Best Lexical Metric for Phrase-Based Statistical MT System Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Best Lexical Metric for Phrase-Based Statistical MT System Optimization The Best Lexical Metric for Phrase-Based Statistical MT System Optimization Daniel Cer, Christopher D. Manning and Daniel Jurafsky Stanford University Stanford, CA 94305, USA Abstract and Singer, 2003; Watanabe et al., 2007; Chiang et al., 2008) train translation models toward a specific Translation systems are generally trained to evaluation metric. This makes the quality of the re- optimize BLEU, but many alternative metrics sulting model dependent on how accurately the au- are available. We explore how optimizing tomatic metric actually reflects human preferences. toward various automatic evaluation metrics (BLEU, METEOR, NIST, TER) affects the re- The most popular metric for both comparing sys- sulting model. We train a state-of-the-art MT tems and tuning MT models has been BLEU. While system using MERT on many parameteriza- BLEU (Papineni et al., 2002) is relatively simple, tions of each metric and evaluate the result- scoring translations according to their n-gram over- ing models on the other metrics and also us- lap with reference translations, it still achieves a rea- ing human judges. In accordance with popular sonable correlation with human judgments of trans- wisdom, we find that it’s important to train on lation quality. It is also robust enough to use for au- the same metric used in testing. However, we also find that training to a newer metric is only tomatic optimization. However, BLEU does have a useful to the extent that the MT model’s struc- number of shortcomings. It doesn’t penalize n-gram ture and features allow it to take advantage of scrambling (Callison-Burch et al., 2006), and since the metric. Contrasting with TER’s good cor- it isn’t aware of synonymous words or phrases, it can relation with human judgments, we show that inappropriately penalize translations that use them. people tend to prefer BLEU and NIST trained Recently, there have been efforts to develop bet- models to those trained on edit distance based Translation metrics like TER or WER. Human prefer- ter evaluation metrics. Metrics such as ences for METEOR trained models varies de- Edit Rate (TER) (Snover et al., 2006; Snover et al., 1 pending on the source language. Since using 2009) and METEOR (Lavie and Denkowski, 2009) BLEU or NIST produces models that are more perform a more sophisticated analysis of the trans- robust to evaluation by other metrics and per- lations being evaluated and the scores they produce form well in human judgments, we conclude tend to achieve a better correlation with human judg- they are still the best choice for training. ments than those produced by BLEU (Snover et al., 2009; Lavie and Denkowski, 2009; Przybocki et al., 1 Introduction 2008; Snover et al., 2006). Their better correlations suggest that we might Since their introduction, automated measures of ma- obtain higher quality translations by making use of chine translation quality have played a critical role these new metrics when training our models. We ex- in the development and evolution of SMT systems. pect that training on a specific metric will produce While such metrics were initially intended for eval- the best performing model according to that met- uation, popular training methods such as minimum error rate training (MERT) (Och, 2003) and mar- 1METEOR: Metric for Evaluation of Translation with Ex- gin infused relaxed algorithm (MIRA) (Crammer plicit ORdering. 555 Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the ACL, pages 555–563, Los Angeles, California, June 2010. c 2010 Association for Computational Linguistics ric. Doing better on metrics that better reflect human gram lengths and then combined using a geometric judgments seems to imply the translations produced mean. The score is then scaled by a brevity penalty by the model would be preferred by human judges. if the candidate translations are shorter than the ref- However, there are four potential problems. First, erences, BP = min(1.0, e1−len(R)/len(T )). Equa- some metrics could be susceptible to systematic ex- tion 1 gives BLEU using n-grams up to length N for ploitation by the training algorithm and result in a corpus of candidate translations T and reference model translations that have a high score according translations R. A variant of BLEU called the NIST to the evaluation metric but that are of low qual- metric (Doddington, 2002) weights n-gram matches ity.2 Second, other metrics may result in objective by how informative they are. functions that are harder to optimize. Third, some may result in better generalization performance at 1 test time by not encouraging overfitting of the train- N ! N Y n-grams(T T R) ing data. Finally, as a practical concern, metrics used BLEU:N = BP (1) n-grams(T ) for training cannot be too slow. n=1 In this paper, we systematically explore these four issues for the most popular