Sipunculus Nudus Linnaeus, 1766

Total Page:16

File Type:pdf, Size:1020Kb

Sipunculus Nudus Linnaeus, 1766 1 Le ver cacahuète Sipunculus nudus Linnaeus, 1766 Comment citer cette fiche : Noël P., 2015. Le ver cacahuète Sipunculus nudus Linnaeus, 1766. in Muséum national d'Histoire naturelle [Ed.], 21 avril 2015. Inventaire national du Patrimoine naturel, 5 pp., site web http://inpn.mnhn.fr Contact de l'auteur : Pierre Noël, SPN et DMPA, Muséum national d'Histoire naturelle, 43 rue Buffon (CP 48), 75005 Paris ; e-mail [email protected] Résumé : Le ver cacahuète mesure jusqu'à une trentaine de cm de long pour un diamètre de 2 cm. Son corps est cylindrique, non segmenté, et son tégument épais et musculeux est couvert d'un quadrillage bien visible chez les adultes. A l'avant, il possède une trompe dévaginable avec une couronne tentaculaire d'une douzaine de lobes. L'anus est situé dorsalement au milieu du dos. Les jeunes sont roses et iridescents et deviennent progressivement beiges ou brunâtres en grandissant. L'espèce est détritivore ; elle vit enfouie dans le sable ou se tient dans les fissures des rochers depuis le bas d'estran jusqu'à plusieurs centaines de mètres de profondeur. Sipunculus nudus est probablement un complexe d'espèces, ce qui explique sa distribution cosmopolite dans les eaux tempérées et tropicales. Elle est présente sur toutes les côtes de France métropolitaine, et potentiellement présente dans presque tous les DOM-COM. Carte de distribution en France métropolitaine Concarneau (Finistère), 21-03-2015. Photo © Aïcha Badou. © P. Noël INPN-MNHN 2015. Classification : Phylum Sipuncula Rafinesque, 1814 > Classe Sipunculidea Rafinesque, 1814 > Ordre Golfingiida Cutler & Gibbs, 1985 > Famille Sipunculidae Rafinesque, 1814 > Genre Sipunculus Linnaeus, 1766 Synonymes usuels (INPN 2015) : Noms vernaculaires : Sipunculus (Sipunculus) nudus Linnaeus, 1766 Ver cacahuète (Ziemski & Scaps 2011 ; Heusser & al. Siphoncolus nudus Linnaeus, 1766 2013). Siphunculus balanophorus Delle Chiaje, 1823 Siponcle (Heusser et al. 2013). Siphunculus nudus Linnaeus, 1766 Grand siponcle, ver bibi, bibi de Sète, maie, ver gris Siphunculus reticulatus Martin, 1786 Sipunculus delphinus Murina, 1967 (Ziemski & Scaps 2011). Sipunculus eximinoclathratus Baird, 1868 Sipunculus eximio-clathratus Baird, 1868 Sipunculus gigas De Quatrefages, 1865 Sipunculus norvegicus vemae Stephen, 1966 Principaux noms étrangers : Sipunculus nudus var. tesselatus Costa, 1853 Anglais : Peanut worm, bibi worm (Ziemski & Scaps 2011 ; Sipunculus nudus nudus Linnaeus, 1766 FAO 2015). Sipunculus nudus tesselatus Costa, 1853 Espagnol : Tita (Ziemski & Scaps 2011 ; FAO 2015). Sipunculus tesselatus Costa, 1853 Sipunculus tessellatus Costa, 1853 Chinois 方格星虫(FAO 2015). Sipunculus titubans diptychus Fischer, 1894 Sipunculus titubans dyptichius Fischer, 1894 Sipunculus titubans var. diptychus Fischer, 1894 Sipunculus titubans titubans (Selenka & Bülow) in Selenka, de Man & Bülow, 1883 Sipunculus titubans Selenka & Bülow, in Selenka, de Man & Bülow, 1883 Syphunculus nudus var. tessellatus Costa, 1853 Syrinx nudus (Linnaeus, 1766) Syrinx tesselatus Rafinesque, 1814 2 Préambule important : Il est possible et même probable que Sipunculus nudus soit en fait un comlexe d'espèces proches non discernables morphologiquement mais génétiquement différentes (Kawauchi & Giribet 2014). Description. La longueur du ver