Evaluation of Machine Translation Methods Applied to Medical Terminologies

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Machine Translation Methods Applied to Medical Terminologies Evaluation of Machine Translation Methods applied to Medical Terminologies Konstantinos Skianis Yann Briand, Florent Desgrippes BLUAI Agence du Numerique´ en Sante´ Athens, Greece Paris, France [email protected] [email protected] [email protected] Abstract process can be expensive both in terms of time and resources, while the vocabulary and number of Medical terminologies resources and stan- medical terms can reach high numbers and require dards play vital roles in clinical data ex- changes, enabling significantly the services’ health professional efforts for evaluation. interoperability within healthcare national in- This work constitutes a generic, language- formation networks. Health and medical sci- independent and open methodology for medical ence are constantly evolving causing require- terminology translation. To illustrate our approach, ments to advance the terminologies editions. which is based on automated machine translation In this paper, we present our evaluation work methods, we will attempt to develop a first baseline of the latest machine translation techniques ad- translation from English to French for the ICD- dressing medical terminologies. Experiments 11 classification. We also test on the International have been conducted leveraging selected statis- tical and neural machine translation methods. Classification of Functioning, Disability and Health 2 The devised procedure is tested on a validated (ICF) terminology . sample of ICD-11 and ICF terminologies from First, we are going to investigate existing ma- English to French with promising results. chine translation research studies concerning medi- cal terms and documents, with a comparison of the 1 Introduction relative methods. Next, we present our proposed Medical terminologies are of essential importance methodology. Afterwards, we show our experi- for health institutions to store, organize and ex- ments and results. Last, we conclude with recom- change all medical-related data generated in labs, mendations for future work. hospitals and other healthcare entities. They are ar- 2 Related Work ranged systematically in dictionaries and lexicons, that follow specific structures and coding rules. In Translating medical terminologies has been a well- order to facilitate hierarchies and connections, the studied topic, with many approaches coming from terms are represented by ontologies, enabling us machine translation. Traditional machine transla- to keep additional information (e.g. a family of tion models first incorporated statistical models, diseases). whose parameters are set through the analysis of WHO International Classification of Diseases bilingual text corpora. (ICD)1 terminology is a diagnostic classification Statistical machine translation (SMT) Eck standard for epidemiology, clinical and research et al.(2004) investigated the usefulness of a large purposes. It is the most used medical dictionary medical database (the Unified Medical Language across national health organizations worldwide. System) for the translation of dialogues between WHO is responsible to maintain the ICD editions doctors and patients using a statistical machine for the English language. ICD-11 is the latest edi- translation system. They showed that the extrac- tion, adopted on May 25th, 2019. As the initial tion of a large dictionary and the usage of semantic medical lexicons which contain these ontologies type information to generalize the training data sig- are created in English, there is an evident need nificantly improves the translation performance. for translation in other languages. This translation 2 1 http://bioportal.lirmm.fr/ontologies/ https://icd.who.int/en ICF 59 Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis, pages 59–69 November 20, 2020. c 2020 Association for Computational Linguistics https://doi.org/10.18653/v1/P17 Resources Type Method Languages Nystrom¨ et al.(2006) ICD-10, ICF, MeSH SMT Alignment En-Swe Deleger´ et al.(2010) MeSH, SNMI, MedDRA 17, WHO-ART SMT Knowledge, Corpus En-Fr Laroche and Langlais(2010) Wiki SMT Projection-based Fr-En Dusekˇ et al.(2014) EMEA, UMLS, MAREC SMT Domain Multi Silva et al.(2015) SNOMED CT, DBPedia Auto Alignment En-Por Wołk and Marasek(2015) EMEA NMT Encoder-Decoder Pol-En Arcan et al.(2016) Organic.Lingua SMT Domain En-(Ge, It, Sp) Arcan and Buitelaar(2017) ICD, Wiki Both Knowledge Base En-Ge Renato et al.(2018) DeCS, Dicionario Medico, Wiki SMT Domain Sp-Por Khan et al.