Biosynthesis of Alkaloids Alan C. Spivey

Total Page:16

File Type:pdf, Size:1020Kb

Biosynthesis of Alkaloids Alan C. Spivey Biosynthesis of Natural Products Biosynthesis of Alkaloids Alan C. Spivey [email protected] Oct 2019 Format & Scope of Lecture pyridine N pyrrolidine • What are alkaloids? N – definitions, 1° metabolism → a-amino acids (Lys, Orn) H • the citric acid cycle – oxaloacetate & a-ketoglutarate • pyridoxal – transamination, racemisation & decarboxylation piperidine N • Phenylalanine & tyrosine derived alkaloids H – benzylisoquinolines – e.g. opium, aporphine & erythrina alkaloids HN • Tryptophan derived alkaloids tropane – mixed tryptophan/mevalonate (isoprenoid) alkaloids: • secologanin derived: vinca-, strychnos- & quinine alkaloids etc. pyrrolizidine • Non-ribosomal peptides & derivatives N – penicillins & cephalosporins quinolizidine N indolizidine N Alkaloids • Definitions: – originally – ‘a natural product that could be extracted out of alkaline but not acidic water’ (i.e. containing a basic amine function that protonated in acid) – more generally - ‘any non-peptidic & non-nucleotide nitrogenous secondary metabolite’ H N O OH HO H OH N Me H N N coniine nicotine O N H H CO2H retronecine N clavulanic acid H N H ALKALOIDS H HO N H HO sparteine MeO N HO2C O N NMe quinine H NMe H H H H HO N morphine H H O H O NH strychnine lysergic acid a-Amino Acids used to make Alkaloids tryptophan phenylalanine tyrosine lysine ornithine Primary Metabolism - Overview For interesting animations’ of e.g. photosynthesis see: http://www.johnkyrk.com/index.html The Citric Acid Cycle • The citric acid (Krebs) cycle is a major catabolic pathway of 1° metabolism that provides two key building blocks for aliphatic amino acid biosynthesis - oxaloacetate & a-ketoglutarate: CO2 NADH CO 2 SCoA O CoA O OVERAL STOICHIOMETRY pyruvate acetyl coenzyme A NAD CO2 1x O CO2 CO O CO H2O 2 2 HO 'acetate' NADH CO O 2 CO2 + HO CO2 CO2 CO2 CO2 CO2 H2O NAD oxaloacetate citrate cis-aconitate 1x O2 OH CO2 CO2 CO2 malate isocitrate aliphatic amino acids NAD NADH H2O O CO CO 2 CO2 2 GTP NADH FADH2 O CO2 CO2 O SCoA CO2 2x CO2 CO2 CoA CO2 CO2 fumarate FAD oxalosuccinate + Pi + GDP CoA CO CO2 CO2 2 succinate succinyl-SCoA NAD a-ketoglutarate 12x ATP energy! THE CITRIC ACID CYCLE The Biosynthesis of Lysine & Ornithine • Lysine & ornithine - the two most significant, non-aromatic a-amino acid precursors to alkaloids: – NB. lysine (Lys) is proteinogenic whereas ornithine (Orn) is not – phenylalanine (Phe), tyrosine (Tyr) & tryptophan (Trp) from shikimate are the other important precursors – biosynthesis is via reductive amination of the appropriate a-ketoacid mediated by pyridoxal-5’-phosphate (PLP) O reductive NH2 NH3 O amination OH O R R R O O O ketoacid amino acid NH3 O H3N NH3 O O O O O CHO tightly lysine (Lys) pyridoxamine P O P O pyridoxal O O bound to O O [50 ATP equivs] phosphate enzyme phosphate N Me N Me H H NH3 H3N O O NH3 O O O O O ornithine (Orn) O O oxidative O O [<44 ATP equivs (=Arg)] a-ketoglutarate deamination glutamic acid (Glu) citric acid cycle OVERALL: TRANSAMINATION PLP Chemistry – Transamination & Racemisation • Transamination – LHS → RHS (reductive amination); RHS → LHS (oxidative deamination): Enz-NH3 Enz-NH2 H Enz-NH2 R CO R CO R CO2 2 2 Enz NH3 R CO2 H N N N N OP OP H OP H OP H OP H O imine O O O O exchange O N N N N N H H2O H H H H H R CO2 pyridoxamine imine pyridoxal