cacahuète peut atteindre 25 cm (Coudre 2015) à 30 cm (SeaLifeBase 2015) et même 34 cm (Delphy 1935 ; Hayward & al. 1998) de long pour environ 2 cm de diamètre (Ziemski & Scaps 2011). Le corps est cylindrique ; il n'est pas segmenté et la peau est très épaisse ; il est divisé en deux parties, la trompe (ou introvert) et le tronc mesurant respectivement environ 1/4 et 3/4 de la longueur de l'animal. L'appareil buccal consiste en une trompe dévaginable ; la couronne tentaculaire comporte au-moins une douzaine de lobes ; elle a très vaguement la forme d'un fer à cheval ; les deux lobes dorsaux sont un peu plus grands que les autres, rentrant légèrement en dedans ; il n'y a pas de crochets mais de simples villosités sur la trompe excertile où s'ouvre la bouche (Delphy 1935). L'anus s'ouvre dorsalement au milieu du dos. La surface du corps est parcourue de sillons longitudinaux et transversaux dessinant sur le tégument externe une sorte de quadrillage ou de "carrelage" (Delphy 1935 ; Hayward & al. 1998) non visible chez les jeunes de moins de 35 mm (Marine Species Identification Portal 2015). Il n'y a pas de dimorphisme sexuel. Pour l'anatomie, consulter SeaLifeBase (2015) et Marine Species Identification Portal (2015). Sur le vivant, la couleur des petits spécimens est iridesente et rosâtre ; chez les gros spécimens, le corps est plutôt beige, rougeâtre, brunâtre ou grisâtre, avec les extrémités plus claires (Hayward & al. 1998 ; Ziemski & Scaps 2011 ; SeaLifeBase 2015). Sipunculus norvegicus Danielssen, 1869 est une espèce d'eaux froides très proche mais qui vit en profondeur ; elle est également cosmopolite ; certains signalements de Sipunculus nudus en profondeur correspondent peut- être à cette espèce. Biologie. Par contraction, l'animal peut réduire sa longueur de moitié ; il devient alors très ferme. Au niveau alimentation, ce ver est un détritivore / dépositivore de sub-surface (Bakalem 2008) qui absorbe du sédiment d'où il puise des particules organiques (Coudre 2015) ; il se nourrit principalement la nuit (GBIF 2015). L'espèce est gonochorique, les larves trochophores sont planctoniques. Sipunculus nudus est parasité par les copépodes cyclopoïdes Myzomolgus tenuis Kim, 2001 (Kim 2001), Myzomolgus stupendus Bocquet et Stock 1957, Catinia plana Bocquet & Stock 1957 (Bocquet & Stock 1957), et Myzomolgus sipunculensis Kihara, Björnberg & Kawauchi, 2007 (Kihara & al. 2007). L'espèce compte certains poissons comme prédateurs : le sar commun Diplodus sargus (SeaLifeBase 2015), bars, lieus, daurades, sars et ombrines (Ziemski & Scaps 2011). Ecologie. Sipunculus nudus est l'espèce la plus commune du genre Sipunculus. Cette espèce marine vit enfouie dans le sable fin des plages ou le sable vaseux (Cabioch & al. 1968), dans les mattes de Posidonia oceanica (Bourcier & Willsie 1986), le coralligène (Casellato & Stefanon 2008 ; Coudre 2015), et dans les fissures des rochers (SeaLifeBase 2015). Elle se rencontre le plus souvent à faible profondeur (Delphy 1935) mais elle a été trouvée jusqu'à -700 m (Marine Species Identification Portal 2015), -900 m (Ziemski & Scaps 2011 ; GBIF 2015) ou - 2275 m (SeaLifeBase 2015). Distribution. Le ver cacahuète est souvent considéré comme une espèce à distribution cosmopolite tropicale et tempérée (GBIF 2015 ; OBIS 2015 ; SeaLifeBase 2015 ; WoRMS 2015) mais des études récentes semblent indiquer qu'il pourrait s'agir de plusieurs