Data Storage for Mobile Devices

Total Page:16

File Type:pdf, Size:1020Kb

Data Storage for Mobile Devices Data Storage for Mobile Devices The increasing sophistication of mobile electronic devices and the size of rich media files is leading to ever greater demands on mobile data storage. We will continue to see a variety of data storage products filling the needs of this industry. We are also likely to see 1 a continuation of embedded and removable data storage solutions offering advantages. One of the most critical design factors affecting the shows expected average data storage capacity performance of mobile devices is their data storage requirements for various mobile device applications. capability. The mobile environment has many demanding There are several types of non-volatile data-storage requirements, including control of power consumption to products that have been developed for mobile electronic meet the needs of battery-powered devices; physical size to devices. These include several types of magnetic storage fit into small electronic devices and possible removability; devices such as small hard-disk drives, tapes, floppy disks, resistance to severe environmental factors such as shock, and magnetic cards, as well as small optical devices and, of vibration, and temperature; and, of course, growing course, many varieties of flash semiconductor memory. data-storage capacity requirements to meet the needs of An additional factor driving the growth of data storage rich multimedia content. In addition, for many consumer on mobile devices is the growing trend toward additional White devices the price of the data storage is an important factor features incorporated into individual electronic devices. in the total cost of the product, making this market very Devices such as radios and GPS are becoming intellectual Paper sensitive to the price of data storage products. property that can be incorporated into an electronic chip as needed (with antennas or other required peripheral devices Thomas M. Coughlin Drivers for Mobile Device Data Storage also incorporated into the overall product design) or to add Coughlin Associates Electronic devices are shrinking in size to meet the needs greater attractiveness to customers due to greater overall of a more mobile population. Fewer people are necessary product functionality. Future incorporation of voice recog- to perform what once were multiple jobs. This is enabled nition into mobile devices (needed to create real hands-off by increasing connectivity to colleagues and greater usage) will require very large amounts of local data storage. access to corporate (intranet) and cultural (Internet) information sources. This more-connected population Choosing Mobile Data Storage Devices has also become a more-mobile population. Workers and Similar to other computer systems, we can organize the population in general are becoming dependent upon mobile data storage requirements in a performance and the electronic devices that they carry with them for work, price hierarchy. Figure 2 shows a mobile data storage personal communication, and entertainment purposes. product hierarchy. Information needed to boot up the People are becoming mobile nodes in a worldwide, mobile device and for immediate fast processing are connected information and entertainment network. With stored in ROM and RAM semiconductor memory. This is the development of flexible display technologies and the fastest and most expensive memory used in these ever-smaller computer-based devices, we are only a few devices. In addition, RAM is volatile memory, meaning years away from incorporating those computer-based the data is not stored after the power is turned off. devices, including data storage, into the clothing that we wear or even in our bodies. Thomas M. Coughlin is president of Coughlin Associates Data storage plays a large role in creating this (www.tomcoughlin.com), a data storage consulting firm mobile electronic infrastructure. The growth in mobile specializing in data storage components, systems, and software information traffic, combined with limited wireless data used in consumer electronic, enterprise, and entertainment rates, often interrupted wireless service, and the large file applications. He has more than 20 years of industrial experience in data storage, product development, program management, sizes of MP3, MPEG-4, and other multimedia content, and market and technology assessment. Mr. Coughlin is a senior makes local data-storage cache an important factor in the member of the IEEE, a founding member of the Server Blade delivery of high-quality multimedia experiences. Figure 1 Trade Association, and a member of IDEMA, ACM, and APS. www.MobileImperative.com Technologies (formerly IBM) MicroDrive (27mm) 600 PDAs and and the Toshiba 1.8-inch (48mm) embedded or Handhelds removable hard-disk drives. These have even lower 500 