phosphate bound as imine phosphate formation transaminase NH3 • Racemisation/inversion of configuration: H Enz-NH2 Enz-NH H 3 Enz-NH2 Enz R CO2 H R CO2 R CO2 R CO 2 imine N Enz NH exchange OP H 3 N N N OP H OP H N O OP H OP H O O O O imine H N exchange R CO2 H N N N N H H H H pyridoxal phosphate NH3 bound as imine pyridoxal phosphate racemase bound as imine PLP Chemistry – Decarboxylation • Decarboxylation: • Decarboxylation of lysine & ornithine: PLP dependant PLP decarboxylase piperidine alkaloids O HO2C NH2 NH2 H2N NH2 RHN NH2 RHN N CO2 R lysine cadaverine iminium salt PLP dependant decarboxylase PLP pyrrolidine alkaloids HO C NH NH H N NH RHN NH O N 2 2 2 2 2 2 RHN R CO ornithine 2 putrescine iminium salt Control of PLP Activity – Stereoelectronics • How does an enzyme control whether the PLP co-factor effects racemisation or decarboxylation? – i.e. which bond will be cleaved? Phenyalanine & Tyrosine Derived Alkaloids • Alkaloids (generally) containing an ArC2N subunit (± ArC2/ArC1): – Skeleta built up by reductive amination, decarboxylation, oxidation (e.g. phenolic coupling, hydroxylation) – Major classes: – monocyclic alkaloids – phenethylamines (e.g. mescaline)] – Benzylisoquinolines – opium alkaloids (e.g. papaverine, morphine) – aporphine alkaloids – erythrina alkaloids – amaryllidaceae alkaloids – e.g. lycorine, galanthamine Benzylisoquinoline Opium Alkaloids Benzylisoquinoline Alkaloids papaverine morphine Benzylisoquinoline Alkaloids – Ring Formation • Benzylisoquinoline alkaloids constitute an extremely large and varied group of alkaloids – many, particularly the opium alkaloids (e.g. papaverine, morphine) are biosynthesised from two molecules of tyrosine via nor-coclaurine (and then nor-laudanosoline). – Mechanism of Pictet Spengler reaction: Benzylisoquinoline Alkaloids - Papaverine • Papaverine: analgesic contsituent of the opium poppy (Papaver somniferum): – biosynthesis: – NB. The prefix nor means without a methyl group. Coclaurine, reticuline and laudanosine are the N-methyl compounds Oxidative Phenolic Coupling – Morphine • Morphine: analgesic & sedative contsituent of the opium poppy (Papaver somniferum): – biosynthesis: o-/p- oxidative phenolic coupling of reticuline: – Morphine acts by activating the opiate receptors in the brain (IC50 3 nM) – The natural ligands for these receptors are peptides: e.g. Leu-enkephalin (Tyr–Gly–Gly–Phe–Leu) (IC50 12 nM) Tryptophan Derived Alkaloids • Alkaloids containing an indole subunit: – Skeleta built up by reductive amination, decarboxylation & hydroxylation) – Major classes: – simple derivatives (e.g. serotonin, bufotenine) – mixed Trp/mevalonate alkaloids e.g. • ergot [DMAPP derived] (e.g. ergoline, lysergic acid) • vinca [secologanin derived] • yohombine [secologanin derived] • strychnos [secologanin derived] • quinine [secologanin derived] Dimeric Indole Alkaloids – Vinca extracts Dimeric Indole Alkaloids vinblastine (R = Me) vincristine (R = CHO) Potent anti tumour alkaloids used in cancer chemotherapy Tryptamine + Secolaganin → Strictosidine • Most alkaloids of mixed Tryptophan/mevalonate biogenesis (>1200) are derived from strictosidine: – Strictosidine is derived from the condensation of tryptamine with the iridoid C10 monoterpene secologanin: OPP O see isoprenoid lectures HO H OGlu CO2 HO H O tryptophan MeO2C enzymatic mevalonate (x2) geranyl pyrophosphate secologanin Pictet-Spengler N NH reaction