metrics available to the While easy to compute, BLEU has a number of MT community. We examine how well models per- shortcomings. Since the order of matching n-grams form both on the metrics on which they were trained is ignored, n-grams in a translation can be randomly and on the other alternative metrics. Multiple mod- rearranged around non-matching material or other els are trained using each metric in order to deter- n-gram breaks without harming the score. BLEU mine the stability of the resulting models. Select also does not explicitly check whether information models are scored by human judges in order to deter- is missing from the candidate translations, as it only mine how performance differences obtained by tun- examines what fraction of candidate translation n- ing to different automated metrics relates to actual grams are in the references and not what fraction human preferences. of references n-grams are in the candidates (i.e., n The next sections introduce the metrics and our BLEU ignores -gram recall). Finally, the metric training procedure. We follow with two sets of core does not account for words and phrases that have results, machine evaluation in section 5, and human similar meanings. evaluation in section 6. 2.2 METEOR 2 Evaluation Metrics METEOR (Lavie and Denkowski, 2009) computes a one-to-one alignment between matching words in Designing good automated metrics for evaluating a candidate translation and a reference. If a word machine translations is challenging due to the vari- matches multiple other words, preference is given to ety of acceptable translations for each foreign sen- the alignment that reorders the words the least, with tence. Popular metrics produce scores primarily the amount of reordering measured by the number of based on matching sequences of words in the system crossing alignments. Alignments are first generated translation to those in one or more reference trans- for exact matches between words. Additional align- lations. The metrics primarily differ in how they ac- ments are created by repeatedly running the align- count for reorderings and synonyms. ment procedure over unaligned words, first allowing for matches between word stems, and then allow- 2.1 BLEU ing matches between words listed as synonyms in BLEU (Papineni et al., 2002) uses the percentage WordNet. From the final alignment, the candidate of n-grams found in machine translations that also translation’s unigram precision and recall is calcu- occur in the reference translations. These n-gram matches matches lated, P = length trans and R = length ref . These two precisions are calculated separately for different n- are then combined into a weighted harmonic mean (2). To penalize reorderings, this value is then scaled 2For example, BLEU computed without the brevity penalty would likely result in models that have a strong preference for by a fragmentation penalty based on the number of generating pathologically short translations. chunks the two sentences would need to be broken 556 into to allow them to be rearranged with no crossing 3 MERT β alignments, P = 1 − γ chunks . β,γ matches MERT is the standard technique for obtaining a ma- chine translation model fit to a specific evaluation PR Fα = (2) metric (Och, 2003). Learning such a model cannot αP + (1 − α)R be done using gradient methods since the value of the objective function only depends on the transla- tion model’s argmax for each sentence in the tun- METEORα,β,γ = Fα · Pβ,γ (3) ing set. Typically, this optimization is performed as Equation 3 gives the final METEOR score as the a series of line searches that examines the value of the evaluation metric at critical points where a new product of the unigram harmonic mean, Fα, and the translation argmax becomes preferred by the model. fragmentation penalty, Pβ,γ. The free parameters α, β, and γ can be used to tune the metric to human Since the model score assigned to each candidate judgments on a specific language and variation of translation varies linearly with changes to the model the evaluation task (e.g., ranking candidate transla- parameters, it is possible to efficiently find the global tions vs. reproducing judgments of translations ade- minimum along any given search direction with only 2 quacy and fluency). O(n ) operations when n-best lists are used. Using our implementation of MERT that allows 2.3 Translation Edit Rate for pluggable optimization metrics, we tune mod- els to BLEU:N for N = 1 ... 5, TER, two con- TER (Snover et al., 2006) searches for the shortest figurations of TERp, WER, several configurations sequence of edit operations needed to turn a can- of METEOR, as well as additive combinations of didate translation into one of the reference transla- these metrics. The TERp configurations include tions. The allowable edits are the insertion, dele- the default configuration of TERp and TERpA: tion, and substitution of individual words and swaps the configuration of TERp that was trained to of adjacent sequences of words.