Digital Still cost per megabyte, but because of the fixed costs Cameras of making the hard-disk drive, they start out at a higher part price than lower-capacity flash memory 400 Digital Video or even the optical disks, magnetic strip, or tape technologies (described next). Thus hard-disk drives 300 Digital Audio are more likely to find their greatest use where the MegaBytes size or number of the data files being handled 200 Flash Drives requires it (such as video files or an MP3 jukebox). Finally we must consider tape-, floppy-, and 100 GPS magnetic-strip card-based data storage products. Most digital video cameras still use tape, and some 0 of these tapes are quite small, such as the MiniDV Mobile Phones 2001 2002 2003 2004 2005 tape cassette (2.6 x 1.9 x 0.5 inches). The cost of tape is quite low, and the capacity can be large, but Figure 1: Average Megabyte Requirements the access time to data can be several minutes. Floppy capacities are rather low, although higher- Cost/Speed capacity floppies are possible. An IEEE 802.11b or WiFi wireless network Volatile Storage has a rated data rate of about 11 million bits per $0.25/MB second (Mbps) depending upon the proximity of 20 ns RAM/ROM the wireless network member to the WiFi hub. This channel bandwidth is available to be shared by $0.25/MB all the members of the local wireless network. 60 ms Flash Memory Non- (removable/non-removable) Volatile However, an MPEG-4 video stream may require $0.04/MB Tiny Optical ROM/WORM Storage 1.45 million bytes per second (MBps) or 11.6 10 ms (removable) Mbps. Thus a live MPEG-4 stream will more than $0.02/MB Micro or Pico HDD consume the bandwidth of a single WiFi channel. 12 ms Mass Storage (removable or embedded) For this reason large digital content such $0.01/MB as video will need to stream from a large local Small Tape or Floppy 120 sec Mass Storage (removable) memory cache such as a small hard-disk drive, optical disk, or even a small magnetic tape. This need for large local memory cache is even greater Capacity because of the frequent interruptions in a wireless Figure 2: Mobile Data Storage Hierarchy network and the disastrous effect such interruptions have on a live video stream. To use such a large The lower part of the hierarchy pyramid shows A small optical device such as the DataPlay memory cache requires ways to decrease potential non-volatile memory; the data in these devices is WORM (write once, read many times) drive uses a issues such as power usage. Figure 3 shows a retained even after the power is turned off. Flash 34mm diameter optical disk that can be written on schematic for a portable wireless multimedia device memory can be embedded in the device or can both sides (for a total of 500MB of data storage). using a small disk drive that would download be removable, and the removable varieties have a Because of the small size of the optical components content over the Web or at high-speed multimedia great many form factors, from PCMCIA devices developed for this drive, the average time to access kiosks. The drawing also shows download times to ones about the size of a nickel. Flash memory data is much less than on the type of CD or DVD for a two-hour movie at various transfer data rates. is very popular in mobile devices due to its drives used in desktop or laptop computers. The price Mass and volume are other important ruggedness and small size. Although the price per of storage on this disk is much less than that of a flash characteristics for a storage device in a mobile megabyte is not as low as alternative devices the memory, but the price of the optical drive (currently electronic product. Figure 4 shows the various most popular capacities sell for $50 or less and about $50) must also be taken into consideration. removable mobile memory form factors are large enough (128MB or less, currently) to Next in the data storage hierarchy are small produced by flash memory card and hard-disk be of use for many applications. hard-disk drives such as the Hitachi Global Storage drive vendors. There are additional, even 42 www.MobileImperative.com Portable Wireless Multimedia Device Antenna High-speed Processor, MPEG4 Head mounted Direct-view LCD wireless modem decoder, media display screen and radio content protection Y Cr Cb RGB A/V Docking Bulk storage Docking S-Video Battery >10GB interface station NTSC/PAL Line-level audio SPDIF Desired read and write speeds Download time Download time differ by a factor of 200 to 500 Mbps (seconds) (minutes) 1000 16 0.3 500 32 0.5 60 MBs/sec 200 80 1.3 39 MBs/sec 100 160 2.7 50 320 5.3 20 800 13.3 10 1600 26.7 IBM 1GB Microdrive 5 3200 53.3 Figure 3: Wireless Personal Multimedia Device Using a Small Hard-Disk Drive smaller, form factor products due out soon. may require a larger volume in the host device into the host device, since any shock will Besides these products, USB-interface flash to support them.