espèces très proches (Kawauchi & Giribet 2014). L'espèce a été signalée sur toutes les côtes de France métropolitaine (Cuénot 1922 ; Delphy 1935) et plus précisément dans les sites suivants : Baie de Seine (Jourde & al. 2012), Côtes d'Armor (Ziemski & Scaps 2011 ; Nature22 2015), Roscoff (de Beauchamp 1914 ; Cabioch & al. 1968), Concarneau (Mwinyi & al. 2009), Quiberon (Ehrhold & al. 2010), Golfe de Gascogne (Martin 2010), Charente-maritime (de Montaudouin & Sauriau 2000), Arcachon (Ziemski & Scaps 2011), Catalogne & région de Banyuls (Centelles 1979 ; Carlier & al. 2007), Hérault (Ziemski & Scaps 2011), étang de Thau (Guélorget 1994), Marseille (Bourcier & Willsie 1986), Provence-Côte d'Azur (Fredj 1974 ; Coudre 2015) et Corse (Ziemski & Scaps 2011). En Méditerranée, l'espèce est aussi connue d'Italie : Naples (Delle Chiaje 1823) et Sicile (Rafinesque 1814), d'Adriatique (Casellato & Stefanon 2008), d'Algérie (Bakalem 2008) et du bassin est-méditerranéen (Murina & al. 1999 ; Pancucci-Papadopoulou & al. 1999). Dans l'Atlantique, elle a été signalée des localisations suivantes : Nord de l'Europe (Hayward & Ryland 1990), Scandinavie (Hansson 1998), Irlande (Marine Species Identification Portal 2015), îles britanniques (Plymouth Marine Fauna 1957 ; Gibbs 2001), Cuba et zone caraïbe (Murina 1967a, 1967b ; Schulze & Rice 2004.), Brésil (Kihara & al. 2007), Sénégal (SeaLifeBase 2015) et Atlantique sud (Stephen 1966). Dans l'indo-pacifique, elle est connue des localisations suivantes : Comores (SeaLifeBase 2015), Mayotte (Gout 1991 ; INPN 2015), Viet- Nam (Murina 1989), Hong-Kong (Shin & Thompson 1982 ; Manning & Morton 1987), Chine (Chen & Yeh 3 1958 ; Pagola-Carte & Saiz-Salinas 1996 ; Pagola-Carte & Saiz-Salinas 2000), Corée (Kim 2001), Australie (Australian Biological Resources Study 2000) et Nouvelle Zélande (Cutler & al. 2004). Menaces et mesures de conservation Cette espèce ne semble pas particulièrement menacée. Elle a fait l'objet de diverses études scientifiques en physiologie, biologie et biochimie (Jourdan 1891 ; Cutler 1994). Elle est bien connue des pêcheurs sous le nom de "bibi" et elle est très prisée en raison de sa consistance musculeuse et charnue (Ziemski & Scaps 2011 ; Coudre 2015). Dans le sud de la Chine, cette espèce est pêchée, vidée, séchée et cuisinée de différentes façons (Ziemski & Scaps 2011). En Méditerranée, elle est considérée comme destructrice du coralligène (Coudre 2015). Listes rouges [Mondiale = M / France métropolitaine = FM] Législation - réglementation - directives M = non évalué / FM = non évalué Aucune disposition réglementaire spécifique Sources documentaires Australian Biological Resources Study 2015. Australian Faunal Directory. World Wide Web electronic publication. http://www.deh.gov.au/biodiversity/abrs/online-resources/fauna/index.html. Consulté le 19 avril 2015. Bakalem A., 2008. Les
Recommended publications
  • Sipuncula: an Emerging Model of Spiralian Development and Evolution MICHAEL J