Recommended publications
  • Preliminary Version of the Text Analysis Component, Including: Ner, Event Detection and Sentiment Analysis
    D4.1 PRELIMINARY VERSION OF THE TEXT ANALYSIS COMPONENT, INCLUDING: NER, EVENT DETECTION AND SENTIMENT ANALYSIS Grant Agreement nr 611057 Project acronym EUMSSI Start date of project (dur.) December 1st 2013 (36 months) Document due Date : November 30th 2014 (+60 days) (12 months) Actual date of delivery December 2nd 2014 Leader GFAI Reply to [email protected] Document status Submitted Project co-funded by ICT-7th Framework Programme from the European Commission EUMSSI_D4.1 Preliminary version of the text analysis component 1 Project ref. no. 611057 Project acronym EUMSSI Project full title Event Understanding through Multimodal Social Stream Interpretation Document name EUMSSI_D4.1_Preliminary version of the text analysis component.pdf Security (distribution PU – Public level) Contractual date of November 30th 2014 (+60 days) delivery Actual date of December 2nd 2014 delivery Deliverable name Preliminary Version of the Text Analysis Component, including: NER, event detection and sentiment analysis Type P – Prototype Status Submitted Version number v1 Number of pages 60 WP /Task responsible GFAI / GFAI & UPF Author(s) Susanne Preuss (GFAI), Maite Melero (UPF) Other contributors Mahmoud Gindiyeh (GFAI), Eelco Herder (LUH), Giang Tran Binh (LUH), Jens Grivolla (UPF) EC Project Officer Mrs. Aleksandra WESOLOWSKA [email protected] Abstract The deliverable reports on the resources and tools that have been gathered and installed for the preliminary version of the text analysis component Keywords Text analysis component, Named Entity Recognition, Named Entity Linking, Keyphrase Extraction, Relation Extraction, Topic modelling, Sentiment Analysis Circulated to partners Yes Peer review Yes completed Peer-reviewed by Eelco Herder (L3S) Coordinator approval Yes EUMSSI_D4.1 Preliminary version of the text analysis component 2 Table of Contents 1.
    [Show full text]
  • Information Retrieval and Web Search
    Information Retrieval and Web Search Text processing Instructor: Rada Mihalcea (Note: Some of the slides in this slide set were adapted from an IR course taught by Prof. Ray Mooney at UT Austin) IR System Architecture User Interface Text User Text Operations Need Logical View User Query Database Indexing Feedback Operations Manager Inverted file Query Searching Index Text Ranked Retrieved Database Docs Ranking Docs Text Processing Pipeline Documents to be indexed Friends, Romans, countrymen. OR User query Tokenizer Token stream Friends Romans Countrymen Linguistic modules Modified tokens friend roman countryman Indexer friend 2 4 1 2 Inverted index roman countryman 13 16 From Text to Tokens to Terms • Tokenization = segmenting text into tokens: • token = a sequence of characters, in a particular document at a particular position. • type = the class of all tokens that contain the same character sequence. • “... to be or not to be ...” 3 tokens, 1 type • “... so be it, he said ...” • term = a (normalized) type that is included in the IR dictionary. • Example • text = “I slept and then I dreamed” • tokens = I, slept, and, then, I, dreamed • types = I, slept, and, then, dreamed • terms = sleep, dream (stopword removal). Simple Tokenization • Analyze text into a sequence of discrete tokens (words). • Sometimes punctuation (e-mail), numbers (1999), and case (Republican vs. republican) can be a meaningful part of a token. – However, frequently they are not. • Simplest approach is to ignore all numbers and punctuation and use only case-insensitive
    [Show full text]
  • Constructing a Lexicon of Arabic-English Named Entity Using SMT and Semantic Linked Data
    Constructing a Lexicon of Arabic-English Named Entity using SMT and Semantic Linked Data Emna Hkiri, Souheyl Mallat, and Mounir Zrigui LaTICE Laboratory, Faculty of Sciences of Monastir, Tunisia Abstract: Named entity recognition is the problem of locating and categorizing atomic entities in a given text. In this work, we used DBpedia Linked datasets and combined existing open source tools to generate from a parallel corpus a bilingual lexicon of Named Entities (NE). To annotate NE in the monolingual English corpus, we used linked data entities by mapping them to Gate Gazetteers. In order to translate entities identified by the gate tool from the English corpus, we used moses, a statistical machine translation system. The construction of the Arabic-English named entities lexicon is based on the results of moses translation. Our method is fully automatic and aims to help Natural Language Processing (NLP) tasks such as, machine translation information retrieval, text mining and question answering. Our lexicon contains 48753 pairs of Arabic-English NE, it is freely available for use by other researchers Keywords: Named Entity Recognition (NER), Named entity translation, Parallel Arabic-English lexicon, DBpedia, linked data entities, parallel corpus, SMT. Received April 1, 2015; accepted October 7, 2015 1. Introduction Section 5 concludes the paper with directions for future work. Named Entity Recognition (NER) consists in recognizing and categorizing all the Named Entities 2. State of the art (NE) in a given text, corresponding to two intuitive IAJIT First classes; proper names (persons, locations and Written and spoken Arabic is considered as difficult organizations), numeric expressions (time, date, money language to apprehend in the domain of Natural and percent).