H H H OGlu CO H isoprene 2 O H O MeO C PLP 2 2 NH3 NH2 strictosidine N N H CO2 H tryptophan tryptamine – Mechanism of Pictet-Spengler reaction: • via spirocyclic intermediate then Wagner-Meerwein 1,2-alkyl shift: NH NH NH NH 2 N N NH N N O Wagner-Meerwein H H H H H H H H H H N H OGlu OGlu 1,2-alkyl shift OGlu OGlu H + OGlu H H H H H O O O O O MeO C MeO2C MeO2C MeO2C 2 MeO2C tryptamine secologanin spirocyclic intermediate strictosidine Strictosidine → Vinca, Strychnos, Quinine etc. • The diversity of alkaloids derived from strictosidine is stunning and many pathways remain to be fully elucidated: N OH N N H H H H N N H N H H N O H H H MeO2C MeO2C N OAc ajmalicine H MeO H OH Me (vinca) CO2Me MeO2C vinblastine OH (vinca) yohimbine MeO O N N H N 3 NH O N H H H H OGlu N H OH O H O aspidospermine camptothecin MeO2C (vinca) H strictosidine (isovincoside) N H N Me HO H MeO N H O N H H N O H O quinine N O H strychnine (strychnos) gelsemine (oxindole) Penicillins & Cephalosporins • Famous story of the antibiotic penicillin: – discovery by bacteriologist Alexander Fleming at St Mary’s Hospital, London (published in 1929) – isolation & development by Howard Florey & Ernst Chain at the Dunn School of Pathology Oxford University (1939-1945) • E. Lax ‘The mould in Dr Florey’s coat’ Little Brown & Co., 2004, [ISBN 0316859257] – biosynthesis extensively studied by Baldwin: • Baldwin J. Het. Chem. 1990, 27, 71 & Baldwin et al. Nature 1995, 375, 700 Primary Metabolism - Overview For interesting animations’ of e.g. photosynthesis see: http://www.johnkyrk.com/index.html.
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna Et Al
    US 2016O174603A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/017.4603 A1 Abayarathna et al. (43) Pub. Date: Jun. 23, 2016 (54) ELECTRONIC VAPORLIQUID (52) U.S. Cl. COMPOSITION AND METHOD OF USE CPC ................. A24B 15/16 (2013.01); A24B 15/18 (2013.01); A24F 47/002 (2013.01) (71) Applicants: Sahan Abayarathna, Missouri City, TX 57 ABSTRACT (US); Michael Jaehne, Missouri CIty, An(57) e-liquid for use in electronic cigarettes which utilizes- a TX (US) vaporizing base (either propylene glycol, vegetable glycerin, (72) Inventors: Sahan Abayarathna, MissOU1 City,- 0 TX generallyor mixture at of a 0.001 the two) g-2.0 mixed g per with 1 mL an ratio. herbal The powder herbal extract TX(US); (US) Michael Jaehne, Missouri CIty, can be any of the following:- - - Kanna (Sceletium tortuosum), Blue lotus (Nymphaea caerulea), Salvia (Salvia divinorum), Salvia eivinorm, Kratom (Mitragyna speciosa), Celandine (21) Appl. No.: 14/581,179 poppy (Stylophorum diphyllum), Mugwort (Artemisia), Coltsfoot leaf (Tussilago farfara), California poppy (Eschscholzia Californica), Sinicuichi (Heimia Salicifolia), (22) Filed: Dec. 23, 2014 St. John's Wort (Hypericum perforatum), Yerba lenna yesca A rtemisia scoparia), CaleaCal Zacatechichihichi (Calea(Cal termifolia), Leonurus Sibericus (Leonurus Sibiricus), Wild dagga (Leono Publication Classification tis leonurus), Klip dagga (Leonotis nepetifolia), Damiana (Turnera diffiisa), Kava (Piper methysticum), Scotch broom (51) Int. Cl. tops (Cytisus scoparius), Valarien (Valeriana officinalis), A24B 15/16 (2006.01) Indian warrior (Pedicularis densiflora), Wild lettuce (Lactuca A24F 47/00 (2006.01) virosa), Skullcap (Scutellaria lateriflora), Red Clover (Trifo A24B I5/8 (2006.01) lium pretense), and/or combinations therein.