    Int. J. Dev. Biol. 58: 485-499 (2014) doi: 10.1387/ijdb.140095mb www.intjdevbiol.com Sipuncula: an emerging model of spiralian development and evolution MICHAEL J. BOYLE1 and MARY E. RICE2 1Smithsonian Tropical Research Institute (STRI), Panama, Republic of Panama and 2Smithsonian Marine Station at Fort Pierce (SMSFP), Florida, USA ABSTRACT Sipuncula is an ancient clade of unsegmented marine worms that develop through a conserved pattern of unequal quartet spiral cleavage. They exhibit putative character modifications, including conspicuously large first-quartet micromeres and prototroch cells, postoral metatroch with exclusive locomotory function, paired retractor muscles and terminal organ system, and a U-shaped digestive architecture with left-right asymmetric development. Four developmental life history patterns are recognized, and they have evolved a unique metazoan larval type, the pelagosphera. When compared with other quartet spiral-cleaving models, sipunculan development is understud- ied, challenging and typically absent from evolutionary interpretations of spiralian larval and adult body plan diversity. If spiral cleavage is appropriately viewed as a flexible character complex, then understudied clades and characters should be investigated. We are pursuing sipunculan models for modern molecular, genetic and cellular research on evolution of spiralian development. Protocols for whole mount gene expression studies are established in four species. Molecular labeling and confocal imaging techniques are operative from embryogenesis through larval development. Next- generation sequencing of developmental transcriptomes has been completed for two species with highly contrasting life history patterns, Phascolion cryptum (direct development) and Nephasoma pellucidum (indirect planktotrophy). Looking forward, we will attempt intracellular lineage tracing and fate-mapping studies in a proposed model sipunculan, Themiste lageniformis.
    [Show full text]
  • Bioturbation of Peanut Worms Sipunculus Nudus on the Composition of Prokaryotic Communities in a Tidal Flat As Revealed by 16S Rrna Gene Sequences
    Received: 18 August 2018 | Revised: 31 December 2018 | Accepted: 31 December 2018 DOI: 10.1002/mbo3.802 ORIGINAL ARTICLE Bioturbation of peanut worms Sipunculus nudus on the composition of prokaryotic communities in a tidal flat as revealed by 16S rRNA gene sequences Junwei Li1 | Ruiping Hu2 | Yongjian Guo1 | Suwen Chen1 | Xiaoyong Xie1 | Jian G. Qin3 | Zhenhua Ma1 | Changbo Zhu1 | Surui Pei4 1Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization of Abstract Ministry of Agriculture of China, Guangdong To understand the impacts of peanut worms Sipunculus nudus on the prokaryotic Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries community composition in a tidal flat, an onsite investigation was conducted in Suixi Research Institute, Chinese Academy of in the Beibu Gulf (109.82E, 21.35N) in the burrow sediments, non-burrow sediments Fishery Sciences, Guangzhou, PR China and the sediments without peanut worm disturbance (control). The16S rRNA gene 2Guangzhou Haiwei Aquatic Science and Technology Co., Ltd, Guangzhou, PR China Illumina MiSeq sequencing was used to investigate the microbial communities and 3College of Sciences and Engineering, their response to bioturbation by S. nudus in a sandy tidal flat. A total of 18 bacteria Flinders University, Adelaide, SA, Australia phyla were detected, and Proteobacteria and Cyanobacteria constituted the majority 4Annoroad Gene Technology Co., Ltd., Beijing, PR China of the prokaryotic community in the samples. The distribution of the relative abun- dances of genera showed that approximately 6.99%–17% of the reads in the samples Correspondence Zhenhua Ma and Changbo Zhu, Key were classified into 25 known genera.