    [Show full text]
  • Fasttext-Based Intent Detection for Inflected Languages †
    information Article FastText-Based Intent Detection for Inflected Languages † Kaspars Balodis 1,2,* and Daiga Deksne 1 1 Tilde, Vien¯ıbas Gatve 75A, LV-1004 R¯ıga, Latvia; [email protected] 2 Faculty of Computing, University of Latvia, Rain, a blvd. 19, LV-1586 R¯ıga, Latvia * Correspondence: [email protected] † This paper is an extended version of our paper published in 18th International Conference AIMSA 2018, Varna, Bulgaria, 12–14 September 2018. Received: 15 January 2019; Accepted: 25 April 2019; Published: 1 May 2019 Abstract: Intent detection is one of the main tasks of a dialogue system. In this paper, we present our intent detection system that is based on fastText word embeddings and a neural network classifier. We find an improvement in fastText sentence vectorization, which, in some cases, shows a significant increase in intent detection accuracy. We evaluate the system on languages commonly spoken in Baltic countries—Estonian, Latvian, Lithuanian, English, and Russian. The results show that our intent detection system provides state-of-the-art results on three previously published datasets, outperforming many popular services. In addition to this, for Latvian, we explore how the accuracy of intent detection is affected if we normalize the text in advance. Keywords: intent detection; word embeddings; dialogue system 1. Introduction and Related Work Recent developments in deep learning have made neural networks the mainstream approach for a wide variety of tasks, ranging from image recognition to price forecasting to natural language processing. In natural language processing, neural networks are used for speech recognition and generation, machine translation, text classification, named entity recognition, text generation, and many other tasks.
    [Show full text]
  • Unsupervised Methods to Predict Example Difficulty in Word Sense
    Unsupervised Methods to Predict Example Difficulty in Word Sense Annotation Author: Cristina Aceta Moreno Advisors: Oier L´opez de Lacalle, Eneko Agirre and Izaskun Aldezabal hap/lap Hizkuntzaren Azterketa eta Prozesamendua Language Analysis and Processing Final Thesis June 2018 Departments: Computer Systems and Languages, Computational Architectures and Technologies, Computational Science and Artificial Intelligence, Basque Language and Communication, Communications Engineer. Unsupervised Prediction of Example Difficulty ii/103 Language Analysis and Processing Unsupervised Prediction of Example Difficulty iii/103 Laburpena Hitzen Adiera Desanbiguazioa (HAD) Hizkuntzaren Prozesamenduko (HP) erronkarik handienetakoa da. Frogatu denez, HAD sistema ahalik eta arrakastatsuenak entrenatzeko, oso garrantzitsua da entrenatze-datuetatik adibide (hitzen testuinguru) zailak kentzea, honela emaitzak asko hobetzen baitira. Lan honetan, lehenik, gainbegiratutako ereduak aztertzen ditugu, eta, ondoren, gainbegiratu gabeko bi neurri proposatzen ditugu. Gainbegiratutako ereduetan, adibideen zailtasuna definitzeko, anotatutako corpuseko datuak erabiltzen dira. Proposatzen ditugun bi gainbegiratu gabeko neurrietan, berriz, batetik, aztergai den hitzaren zailtasuna neurtzen da (hitzon Wordnet-eko datuak aztertuta), eta, bestetik, hitzaren agerpenarena (alegia, hitzaren testuinguruarena edo adibidearena). Biak konbinatuta, adibideen zailtasuna ezaugarritzeko eredu bat ere proposatzen da. Abstract Word Sense Disambiguation (WSD) is one of the major challenges in
    [Show full text]
  • Robust Prediction of Punctuation and Truecasing for Medical ASR
    Robust Prediction of Punctuation and Truecasing for Medical ASR Monica Sunkara Srikanth Ronanki Kalpit Dixit Sravan Bodapati Katrin Kirchhoff Amazon AWS AI, USA fsunkaral, [email protected] Abstract the accuracy of subsequent natural language under- standing algorithms (Peitz et al., 2011a; Makhoul Automatic speech recognition (ASR) systems et al., 2005) to identify information such as pa- in the medical domain that focus on transcrib- tient diagnosis, treatments, dosages, symptoms and ing clinical dictations and doctor-patient con- signs. Typically, clinicians explicitly dictate the versations often pose many challenges due to the complexity of the domain. ASR output punctuation commands like “period”, “add comma” typically undergoes automatic punctuation to etc., and a postprocessing component takes care enable users to speak naturally, without hav- of punctuation restoration. This process is usu- ing to vocalise awkward and explicit punc- ally error-prone as the clinicians may struggle with tuation commands, such as “period”, “add appropriate punctuation insertion during dictation. comma” or “exclamation point”, while true- Moreover, doctor-patient conversations lack ex- casing enhances user readability and improves plicit vocalization of punctuation marks motivating the performance of downstream NLP tasks. This paper proposes a conditional joint mod- the need for automatic prediction of punctuation eling framework for prediction of punctuation and truecasing. In this work, we aim to solve the and truecasing using pretrained masked lan- problem of automatic punctuation and truecasing guage models such as BERT, BioBERT and restoration to medical ASR system text outputs. RoBERTa. We also present techniques for Most recent approaches to punctuation and true- domain and task specific adaptation by fine- casing restoration problem rely on deep learning tuning masked language models with medical (Nguyen et al., 2019a; Salloum et al., 2017).