(2018) UFAL, PatTR NMT Domain En-Fr Table 1: Summary of recent techniques for medical terms and texts translation. Claveau and Zweigenbaum(2005) presented a approach. NMT uses a large artificial neural method to automatically translate a large class of network which takes as an input a source sen- terms in the biomedical domain from one language tence (x1; : : : ; xm) and generates its translation to another; it is evaluated on translations between (y1; : : : ; yn), where x and y are source and target French and English. Their technique relies on a words respectively. Till recently, the dominant ap- supervised machine-learning algorithm, called OS- proach to NMT encodes the input sequence and TIA (Oncina, 1991), that infers transducers from subsequently generates a variable length translated examples of bilingual term-pairs. Such transducers, sequence using recurrent neural networks (RNN) when given a new term in English (respectively (Bahdanau et al., 2014; Sutskever et al., 2014). French), must propose the corresponding French NMT differs entirely from phrase-based statistical (resp. English) term. approaches that use separately engineered subcom- Later, Nystrom¨ et al.(2006) reports on a parallel ponents (Wołk and Marasek, 2015). collection of rubrics from the medical terminology Domain adaptation In machine translation, do- systems ICD-10, ICF, MeSH, NCSP and KSH97- main adaptation can be applied when a large P and its use for semi-automatic creation of an amount of out-of-domain data co-exists with a English-Swedish dictionary of medical terminol- small amount of in-domain data. ogy. The methods presented are relevant for many Arcan and Buitelaar(2017) presented a perfor- other West European language pairs. mance comparison between SMT and NMT meth- Deleger´ et al.(2009) presented a methodology ods on translating highly domain-specific expres- aiming to ease this process by automatically ac- sions, i.e. terminologies, documented in the ICD quiring new translations of medical terms based on ontology from the medical domain. They showed word alignment in parallel text corpora, and test it that domain adaptation with only terminological on English and French. After collecting a parallel, expressions significantly improves the translation English-French corpus, French translations of En- quality, which is specifically evident if an existing glish terms were detected from three terminologies- generic neural network is retrained with a limited MeSH, Snomed CT and the MedlinePlus Health vocabulary of the targeted domain. Last, they ob- Topics. A sample of the MeSH translations was served the benefit of subword models over word- submitted to expert review and a relatively high per- based NMT models for terminology translation. centage of 61.5% were deemed desirable additions All previous work focus on training with specific to the French MeSH. In conclusion, they success- terminologies. Although these methods are widely fully obtained good quality new translations, which used, their vocabulary may be limited. Moreover, underlines the suitability of using alignment in text their size is not sufficient for training NMT meth- corpora to help translating terminologies. Their ods, resulting in low translation performance. method may be applied to different European lan- To address these problems, Khan et al.(2018) guages and provides a methodological framework trained NMT systems by applying transfer learn- that may be used with different processing tools. ing. Transfer learning falls under the umbrella of Neural machine translation (NMT) In recent domain adaptation. In transfer learning the knowl- years, NMT has emerged as the state-of-the-art edge learned from a pre-trained existing model is 60 Terminology Size avg len(en) Incl avg len(en) descriptions on metabolism, blood, dermatological ICD-10 32474 5.49 7655 3.78 CHU Rouen HeTOP 202402 3.63 3892 3.69 and other contents. ORDO 50425 6.2 3716 5.56 ACAD 47603 2.45 2394 1.84 CLADIMED (CLADIMED, 2019) is a five lev- MedDRA 23954 2.72 1739 2.33 ATC 5536 2.06 1588 1.11 els classification for medical devices, based on the MESH 29351 1.99 1460 1.69 ATC classification approach (same families). De- ICD-O 3671 3.24 1122 2.88 vices are classified according to their main use and DBPEDIA 912 1.78 381 1.85 ICPC 3046 7.09 235 2.26 validated indications. It was originally developed ICF 3112 10.67 41 3.24 by AP-HP (hospitals of Paris). CLADIMED 4169 3.72 8 1.75 LOINC 2.66 91388 8.14 5 1.2 Total 499885 4.62 24242 3.35 ACAD (Academie´ de Medecine´ , 2019). The ”dictionnaire medical´ de l’academie´ de medecine”´ Table 2: Reference terminologies and statistics regard- identifies terms used in health and defines them ing the validated sample of ICD-11. Number of sen- under the supervision of the French National tences, average length in number of words (english cor- Academy of Medicine. pus), number of included sentences in the validated sample of ICD-11, and their corresponding average ICD-O (World Health Organization, 2019). The length (number of words). International Classification of Diseases for Oncol- ogy (ICD-O) (1) has been used for nearly 35 years, principally in tumor or cancer registries, for cod- transferred to a new model. Specifically, the au- ing the site (topography) and the histology (mor- thors used an existing out-of-domain model trained phology) of the neoplasm, usually obtained from a on News data. Afterwards, they train their NMT pathology report. system on the in-domain Biomedical’18 corpus3. Table1 summarizes the related work on medi- MESH (Medical Subject Headings) (FR MESH, cal terms and texts translation, showing resources, 2019) is a reference thesaurus in the biomedi- family of machine translation approach, specific cal field.