    [Show full text]
  • Molecular Cloning of an O-Methyltransferase from Adventitious Roots of Carapichea Ipecacuanha
    100605 (016) Biosci. Biotechnol. Biochem., 75 (1), 100605-1–7, 2011 Molecular Cloning of an O-Methyltransferase from Adventitious Roots of Carapichea ipecacuanha y Bo Eng CHEONG,1 Tomoya TAKEMURA,1 Kayo YOSHIMATSU,2 and Fumihiko SATO1; 1Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan 2Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, 1-2 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan Received August 20, 2010; Accepted October 5, 2010; Online Publication, January 7, 2011 [doi:10.1271/bbb.100605] Carapichea ipecacuanha produces various emetine- industrial production.2) Whereas metabolic engineering type alkaloids, known as ipecac alkaloids, which have in alkaloid biosynthesis has also been explored to long been used as expectorants, emetics, and amebicides. improve both the quantity and the quality of several In this study, we isolated an O-methyltransferase cDNA alkaloids,3) biosynthetic enzymes and their genes in from this medicinal plant. The encoded protein ipecac alkaloids are still limited, except for the recent (CiOMT1) showed 98% sequence identity to IpeOMT2, isolation of glycosidases and O-methyltransferases.4,5) which catalyzes the 70-O-methylation of 70-O-demethyl- Ipecac alkaloids are synthesized from the condensa- cephaeline to form cephaeline at the penultimate step tion of dopamine derived from tyrosine, for isoquinoline ofAdvance emetine biosynthesis (Nomura and Kutchan, ViewJ. Biol. moieties, and from secologanin, as a monoterpenoid Chem., 285, 7722–7738 (2010)). Recombinant CiOMT1 molecule (Fig. 1). This Pictet-Spengler-type condensa- showed both 70-O-methylation and 60-O-methylation tion yields two epimers, (R)-N-deacetylipecoside and activities at the last two steps of emetine biosynthesis.
    [Show full text]
  • Rhazya Stricta S
    IENCE SC • VTT VTT S CIENCE • T S E Alkaloids of in vitro cultures of N C O H I N Rhazya stricta S O I V Dis s e r ta tion L • O S 93 G Rhazya stricta Decne. (Apocynaceae) is a traditional medicinal T Y H • R plant in Middle East and South Asia. It contains a large number of G I E L S H 93 E G terpenoid indole alkaloids (TIAs), some of which possess A I R H C interesting pharmacological properties. This study was focused on H biotechnological production tools of R. stricta, namely undifferentiated cell cultures, and an Agrobacterium rhizogenes- mediated transformation method to obtain hairy roots expressing heterologous genes from the early TIA pathway. Rha zya alkaloids comprise a wide range of structures and polarities, therefore, many A analytical methods were developed to investigate the alkaloid l k contents in in vitro cultures. Targeted and non-targeted analyses a l o were carried out using gas chromatography-mass spectrometry i d (GC-MS), high performance liquid chromatography (HPLC), ultra s o performance liquid chromatography-mass spectrometry (UPLC- f i MS) and nuclear magnetic resonance (NMR) spectroscopy. n Calli derived from stems contained elevated levels of v i t r strictosidine lactam compared to other in vitro cultures. It o was revealed that only leaves were susceptible to Agrobacterium c u infection and subsequent root induction. The transformation l t u efficiency varied from 22% to 83% depending on the gene. A total r e of 17 TIAs were identified from hairy root extracts by UPLC-MS.
    [Show full text]
  • “Biosynthesis of Morphine in Mammals”
    “Biosynthesis of Morphine in Mammals” D i s s e r t a t i o n zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Naturwissenschaftlichen Fakultät I Biowissenschaften der Martin-Luther-Universität Halle-Wittenberg von Frau Nadja Grobe geb. am 21.08.1981 in Querfurt Gutachter /in 1. 2. 3. Halle (Saale), Table of Contents I INTRODUCTION ........................................................................................................1 II MATERIAL & METHODS ........................................................................................ 10 1 Animal Tissue ....................................................................................................... 10 2 Chemicals and Enzymes ....................................................................................... 10 3 Bacteria and Vectors ............................................................................................ 10 4 Instruments ........................................................................................................... 11 5 Synthesis ................................................................................................................ 12 5.1 Preparation of DOPAL from Epinephrine (according to DUNCAN 1975) ................. 12 5.2 Synthesis of (R)-Norlaudanosoline*HBr ................................................................. 12 5.3 Synthesis of [7D]-Salutaridinol and [7D]-epi-Salutaridinol ..................................... 13 6 Application Experiments .....................................................................................