    [Show full text]
  • Evaluation of Machine Translation Methods Applied to Medical Terminologies
    Evaluation of Machine Translation Methods applied to Medical Terminologies Konstantinos Skianis Yann Briand, Florent Desgrippes BLUAI Agence du Numerique´ en Sante´ Athens, Greece Paris, France [email protected] [email protected] [email protected] Abstract process can be expensive both in terms of time and resources, while the vocabulary and number of Medical terminologies resources and stan- medical terms can reach high numbers and require dards play vital roles in clinical data ex- changes, enabling significantly the services’ health professional efforts for evaluation. interoperability within healthcare national in- This work constitutes a generic, language- formation networks. Health and medical sci- independent and open methodology for medical ence are constantly evolving causing require- terminology translation. To illustrate our approach, ments to advance the terminologies editions. which is based on automated machine translation In this paper, we present our evaluation work methods, we will attempt to develop a first baseline of the latest machine translation techniques ad- translation from English to French for the ICD- dressing medical terminologies. Experiments 11 classification. We also test on the International have been conducted leveraging selected statis- tical and neural machine translation methods. Classification of Functioning, Disability and Health 2 The devised procedure is tested on a validated (ICF) terminology . sample of ICD-11 and ICF terminologies from First, we are going to investigate existing ma- English to French with promising results. chine translation research studies concerning medi- cal terms and documents, with a comparison of the 1 Introduction relative methods. Next, we present our proposed Medical terminologies are of essential importance methodology.
    [Show full text]
  • Copyright and Use of This Thesis This Thesis Must Be Used in Accordance with the Provisions of the Copyright Act 1968
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Structured Named Entities Nicky Ringland Supervisor: James Curran A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the School of Information Technologies at The University of Sydney School of Information Technologies 2016 i Abstract The names of people, locations, and organisations play a central role in language, and named entity recognition (NER) has been widely studied, and successfully incorporated, into natural language processing (NLP) applications.
    [Show full text]
  • Using Named Entity Recognition for Relevance Detection in Social Network Messages
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Using named entity recognition for relevance detection in social network messages Filipe Daniel da Gama Batista Mestrado Integrado em Engenharia Informática e Computação Supervisor: Álvaro Pedro de Barros Borges Reis Figueira July 23, 2017 Using named entity recognition for relevance detection in social network messages Filipe Daniel da Gama Batista Mestrado Integrado em Engenharia Informática e Computação July 23, 2017 Abstract The continuous growth of social networks in the past decade has led to massive amounts of in- formation being generated on a daily-basis. While a lot of this information is merely personal or simply irrelevant to a general audience, relevant news being transmitted through social networks is an increasingly common phenomenon, and therefore detecting such news automatically has become a field of interest and active research. The contribution of the present thesis consisted in studying the importance of named entities in the task of relevance detection. With that in mind, the goal of this work was twofold: 1) to implement or find the best named entity recognition tools for social media texts, and 2) to analyze the importance of extracted entities from posts as features for relevance detection with machine learning. There are already well-known named entity recognition tools, however, most state-of-the-art tools for named entity recognition show significant decrease of performance when tested on social media texts, in comparison to news media texts. This is mainly due to the informal character of so- cial media texts: the absence of context, the lack of proper punctuation, wrong capitalization, the use of characters to represent emoticons, spelling errors and even the use of different languages in the same text.