    [Show full text]
  • Fauna of Australia 4A Phylum Sipuncula
    FAUNA of AUSTRALIA Volume 4A POLYCHAETES & ALLIES The Southern Synthesis 5. PHYLUM SIPUNCULA STANLEY J. EDMONDS (Deceased 16 July 1995) © Commonwealth of Australia 2000. All material CC-BY unless otherwise stated. At night, Eunice Aphroditois emerges from its burrow to feed. Photo by Roger Steene DEFINITION AND GENERAL DESCRIPTION The Sipuncula is a group of soft-bodied, unsegmented, coelomate, worm-like marine invertebrates (Fig. 5.1; Pls 12.1–12.4). The body consists of a muscular trunk and an anteriorly placed, more slender introvert (Fig. 5.2), which bears the mouth at the anterior extremity of an introvert and a long, recurved, spirally wound alimentary canal lies within the spacious body cavity or coelom. The anus lies dorsally, usually on the anterior surface of the trunk near the base of the introvert. Tentacles either surround, or are associated with the mouth. Chaetae or bristles are absent. Two nephridia are present, occasionally only one. The nervous system, although unsegmented, is annelidan-like, consisting of a long ventral nerve cord and an anteriorly placed brain. The sexes are separate, fertilisation is external and cleavage of the zygote is spiral. The larva is a free-swimming trochophore. They are known commonly as peanut worms. AB D 40 mm 10 mm 5 mm C E 5 mm 5 mm Figure 5.1 External appearance of Australian sipunculans. A, SIPUNCULUS ROBUSTUS (Sipunculidae); B, GOLFINGIA VULGARIS HERDMANI (Golfingiidae); C, THEMISTE VARIOSPINOSA (Themistidae); D, PHASCOLOSOMA ANNULATUM (Phascolosomatidae); E, ASPIDOSIPHON LAEVIS (Aspidosiphonidae). (A, B, D, from Edmonds 1982; C, E, from Edmonds 1980) 2 Sipunculans live in burrows, tubes and protected places.
    [Show full text]
  • 10. Sipuncula
    10. SIPUNCULA MARY E. RICE Smithsonian Marine Station at Link Port, 5612 Old Dixie Highway, Fort Pierce, Florida 34946, U.S.A. JOHN F. PILGER Department of Biology, Agnes Scott College, Decatur, Georgia 30030, U.S.A. I. INTRODUCTION Studies of development in sipunculans were first published in the latter part of the 19th century, but it has been only recently that reproductive cycles have been investigated and that sufficient comparative information has become available for any understanding of the trends and diversity of developmental patterns. In addition to their more usual means of sexual reproduction, a few sipunculans have been found to use different modes of asexual reproduction. Processes of transverse fission and budding have been described by Rajulu and Krishnan (1969), Rice (1970), and Rajulu (1975). Also, an interesting example of parthenogenesis has been discovered and is under current study (Pilger, 1987, 1989). A number of descriptive studies have been made on breeding cycles of sipun- culans; however, there have been no interpretive analyses or experimental consider- ations of controlling mechanisms. In connection with these studies a few incidental observations have been reported on fecundity. Major references on reproductive cycles are those of Gonse (1956a, b). Rice (1975a), and Gibbs (1975, 1976). II. ASEXUAL PROPAGATION AND REGENERATION Although sexual reproduction is the common mode of propagation among sipuncu- lans, asexual reproduction has been reported to occur in two species, Aspidosiphon brocki and Sipunculus robustus (Rice, 1970 and Rajulu and Krishnan, 1969 re- spectively). In the former it occurs as a type of transverse fission and in the latter as either budding or transverse fission.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • The Molecular and Developmental Biologisk Basis of Bodyplan Patterning in Institut Sipuncula and the Evolution Of