    [Show full text]
  • A Review on Tabernaemontana Spp.: Multipotential Medicinal Plant
    Online - 2455-3891 Vol 11, Issue 5, 2018 Print - 0974-2441 Review Article A REVIEW ON TABERNAEMONTANA SPP.: MULTIPOTENTIAL MEDICINAL PLANT ANAN ATHIPORNCHAI* Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131 Thailand. Email: [email protected] Received: 01 March 2016, Revised and Accepted: 29 January 2018 ABSTRACT Plants in the genus Tabernaemontana have been using in Thai and Chinese traditional medicine for the treatment several diseases. The great majority constituents of Tabernaemontana species have already been subjected to isolation and identification of monoterpene indole alkaloids present in their several parts. Many of monoterpene indole alkaloids exhibited a wide array of several activities. The biogenesis, classification, and biological activities of these alkaloids which found in Tabernaemontana plants were discussed in this review and its brings the research up-to-date on the bioactive compounds produced by Tabernaemontana species, directly or indirectly related to human health. Keywords: Tabernaemontana plants, Phytochemistry, Biogenesis, Terpene indole alkaloids, Biological activities. © 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i5.11478 INTRODUCTION alkaloids are investigated. All monoterpene indole alkaloids are derived from aromatic amino acid tryptophan and the iridoid terpene Several already drugs were discovered from the natural products. secologanin (Scheme 1). Tryptophan converts to tryptamine using Especially, the treatments of infectious diseases and oncology have tryptophan decarboxylase which is a pyridoxal-dependent enzyme. benefited from numerous drugs which were found in natural product The specific iridoid precursor was subsequently identified as sources.
    [Show full text]
  • J.C.S. Perkin I
    2308 J.C.S. Perkin I The Biosynthesis of Monoterpenoid lndole Alkaloids from Strictosidine By Naotaka Nagakura, (Mrs.) Martin8 Ruffer, and Meinhart H. Zenk," Lehrstuhl fur Pflanzenphysiologie, Ruhr-Universitat Bochum, D 4630 Bochum, W. Germany The differential incorporation of doubly labelled strictosidine and vincoside into several indole alkaloids belonging to the Corynanthe (3a and 3p series), Aspidosperma, and lboga types in three plant families has been studied, and it has been demonstrated that only strictosidine is incorporated while vincoside is metabolically inert in these plants with regard to alkaloid formation. During the conversion of strictosidine into the 3P-indole alkaloids, the hydrogen atom at the 3-position is lost, while it is retained during the biosynthesis of the 32 alkaloids. The chemical synthesis of [7-3H]secologanin, an important intermediate for further work in the biosynthesis of monoterpenoid alkaloids, is also described. THEfundamental research of Battersby and Arigoni and (S)-3a stereochemistry, is indeed the key intermediate their associates during the past decade has established in the formation of the three classes of monoterpenoid the central role of loganin and secologanin (2) in the indole alkaloids (Asfiidosfierma, Iboga, and Corynanthe) biosynthesis of a multitude of monoterpenoid indole in Catharanthus roseus (syn. Vinca rosea) plants as well alkaloids. Secologanin (2) is the ultimate precursor for as a variety of other species in cell cultures by in vivo the C-9/C-10 non-tryptamine carbon skeleton
    [Show full text]
  • Ew Routes to Indolizidine Alkaloids: the Total Synthesis of (−)Grandisine B
    ew Routes to Indolizidine Alkaloids: The Total Synthesis of (−)-Grandisine B James David Cuthbertson Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy The University of York Department of Chemistry September 2011 Abstract The plant family Elaeocarpaceae has been the source of a plethora of structurally related alkaloids isolated over the last 50 years. This Thesis describes our synthetic approaches to (−)-grandisine B I, a bioactive indolizidine alkaloid isolated from Elaocarpus grandis in 2005. An overview of alkaloids isolated from the family Elaeocarpaceae is provided and preliminary studies into the synthesis of grandisine B I are described (Chapters 1 and 2). Novel routes to bicyclic lactams II and isoquinuclidinone frameworks III have been developed using aqueous ammonia in a one-pot amination/cyclisation sequence (Chapters 3 and 4). The scope of the developed methodology was initially demonstrated with a concise synthesis of the alkaloid (−)-mearsine V. A biomimetic synthesis of (±)- grandisine B I, using the alkaloid grandisine D IV as a synthetic precursor, is then described in Chapter 5. The development of a formic acid mediated alkyne/acetal cyclisation for the synthesis of heterocyclic scaffolds is also reported. The scope and limitations of the methodology are discussed and applications of the methodology in the synthesis of (−)-grandisine B I and structurally related Elaeocarpus alkaloids are described (Chapter 6). I Contents Abstract ...........................................................................................................................