    [Show full text]
  • A Rule-Based Normalization System for Greek Noisy User-Generated Text
    A Rule-Based Normalization System for Greek Noisy User-Generated Text Marsida Toska Uppsala University Department of Linguistics and Philology Master Programme in Language Technology Master’s Thesis in Language Technology, 30 ECTS credits November 9, 2020 Supervisor: Eva Pettersson Abstract The ever-growing usage of social media platforms generates daily vast amounts of textual data which could potentially serve as a great source of information. There- fore, mining user-generated data for commercial, academic, or other purposes has already attracted the interest of the research community. However, the informal writing which often characterizes online user-generated texts poses a challenge for automatic text processing with Natural Language Processing (NLP) tools. To mitigate the effect of noise in these texts, lexical normalization has been proposed as a preprocessing method which in short is the task of converting non-standard word forms into a canonical one. The present work aims to contribute to this field by developing a rule-based normalization system for Greek Tweets. We perform an analysis of the categories of the out-of-vocabulary (OOV) word forms identified in the dataset and define hand-crafted rules which we combine with edit distance (Levenshtein distance approach) to tackle noise in the cases under scope. To evaluate the performance of the system we perform both an intrinsic and an extrinsic evaluation in order to explore the effect of normalization on the part-of-speech-tagging. The results of the intrinsic evaluation suggest that our system has an accuracy of approx. 95% compared to approx. 81% for the baseline. In the extrinsic evaluation, it is observed a boost of approx.
    [Show full text]
  • Proceedings Chapter Reference
    Proceedings Chapter ResToRinG CaPitaLiZaTion in #TweeTs NEBHI, Kamel, BONTCHEVA, Kalina, GORRELL, Genevieve Abstract The rapid proliferation of microblogs such as Twitter has resulted in a vast quantity of written text becoming available that contains interesting information for NLP tasks. However, the noise level in tweets is so high that standard NLP tools perform poorly. In this paper, we present a statistical truecaser for tweets using a 3-gram language model built with truecased newswire texts and tweets. Our truecasing method shows an improvement in named entity recognition and part-of-speech tagging tasks. Reference NEBHI, Kamel, BONTCHEVA, Kalina, GORRELL, Genevieve. ResToRinG CaPitaLiZaTion in #TweeTs. In: 3rd International Workshop on Natural Language Processing for Social Media in conjunction with WWW 2015. 2015. p. 1111-1115 Available at: http://archive-ouverte.unige.ch/unige:72793 Disclaimer: layout of this document may differ from the published version. 1 / 1 ResToRinG CaPitaLiZaTion in #TweeTs Kamel Nebhi Kalina Bontcheva Genevieve Gorrell LATL-CUI University of Sheffield University of Sheffield University of Geneva 211 Portobello 211 Portobello 7, route de Drize Sheffield S1 4DP, UK Sheffield S1 4DP, UK 1227 Carouge, Switzerland [email protected] [email protected] [email protected] ABSTRACT In this paper, we show the overall impact of tweet truecasing The rapid proliferation of microblogs such as Twitter has resulted in Named Entity Recognition (NER) and part-of-speech (PoS) tag- in a vast quantity of written text becoming available that contains ging. We demonstrate that our statistical truecaser, which uses a interesting information for NLP tasks.
    [Show full text]
  • Proceedings of the ACL-IJCNLP 2015 System Demonstrations
    ACL-IJCNLP 2015 The 53rd Annual Meeting of the Association for Computational Linguistics and The 7th International Joint Conference on Natural Language Processing Proceedings of System Demonstrations July 26-31, 2015 Beijing, China c 2015 The Association for Computational Linguistics and The Asian Federation of Natural Language Processing Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-941643-99-0 ii Preface Welcome to the proceedings of the system demonstrations session. This volume contains the papers of the system demonstrations presented at the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, on July 26-31, 2015 in Beijing, China. The system demonstrations program offers the presentation of early research prototypes as well as interesting mature systems. We received 62 submissions, of which 25 were selected for inclusion in the program (acceptance rate of 40.32%) after review by three members of the program committee. We would like to thank the members of the program committee for their timely help in reviewing the submissions. System Demonstration Co-Chairs Hsin-Hsi Chen Katja Markert iii Organizers Co-Chairs: Hsin-Hsi Chen, National Taiwan University (Taiwan) Katja Markert, University of Hanover (Germany) and University of Leeds (UK) Program Committee: Johan Bos, University of Groningen (Netherlands) Miriam Butt, University of Konstanz (Germany) Wenliang Chen, Soochow University, Suzhou (China) Gao Cong, Nanyang Technological University (Singapore) Katja Filippova, Google Inc.
    [Show full text]