Recommended publications
  • The Past, Present, and Future of SD Memory Cards
    The Past, Present, and Future of SD Memory Cards Douglas Wong Toshiba America Electronic Components, Inc. Flash Memory Summit 2011 Santa Clara, CA 1 Early Flash Memory Cards in the 90s PCMCIA ATA Card CompactFlash Miniature Card SmartMedia (aka SSFDC: solid state floppy disk card) 2011/8/8 2 SD Card Announcement MATSUSHITA ELECTRIC, SANDISK AND TOSHIBA AGREE TO JOIN FORCES TO DEVELOP AND PROMOTE NEXT GENERATION SECURE MEMORY CARD SD (Secure Digital) Memory Card Expected To Unleash Wave Of New Digital AV (Audio/Video) Consumer Products And Enable Internet And Wireless E-Commerce. REDWOOD CITY, CA, (Aug. 25, 1999) - Matsushita Electric Industrial Co., Ltd. (NYSE:MC), best known by its Panasonic brand name, SanDisk Corporation (NASDAQ:SNDK) and Toshiba Corporation have reached an agreement on comprehensive collaboration to jointly develop, specify and widely promote a next generation secure memory card. The announcement was made today at joint press conferences in Tokyo, Japan, Osaka, Japan and Redwood City, CA. … Powerful security and copy protection (SDMI compliant) …The security level has been designed to comply with both current and future SDMI (Secure Digital Music Initiative) portable device requirements. Sampling of the new SD Memory Card will begin in the first quarter of 2000. Production shipments are expected to commence in the second quarter of 2000. It is expected that application products that use the new card will be available in the first half of next year. 2011/8/8 3 SD Card Security Elements 2011/8/8 4 SD Association Note: SD, microSD, SDHC, microSDHC, SDXC, microSDXC 2011/8/8 5 and smartSD Logos are trademarks of SD-3C, LLC SD Family Roadmap 2011/8/8 6 SD Standard Roadmap Basic Spec.
    [Show full text]
  • Midwinter 2005 ISSN 1534-0937 Walt Crawford
    Cites & Insights Crawford at Large Libraries • Policy • Technology • Media Sponsored by YBP Library Services Volume 5, Number 2: Midwinter 2005 ISSN 1534-0937 Walt Crawford $20-$25 of 256MB for $40-$50 may be more Trends & Quick Takes typical. With XP computers typically having front-mounted USB slots, the primary setup The Hazy Crystal Ball requirement is security. It’s that time of year—time for pundits and gurus to ¾ Wireless Access: “Providing wireless access tell us what’s to come and for a few of them to spin frees up your public access computing termi- last year’s projections. nals for those who truly need them, and I was going to include snarky comments (or cred- makes your library the neighborhood ‘hot- its, when applicable) about last year’s forecasts—but I spot’ for information access.” see that last year got so confusing that I never ran a ¾ Thin Clients::: “Thin-client technology en- set of forecasts. Neither did I make one: That should ables you to extend the life of your existing be no surprise. computers, lower costs on expanding the number of patron terminals, and simplify WebJunction’s Emerging technologies maintenance procedures.” for small libraries ¾ Upgrading Your Operating Systems: “Tech- You could think of this as a counterpart to the LITA Soup Stock offers upgrades to Windows XP Top Technology Trends group, but with fewer partici- for $8 (libraries are eligible)…” The text calls pants (eight in the October 4 posting) and a small- Windows 2000 and 95 “antiquated.” library bent. The committee develops a quarterly “list of five technologies they think are worth considering Inside This Issue for your library.” I like the guidelines: “The committee Bibs & Blather....................................................................
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2002/0088011 A1 Lamkin Et Al
    US 20020088O11A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0088011 A1 Lamkin et al. (43) Pub. Date: Jul. 4, 2002 (54) SYSTEM, METHOD AND ARTICLE OF Publication Classification MANUFACTURE FOR A COMMON CROSS PLATFORM FRAMEWORK FOR (51) Int. Cl. .............................. H04N 7/16; G06F 9/00; DEVELOPMENT OF DVD-VIDEO CONTENT G06F 9/46 INTEGRATED WITH ROM CONTENT (52) U.S. Cl. ........................... 725/142; 725/135; 709/328 (76) Inventors: Allan B. Lamkin, San Diego, CA (US); Todd R. Collart, Los Altos, CA (US) Correspondence Address: (57) ABSTRACT FITCH EVEN TABN AND FLANNERY 120 SOUTH LASALLE STREET A method for providing enhanced content for play acroSS SUTE 1600 multiple play platforms employs Steps of delivering media CHICAGO, IL 60603-3406 (US) content to a client device; delivering HTML content to a (21) Appl. No.: 09/898,479 client device, the HTML content being accessible and usable by a plurality of client device platforms, activating a (22) Filed: Jul. 2, 2001 browser to access the HTML content, the browser being Related U.S. Application Data located on and compatible for use with the client device; activating firmware on the client device to access the media (63) Non-provisional of provisional application No. content; and incorporating the accessed HTML content with 60/216,822, filed on Jul. 7, 2000. the accessed media content. 120 - NETWORK (135) N 1 118 134 CO MMUNICATIONADAPTER A38 Patent Application Publication Jul. 4, 2002. Sheet 1 of 7 US 2002/0088011 A1 Patent Application Publication Jul.• 4,T. 2002 Sheet 2 ofO 7 US 2002/0088011 A1 Content Development ROM/ HM Content 208 Browser/Presentation Enhanced DVD Engine Experience DVD Firmware/Navigator Figure 2 Patent Application Publication Jul.