    [Show full text]
  • Biosynthesis by in Situ Hybridization (ISH)
    Localization of monoterpenoid indole alkaloid (MIA) biosynthesis by in situ hybridization (ISH) By Elizabeth Edmunds, Hons. B.Sc. A Thesis Submitted to the Department of Biotechnology In partial fulfillment of the requirements For the degree of Masters of Science August, 2012 Brock University St. Catha rines, Ontario ©Elizabeth Edmunds, 2012 ii Acknowledgments First and foremost I would like to thank Dr. Vincenzo Deluca for the opportunity to work in his laboratory under his mentorship. I have appreciated the helpful insight that has guided me through the course of this project. I have gained a valuable experience being able to learn from such an established and knowledgeable researcher. Secondly, I would like to thank my committee members Dr. Jeffrey Atkinson and Dr. Heather Gordon for their support and advice and their time to serve on my advisory committee. Thirdly, I would like to thank my colleagues and co-workers for their patience and helpful advice throughout my project. Particular mention must be given to Dr. Carlone's lab for their assistance and insight into in situ hybridization techniques. Finally, I would like to express my sincerest gratitude and appreciation towards my family and friends for their support. I would not be where I am today without the support and love from my mother and father, as well as Craig Easton. iii Abstract Monoterpenoid indole alkaloids (MIA) are among the largest and most complex group of nitrogen containing secondary metabolites that are characteristic of the Apocynaceae plant family including the most notable Catharanthus roseus. These compounds have demonstrated activity as successful drugs for treating various cancers, neurological disorders and cardiovascular conditions.
    [Show full text]
  • Characterization of a Second Secologanin Synthase Isoform
    Dugé de Bernonville et al. BMC Genomics (2015) 16:619 DOI 10.1186/s12864-015-1678-y RESEARCH ARTICLE Open Access Characterization of a second secologanin synthase isoform producing both secologanin and secoxyloganin allows enhanced de novo assembly of a Catharanthus roseus transcriptome Thomas Dugé de Bernonville1†, Emilien Foureau1†, Claire Parage1†, Arnaud Lanoue1, Marc Clastre1, Monica Arias Londono1,2, Audrey Oudin1, Benjamin Houillé1, Nicolas Papon1, Sébastien Besseau1, Gaëlle Glévarec1, Lucia Atehortùa2, Nathalie Giglioli-Guivarc’h1, Benoit St-Pierre1, Vincenzo De Luca3, Sarah E. O’Connor4 and Vincent Courdavault1* Abstract Background: Transcriptome sequencing offers a great resource for the study of non-model plants such as Catharanthus roseus, which produces valuable monoterpenoid indole alkaloids (MIAs) via a complex biosynthetic pathway whose characterization is still undergoing. Transcriptome databases dedicated to this plant were recently developed by several consortia to uncover new biosynthetic genes. However, the identification of missing steps in MIA biosynthesis based on these large datasets may be limited by the erroneous assembly of close transcripts and isoforms, even with the multiple available transcriptomes. Results: Secologanin synthases (SLS) are P450 enzymes that catalyze an unusual ring-opening reaction of loganin in the biosynthesis of the MIA precursor secologanin. We report here the identification and characterization in C. roseus of a new isoform of SLS, SLS2, sharing 97 % nucleotide sequence identity with the previously characterized SLS1. We also discovered that both isoforms further oxidize secologanin into secoxyloganin. SLS2 had however a different expression profile, being the major isoform in aerial organs that constitute the main site of MIA accumulation. Unfortunately, we were unable to find a current C.
