phone: 256-565-4933 Email: [email protected] Flora & Fauna of FCNWR2 ABSTRACT I.) Total Biodiversity Data The main objective of this study was to inventory and document the total biodiversity of terrestrial habitats located at Fern Cave National Wildlife Refuge (FCNWR). Table 1. Total Biodiversity of Fern Cave National Wildlife Refuge, Jackson Co., AL, USA Level of Classification Families Genera Species Lichens and Allied Fungi 14 21 28 Bryophytes (Bryophyta, Anthocerotophyta, Marchantiophyta) 7 9 9 Vascular Plants (Tracheophytes) 76 138 176 Insects (Class Insecta) 9 9 9 Centipedes (Class Chilopoda) 1 1 1 Millipedes (Class Diplopoda) 2 3 3 Amphibians (Class Amphibia) 3 4 5 Reptiles (Class Reptilia) 2 3 3 Birds (Class Aves) 1 1 1 Mammals (Class Mammalia) 2 2 2 Total 117 191 237 II. Vascular Flora (Appendix 3) Methods and Materials To compile a thorough vascular flora survey, several examples of different plant communities at numerous sites were visited and sampled during the study. Approximately 45 minutes was spent documenting community structure at each site. Lastly, all habitats, ecological systems, and plant associations found within the property boundaries were defined based on floristic content, soil characteristics (soil maps) and other abiotic factors. Flora & Fauna of FCNWR3 The most commonly used texts for specimen identification in this study were Flora of North America (1993+), Mohr (1901), Radford et al.
    [Show full text]