    [Show full text]
  • History of the Early Days of Ampex Corporation
    PAPER History of The Early Days of Ampex Corporation As recalled by JOHN LESLIE and ROSS SNYDER Alexander M. Poniatoff founded Ampex in 1944, primarily to manufacture small motors and generators for military applications. When WWII ended, the military contracts dropped off, and Alex had to search for a new line of business to continue his company’s existence. He and his small group of engineers heard a demonstration of a Magnetophon, a German magnetic tape recorder used by Hitler during WWII. The demonstration quickly convinced Alex to redirect his company and soon it was designing and manufacturing professional-quality magnetic tape recorders. Bing Crosby was a great help in Ampex’s early years. The company grew quickly and, within a short time, dominated the magnetic tape recorder market in radio, television, the record industry, and industrial and military markets for instrumentation recorders . Alex was born in Russia in 1892. His father was well-to- 0 INTRODUCTION do, and sent Alex to Germany for an education in engineering. After college, he returned to Russia only to see his country It has been amazing how many people today are asking become engaged in a civil war. Alex escaped to China, where questions about Ampex and the Company’s contribution to the he went to work for the Shanghai Power Company. He music recording industry, the radio and television broadcast immigrated to the United States in 1927 where he worked for industry and the stereophonic home entertainment field. There General Electric, Pacific Gas & Electric, and the Dalmo Victor is no question that Ampex was a major factor in each of these Corporation in San Carlos, California.
    [Show full text]
  • FATSO EL7X Manual
    FATSO EL7x USERS MANUAL FULL ANALOG TAPE SIMULATOR & OPTIMIZER WITH KNEE COMPRESSOR Technology for the Artist empiricallabs.com 1 WARRANTY AND FACTORY SERVICE This Empirical Labs Inc. product is covered by a limited warranty covering full parts and labor for 3 years from the purchase date. The warranty is only effective if the owner has returned his or her warranty card. See warranty card for further details. TABLE OF CONTENTS Should problems arise, contact the factory at [email protected] or use the “Contact “ button on our website. If it becomes necessary, pack the unit up well*, enclose a note explaining the problem and return to Warranty and Factory Service 2 Empirical Labs for repair. Include your name, address, phone, and the date of purchase. Send the unit with freight prepaid to the address below. Table of Contents 3 Empirical Labs Inc. (Attn Service) Features & Specs 4 41 N. Beverwyck Rd. Lake Hiawatha, NJ 07034 What is the FATSO? 5 *Please pack the unit in original carton if possible. Otherwise, pack with bubble pack and/or foam in a thick corrugated box. Shipping people are absolutely brutal to large packages and you must take every precaution to prevent damage to the edges of the front panel. We are not liable for products damaged during shipping. Using for the First Time 5 www.EmpiricalLabs.com Example Settings 6-7, 10 OTHER EMPIRICAL LABS PRODUCTS Recall Sheet 8-9 • Distressor EL8 - Classic Knee Compressor. Used on thousands of major records! Section Details 11 • Distressor EL8X - The original Distressor on Steroids. Image Link and Brit Mod • Lil FrEQ – An EQ with 8 Sections of unparalleled tonal contouring & De-essing.
    [Show full text]
  • The Rewritable Minidisc System
    The Rewritable MiniDisc System Tadao Yoshida Advanced Development Laboratories Sony Corporation, Tokyo, Japan Reprinted from the Proceedings of the IEEE,USA vol. 82 no. 10 pp. 1492-1500, OCT 1994. Invited Paper The MiniDisc system was designed with the obvious objective of replacing the conventional Compact Cassette tape recorder system. The MiniDisc format defines two types of optical discs. One is a recordable magneto-optical disc for user recording and another is a conventional read-only disc for music-software publishing. Audio data compression is used to achieve 74 min of playing time on a 64-mm disc. By means of a built-in buffer memory called Shock Resistant Memory, MiniDisc can be used for outdoor portable applications with great ease. Furthermore, MiniDisc was evolved into the MD Data system and with a data capacity of 140 Mbytes and a very compact size, the MD Data system is expected to become one of the standards for removable data storage systems. I. Introduction In 1992 the MiniDisc system was introduced in the consumer audio market as a new digital audio playback and recording system (Fig. 1). The introduction time was just ten years after the introduction of the Compact Disc (CD). As is known, CD has effectively replaced the vinyl LP records in the audio disc market. CD technology is based on 16-bit quantization and 44.1-kHz sampled digital audio recording. The CD sound quality was fairly improved compared to any consumer analog recording equipment. Before starting the CD business, many engineers engaged in the development of the CD solely for its improvement in sound quality, but after the introduction of the CD player into the market, we found out that the consumer became aware of the quick random-access characteristic of Fig.