    [Show full text]
  • Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo Nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes
    Int. J. Mol. Sci. 2014, 15, 3481-3494; doi:10.3390/ijms15033481 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Purification and Characterization of Aporphine Alkaloids from Leaves of Nelumbo nucifera Gaertn and Their Effects on Glucose Consumption in 3T3-L1 Adipocytes Chengjun Ma 1, Jinjun Wang 1, Hongmei Chu 2, Xiaoxiao Zhang 1, Zhenhua Wang 1, Honglun Wang 3 and Gang Li 1,3,* 1 School of Life Science, Yantai University, 30 Qinquan Road, Yantai 264005, China; E-Mails: [email protected] (C.M.); [email protected] (J.W.); [email protected] (X.Z.); [email protected] (Z.W.) 2 School of Pharmacy, Yantai University, 30 Qinquan Road, Yantai 264005, China; E-Mail: [email protected] 3 Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-535-6902-638. Received: 5 December 2013; in revised form: 28 January 2014 / Accepted: 28 January 2014 / Published: 26 February 2014 Abstract: Aporphine alkaloids from the leaves of Nelumbo nucifera Gaertn are substances of great interest because of their important pharmacological activities, particularly anti-diabetic, anti-obesity, anti-hyperlipidemic, anti-oxidant, and anti-HIV’s activities. In order to produce large amounts of pure alkaloid for research purposes, a novel method using high-speed counter-current chromatography (HSCCC) was developed. Without any initial cleanup steps, four main aporphine alkaloids, including 2-hydroxy-1-methoxyaporphine, pronuciferine, nuciferine and roemerine were successfully purified from the crude extract by HSCCC in one step.
    [Show full text]
  • Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor
    pharmaceuticals Review Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor Qing Wang 1,2 , Yu Zhou 2 , Jianhui Huang 1 and Niu Huang 2,3,* 1 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; [email protected] (Q.W.); [email protected] (J.H.) 2 National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; [email protected] 3 Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China * Correspondence: [email protected]; Tel.: +86-10-80720645 Abstract: Since the first characterization of the 5-hydroxytryptamine 2B receptor (5-HT2BR) in 1992, significant progress has been made in 5-HT2BR research. Herein, we summarize the biological function, structure, and small-molecule pharmaceutical ligands of the 5-HT2BR. Emerging evidence has suggested that the 5-HT2BR is implicated in the regulation of the cardiovascular system, fibrosis disorders, cancer, the gastrointestinal (GI) tract, and the nervous system. Eight crystal complex structures of the 5-HT2BR bound with different ligands provided great insights into ligand recognition, activation mechanism, and biased signaling. Numerous 5-HT2BR antagonists have been discovered and developed, and several of them have advanced to clinical trials. It is expected that the novel 5-HT2BR antagonists with high potency and selectivity will lead to the development of first-in-class drugs in various therapeutic areas. Keywords: GPCR; 5-HT2BR; biased signaling; agonist; antagonist Citation: Wang, Q.; Zhou, Y.; Huang, J.; Huang, N. Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. 1. Introduction Pharmaceuticals 2021, 14, 76.
    [Show full text]
  • Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds
    Downloaded from orbit.dtu.dk on: Sep 28, 2021 Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds Bradley, Samuel Alan; Zhang, Jie; Jensen, Michael Krogh Published in: Frontiers in Bioengineering and Biotechnology Link to article, DOI: 10.3389/fbioe.2020.594126 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Bradley, S. A., Zhang, J., & Jensen, M. K. (2020). Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds. Frontiers in Bioengineering and Biotechnology, 8, [594126]. https://doi.org/10.3389/fbioe.2020.594126 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. fbioe-08-594126 October 19, 2020 Time: 19:15 # 1 REVIEW published: 23 October 2020 doi: 10.3389/fbioe.2020.594126 Deploying Microbial Synthesis for Halogenating and Diversifying Medicinal Alkaloid Scaffolds Samuel A. Bradley, Jie Zhang and Michael K.
    [Show full text]