    1 THE MOLECULAR AND DEVELOPMENTAL BIOLOGISK BASIS OF BODYPLAN PATTERNING IN INSTITUT SIPUNCULA AND THE EVOLUTION OF SEGMENTATION Alen Kristof | Københavns Universitet 2 DEPARTMENT OF BIOLOGY FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN PhD thesis Alen Kristof The molecular and developmental basis of bodyplan patterning in Sipuncula and the evolution of segmentation Principal supervisor Associate Prof. Dr. Andreas Wanninger Co-supervisor Prof. Dr. Pedro Martinez, University of Barcelona April, 2011 3 Reviewed by: Assistant Professor Anja Schulze Department of Marine Biology, Texas A&M University at Galveston Galveston, USA Professor Stefan Richter Department of Biological Sciences, University of Rostock Rostock, Germany Faculty opponent: Associate Professor Danny Eibye-Jacobsen Natural History Museum of Denmark, University of Denmark Copenhagen, Denmark ______________________________________________________________ Cover illustration: Front: Frontal view of an adult specimen of the sipunculan Themiste pyroides with a total length of 13 cm. Back: Confocal laserscanning micrograph of a Phascolosoma agassizii pelagosphera larva showing its musculature. Lateral view. Age of the specimen is 15 days and its total size approximately 300 µm in length. 4 “In a world that keeps on pushin’ me around, but I’ll stand my ground, and I won’t back down.” Thomas Earl Petty, 1989 5 Preface Preface The content of this dissertation comprises three years of research at the University of Copenhagen from May 1, 2008 to April 30, 2011. The PhD project on the development of Sipuncula was mainly carried out in the Research Group for Comparative Zoology, Department of Biology, University of Copenhagen under the supervision of Assoc. Prof. Dr. Andreas Wanninger. I spent nine months working on body patterning genes in the lab of Prof.
    [Show full text]
  • Isolation and Characterization of Microsatellite DNA Loci from the Peanut Worm, Sipunculus Nudus
    Isolation and characterization of microsatellite DNA loci from the peanut worm, Sipunculus nudus Q.H. Wang, Y.S. Guo, Z.D. Wang, X.D. Du and Y.W. Deng Fisheries College, Guangdong Ocean University, Zhanjiang, China Corresponding author: X.D. Du E-mail: [email protected] Genet. Mol. Res. 11 (2): 1662-1665 (2012) Received August 9, 2011 Accepted December 9, 2011 Published June 15, 2012 DOI http://dx.doi.org/10.4238/2012.June.15.15 ABSTRACT. Sipunculus nudus, the peanut worm, is the best known species in its genus. This unsegmented subtidal marine worm is consumed in some parts of Asia and is also used as fish bait. We found 20 microsatellite DNA markers for S. nudus. The number of alleles per polymorphic locus ranged from two to seven in a sample of 39 individuals. Observed and expected heterozygosities per polymorphic locus varied from 0.103 to 1.000 and from 0.307 to 0.771, respectively. Five loci showed significant departure from Hardy-Weinberg equilibrium after sequential Bonferroni’s correction. No significant linkage disequilibrium between pairs of loci was found. These microsatellite markers will provide useful tools for investigating genetic population structure, population history and conservation management of S. nudus. Key words: Sipunculus nudus; FIASCO microsatellites; Peanut worm; Genetic diversity Genetics and Molecular Research 11 (2): 1662-1665 (2012) ©FUNPEC-RP www.funpecrp.com.br Microsatellite DNA loci in Sipunculus nudus 1663 INTRODUCTION Sipunculus nudus (peanut worm) is considered a cosmopolitan species found in all oceans from intertidal zones to a depth of 900 m. It is the most known species in the genus Sipunculus.