    [Show full text]
  • Magneto-Optical Recording Systems
    10.3 MiniDisc 10.3.1 Introduction and Features of the MiniDisc System The MiniDisc (MD) system, developed by Sony, offers both digital sound and random access features. In addition to these features, the following three types of MiniDiscs have been developed for various applications: Section 10.3 MiniDisc 401 Figure 10.19 Probability of each error length. i Error length (byte) 1. Playback-only MiniDisc for prerecorded music; 2. Recordable MiniDisc allowing up to 74 minutes of recording time; and 3. Hybrid MiniDisc, a combination with premastered and recordable areas. The intrinsic recording technology supporting the recordable MiniDisc is the magnetic field direct overwrite method, applied to a consumer product for the first time in the world. The distinctive features of the MiniDisc are 1. Overwrite function: 2. Maximum 74 min. recording time on a disk only 64mm in diameter, achieved using data compression and high-density recording; 3. Quick random access supported by address information in the wobbled groove; and 4. Disk protection with the cartridge and shutter. Read process Verify process Write process Media production Figure 10.20 Defect management strategies. 402 Chapter 10 Magneto-Optical Recording Systems Moreover, durability and reliability for the recordable MiniDisc have already been proven with data storage media for computer peripherals, such as the magneto optical disk. Figure 10.21 shows the various MD systems. 10.3.2 System Concept and Specifications The specifications of the compact disc (CD) were first proposed in 1982, and are described in the so-called “Red Book.” Since then, the technological developments for both data and recording applications have been specified in the “Yellow Book” and “Orange Book,” respectively.
    [Show full text]
  • Digital Audio Tapes: Their Preservation and Conversion 1 Smithsonian Institution Archives Summer 2010
    Digital Audio Tapes: Their Preservation and Conversion 1 Smithsonian Institution Archives Summer 2010 Digital Audio Tapes: Their Preservation and Conversion Susan Eldridge, Digital Services Intern Overview Digital Audio Tapes (DATs) are 4mm (or 3.81mm) magnetic tape cassettes that store audio information in a digital manner. DATS are visually similar to compact audio cassettes, though approximately half the size, use thinner tapes, and can only be recorded on one side. Developed by Sony in 1987, DATs were quite popular in recording studios and were one of the first digital recording systems to become employed in archives in the late 1980s and 1990s due to their lossless encoding. Commercial use of DATs, on the other hand, never achieved the same success as the machines were expensive and commercial recordings were not available on DAT. Depending on the tape and machine used, DATs allow four different sampling modes: 32 kHz at 12 bits quantization, and 32 kHz, 44.1 kHz, and 48 kHz at 16 bits.1 All support two-channel stereo recording. Some of the later DATs (before being discontinued) could extend the bit-depth to 24 and up to 98 kHz, however, these tapes were likely rarely playable on other models.2 DATs can run between 15 and 180 minutes in length, one again depending on the tape and quality of the sampling. Unlike some other digital media, DATs do not use lossy data compression, which is important in the lossless transferring of a digital source to a DAT. Sony ultimately discontinued the production of DAT machines in 2005.3 Composition A digital magnetic tape is composed of two primary layers: the base film and magnetic layer.