    [Show full text]
  • Guide to the MEDITERRANEAN SIPUNCULANS
    Guide to the MEDITERRANEAN SIPUNCULANS Introduction Sipunculans, commonly known as peanut worms, are a group of exclusively marine benthic organisms. They are protostome, coe- lomate, unsegmented bilaterally symmetric invertebrates. Since the mid-twentieth century Sipuncula was considered an independ- ent phylum (Hyman 1959; Stephen 1964; Clark 1969; Stephen & Edmonds 1972), but nowadays this status is unclear and recent genetic studies would place the group within the phylum Annelida in a clade yet to be determined (e.g. Struck et al. 2007, 2011; Dordel et al. 2010). Sipunculans are likely to be placed in their own class in Annelida due to their distinctive features; e.g. lack of segmentation, U-shaped digestive tube and a sipunculan-specific larva (pelagosphera). From this perspective, in the present work no particular taxonomic rank has been assigned them. Nowadays, the sipunculans remain a group of little known and scarcely studied animals. This is mainly due to a lack of specialists (no more than 20 worldwide) and difficulties in species identifi- cation, since a detailed dissection is often required to clarify the details of their internal anatomy. Dissection is a difficult technique that requires skills and training, since most of the specimens are just a few mm in length. Moreover there is a lack of specific teach- ing materials. Although a few monographs aid in identification (Saiz-Salinas 1993; Cutler 1994; Pancucci-Papadopoulou et al. 1999), the information included is insufficiently illustrated, which is always a major problem. There are thus large gaps in the knowl- edge of this taxon. Unfortunately, most sipunculans collected in macrobenthic studies are not identified further than Phylum level, except for a few common species.
    [Show full text]
  • Sipunculus Nudus): an LC–MS-Based Metabolomics Study
    fmars-08-702101 July 26, 2021 Time: 16:57 # 1 ORIGINAL RESEARCH published: 26 July 2021 doi: 10.3389/fmars.2021.702101 Dietary Carbohydrate and Protein Levels Affect the Growth Performance of Juvenile Peanut Worm (Sipunculus nudus): An LC–MS-Based Metabolomics Study Jianqiang Huang1, Ruzhuo Zhong1, Chuangye Yang1,2,3*, Qingheng Wang1,2,3, Yongshan Liao1 and Yuewen Deng1,2,3 1 Fisheries College, Guangdong Ocean University, Zhanjiang, China, 2 Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China, 3 Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China The peanut worm (Sipunculus nudus) is an economically important fishery resource in China. To determine how dietary carbohydrate and protein levels affect the growth performance of juvenile S. nudus and identify the mechanisms underlying observed Edited by: patterns, five isoenergetic and isolipidic diets with different levels of carbohydrate and Xiaotong Wang, protein were formulated and fed to juvenile S. nudus; the experimental groups were Ludong University, China referred to as EG1, EG2, EG3, EG4, and EG5, respectively. After 90 days of feeding, Reviewed by: S. nudus had significantly lower survival rates when fed D5 compared with other Chenglong Ji, Yantai Institute of Coastal Zone diets (P < 0.05), and the highest survival rate was observed in EG2 individuals. The Research, Chinese Academy weight gain rate and specific growth rate were significantly higher in EG2 compared of Sciences (CAS), China Ming Li, with the other groups (P < 0.05). Metabolomic profiling using liquid chromatography– Ningbo University, China mass spectrometry revealed 83 significantly differential metabolites (POS: 59; NEG: *Correspondence: 24), which were identified via an in-house MS2 database.
    [Show full text]
  • The Open Access Israeli Journal of Aquaculture – Bamidgeh
    The Open Access Israeli Journal of Aquaculture – Bamidgeh As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions. This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible. Editor-in-Chief Published under auspices of Dan Mires The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), Editorial Board University of Hawaii at Manoa Library Sheenan Harpaz Agricultural Research Organization and Beit Dagan, Israel University of Hawaii Aquaculture Zvi Yaron Dept. of Zoology Program in association with Tel Aviv University AquacultureHub Tel Aviv, Israel http://www.aquaculturehub.org Angelo Colorni National Center for Mariculture, IOLR Eilat, Israel Rina Chakrabarti Aqua Research Lab Dept. of Zoology University of Delhi Ingrid Lupatsch Swansea University Singleton Park, Swansea, UK Jaap van Rijn The Hebrew University Faculty of Agriculture Israel Spencer Malecha Dept. of Human Nutrition, Food and Animal Sciences University of Hawaii Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel Emilio Tibaldi Udine University Udine, Italy ISSN 0792 - 156X Israeli Journal of Aquaculture - BAMIGDEH. Copy Editor Ellen Rosenberg PUBLISHER: Israeli Journal of Aquaculture - BAMIGDEH - Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL Phone: + 972 52 3965809 http://siamb.org.il The Israeli Journal of Aquaculture – Bamidgeh 60(4), 2008, 237-242.
    [Show full text]
  • Simultaneous Quantitation of Free Amino Acids, Nucleosides
    molecules Article Simultaneous Quantitation of Free Amino Acids, Nucleosides and Nucleobases in Sipunculus nudus by Ultra-High Performance Liquid Chromatography with Triple Quadrupole Mass Spectrometry Yahui Ge 1, Yuping Tang 1,*, Sheng Guo 1, Xin Liu 1, Zhenhua Zhu 1, Lili Zhang 1, Pei Liu 1, Shaoxiong Ding 2, Xiangzhi Lin 3, Rurong Lin 3 and Jin-ao Duan 1 1 Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; [email protected] (Y.G.); [email protected] (S.G.); [email protected] (X.L.); [email protected] (Z.Z.); [email protected] (L.Z.); [email protected] (P.L.); [email protected] (J.D.) 2 College of Ocean and Environment, Xiamen University, Xiamen 361005, China; [email protected] 3 Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China; [email protected] (X.L.); [email protected] (R.L.) * Correspondence: [email protected]; Tel./Fax: +86-25-8581-1695 Academic Editor: Derek J. McPhee Received: 11 January 2016 ; Accepted: 23 March 2016 ; Published: 25 March 2016 Abstract: To evaluate the nutritional and functional value of Sipunculus nudus, a rapid, simple and sensitive analytical method was developed using ultra-high performance liquid chromatography coupled with a triple quadrupole mass detection in multiple-reaction monitoring mode for the simultaneous quantitative determination of 25 free amino acids and 16 nucleosides and nucleobases in S. nudus within 20 min, which was confirmed to be reproducible and accurate.
    [Show full text]
  • And Post Construction Sampling of Artificial FDOT Rock- Pile Reefs in Broward County, Florida Joan Lorraine Guerra Nova Southeastern University, [email protected]
    Nova Southeastern University NSUWorks HCNSO Student Theses and Dissertations HCNSO Student Work 12-10-2015 A Comparison of Infaunal Community Structure Between Pre- and Post Construction Sampling of Artificial FDOT Rock- Pile Reefs in Broward County, Florida Joan Lorraine Guerra Nova Southeastern University, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/occ_stuetd Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Joan Lorraine Guerra. 2015. A Comparison of Infaunal Community Structure Between Pre- and Post Construction Sampling of Artificial FDOT Rock- Pile Reefs in Broward County, Florida. Master's thesis. Nova Southeastern University. Retrieved from NSUWorks, . (399) https://nsuworks.nova.edu/occ_stuetd/399. This Thesis is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. NOVA SOUTHEASTERN UNIVERSITY OCEANOGRAPHIC CENTER A Comparison of Infaunal Community Structure Between Pre- and Post-Construction Sampling of Artificial FDOT Rock- Pile Reefs in Broward County, Florida By Joan Lorraine Guerra Submitted to the Faculty of Nova Southeastern University Oceanographic Center in partial fulfillment of the requirements for the degree of Master of Science with a specialty in: MARINE BIOLOGY Nova Southeastern University December 2015 1 Thesis of Joan Lorraine Guerra Submitted in Partial Fulfillment of the Requirements for the Degree of Marine Biology Masters of Science: Marine Biology Nova Southeastern University Oceanographic Center December 2015 Approved: Thesis Committee Major Professor: _______________________________________________ Dr.
    [Show full text]