    [Show full text]
  • PC Card Adapter Reference
    E TECHNICAL PAPER PC Card Adapter Reference November 1996 Order Number: 297719-001 Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. *Third-party brands and names are the property of their respective owners. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from: Intel Corporation P.O. Box 7641 Mt. Prospect, IL 60056-7641 or call 1-800-879-4683 COPYRIGHT © INTEL CORPORATION, 1996 CG-041493 E TECHNICAL PAPER CONTENTS PAGE 1.0 INTRODUCTION .......................................................................................................................................5 ACMA COMPUTERS INCORPORATED ........................................................................................................6
    [Show full text]
  • Ammc0xxa 2, 4, Or 8 Megabyte 5.0 Volt-Only Flash Miniature Card
    PRELIMINARY AmMC0XXA 2, 4, or 8 Megabyte 5.0 Volt-only Flash Miniature Card DISTINCTIVE CHARACTERISTICS ■ Available in industrial temperature grade (–40°C to +85°C) ■ 2, 4, or 8 Mbytes of addressable Flash memory ■ Miniature Card standard form factor ■ 5.0 Volt-only, single power supply operation — True interchangeability — Write and read voltage: 5.0 V ± 10% — 60-pad connector — No additional supply current required for VPP — Supports multiple technologies ■ Fast access time — Sonic welded stainless steel case — 100 or 150 ns access time — PCMCIA Type II adapter available ■ CMOS low power consumption — Selectable byte- or word-wide configuration — Typical active read current: — Small form factor (38 mm x 33 mm x 3.5 mm) 70 mA (word mode) ■ 60 connection bus — Typical active erase/write current: 100 mA (word mode) — 16-bit data bus — Typical standby current: — 25-bit address bus 10 µA (8 Mbyte card) — Easy system integration ■ High write endurance — Low cost implementation — Guaranteed minimum 100,000 write/erase — Low cost cards cycles per card ■ Consumer-friendly mechanicals — More than 1,000,000 cycles per card typical — User can easily insert and remove card, upgrade memory, and add applications ■ Uniform sector architecture ■ — 64K byte individually useable sectors Voltage level keying — Erase Suspend/Resume increases system level — Does not allow a 5 V card to plug into a 3 V performance system and vice versa — BUSY# and RESET# signals — Single power supply design — System does not need a separate program ■ Zero data retention power voltage supply; only one is necessary to read — No power required to retain data and write GENERAL DESCRIPTION Am29F017B Flash Memory devices, ensuring high reli- ability and excellent performance.
    [Show full text]
  • Magnetic Recording: Analog Tape
    Magnetic Recording: Analog Tape Until recently, there was one dominant way of recording sounds so that they could be reproduced at a later time or in a different location: analog magnetic recording (of course, there were mechanical methods like phonograph records, but they could not be recorded easily). In fact, magnetic recording techniques are still the most common way of recording signals, but the encoding method is digital. Magnetic recording relies on the imposition of a magnetic field, derived from an electrical signal, on a magnetically susceptible medium that becomes magnetized. The magnetic medium employed in analog recording is magnetic tape: a thin plastic ribbon with randomly oriented microscopic magnetic particles glued to the surface. The record head magnetic field alters the magnetic polarization (not the physical orientation) of the tiny particles so that they align their magnetic domains with the imposed field: the stronger the imposed field, the more particles align their orientations with the field, until all of the particles are magnetized. The retained pattern of magnetization stores the representation of the signal. When the magnetized medium is moved past a read head, an electrical signal is produced by induction. Unfortunately, the process is inherently very non-linear, so the resulting playback signal is different from the original signal. Much of the circuitry employed in an analog tape recorder is necessary to undo the distortion introduced by the non-linear physics of the system. Figure 1: In a record head, magnetic flux flows through low-reluctance pathway in the tape’s magnetic coating layer. Magnetic tape Magnetic tape used for audio recording consists of a plastic ribbon onto which a layer of magnetic material is glued.
    [Show full text]
  • Data Storage Technologies for Lhc
    DATA STORAGE TECHNOLOGIES FOR LHC Les Robertson CERN, Geneva, Switzerland Abstract The paper introduces some of the technologies that could be used for storing and managing the many PetaBytes of data that will be collected and processed at the Large Hadron Collider (LHC) accelerator, which is scheduled to begin operation at CERN in 2005. The state of the art of the current mainline hardware technologies is described, with a discussion of the likely evolution during the next five years. This paper is a summary of the material provided in the lecture notes, which include more detailed descriptions of some of the fundamental technologies and costs issues. The notes also introduce some more exotic techniques, and discuss the storage capacity and performance requirements of the experiments that will use the LHC accelerator. 1 MAGNETIC HARD DISKS The principal technology used for permanent storage of digital computer data for the last thirty years is the magnetic hard disk. The state of the art hard disk product today can store 72 GigaBytes of data in a container 10 cm wide and 4 cm high, the format of the standard disk slots in a personal computer. The data is stored on twelve rigid disk platters mounted on a spindle that is rotated by an electric motor at around 10,000 rpm. There is one recording head for each disk surface, the heads being mounted on a set of arms (the accessor) that can move the heads across the recording surface of the disk. The data is recorded in concentric tracks as the disk platter rotates beneath the head.
    [Show full text]