Recommended publications
  • Integrating Optical Character Recognition and Machine
    Integrating Optical Character Recognition and Machine Translation of Historical Documents Haithem Afli and Andy Way ADAPT Centre School of Computing Dublin City University Dublin, Ireland haithem.afli, andy.way @adaptcentre.ie { } Abstract Machine Translation (MT) plays a critical role in expanding capacity in the translation industry. However, many valuable documents, including digital documents, are encoded in non-accessible formats for machine processing (e.g., Historical or Legal documents). Such documents must be passed through a process of Optical Character Recognition (OCR) to render the text suitable for MT. No matter how good the OCR is, this process introduces recognition errors, which often renders MT ineffective. In this paper, we propose a new OCR to MT framework based on adding a new OCR error correction module to enhance the overall quality of translation. Experimenta- tion shows that our new system correction based on the combination of Language Modeling and Translation methods outperforms the baseline system by nearly 30% relative improvement. 1 Introduction While research on improving Optical Character Recognition (OCR) algorithms is ongoing, our assess- ment is that Machine Translation (MT) will continue to produce unacceptable translation errors (or non- translations) based solely on the automatic output of OCR systems. The problem comes from the fact that current OCR and Machine Translation systems are commercially distinct and separate technologies. There are often mistakes in the scanned texts as the OCR system occasionally misrecognizes letters and falsely identifies scanned text, leading to misspellings and linguistic errors in the output text (Niklas, 2010). Works involved in improving translation services purchase off-the-shelf OCR technology but have limited capability to adapt the OCR processing to improve overall machine translation perfor- mance.
    [Show full text]
  • Machine Translation for Academic Purposes Grace Hui-Chin Lin
    Proceedings of the International Conference on TESOL and Translation 2009 December 2009: pp.133-148 Machine Translation for Academic Purposes Grace Hui-chin Lin PhD Texas A&M University College Station Master of Science, University of Southern California Paul Shih Chieh Chien Center for General Education, Taipei Medical University Abstract Due to the globalization trend and knowledge boost in the second millennium, multi-lingual translation has become a noteworthy issue. For the purposes of learning knowledge in academic fields, Machine Translation (MT) should be noticed not only academically but also practically. MT should be informed to the translating learners because it is a valuable approach to apply by professional translators for diverse professional fields. For learning translating skills and finding a way to learn and teach through bi-lingual/multilingual translating functions in software, machine translation is an ideal approach that translation trainers, translation learners, and professional translators should be familiar with. In fact, theories for machine translation and computer assistance had been highly valued by many scholars. (e.g., Hutchines, 2003; Thriveni, 2002) Based on MIT’s Open Courseware into Chinese that Lee, Lin and Bonk (2007) have introduced, this paper demonstrates how MT can be efficiently applied as a superior way of teaching and learning. This article predicts the translated courses utilizing MT for residents of global village should emerge and be provided soon in industrialized nations and it exhibits an overview about what the current developmental status of MT is, why the MT should be fully applied for academic purpose, such as translating a textbook or teaching and learning a course, and what types of software can be successfully applied.
    [Show full text]
  • Preliminary Version of the Text Analysis Component, Including: Ner, Event Detection and Sentiment Analysis
    D4.1 PRELIMINARY VERSION OF THE TEXT ANALYSIS COMPONENT, INCLUDING: NER, EVENT DETECTION AND SENTIMENT ANALYSIS Grant Agreement nr 611057 Project acronym EUMSSI Start date of project (dur.) December 1st 2013 (36 months) Document due Date : November 30th 2014 (+60 days) (12 months) Actual date of delivery December 2nd 2014 Leader GFAI Reply to [email protected] Document status Submitted Project co-funded by ICT-7th Framework Programme from the European Commission EUMSSI_D4.1 Preliminary version of the text analysis component 1 Project ref. no. 611057 Project acronym EUMSSI Project full title Event Understanding through Multimodal Social Stream Interpretation Document name EUMSSI_D4.1_Preliminary version of the text analysis component.pdf Security (distribution PU – Public level) Contractual date of November 30th 2014 (+60 days) delivery Actual date of December 2nd 2014 delivery Deliverable name Preliminary Version of the Text Analysis Component, including: NER, event detection and sentiment analysis Type P – Prototype Status Submitted Version number v1 Number of pages 60 WP /Task responsible GFAI / GFAI & UPF Author(s) Susanne Preuss (GFAI), Maite Melero (UPF) Other contributors Mahmoud Gindiyeh (GFAI), Eelco Herder (LUH), Giang Tran Binh (LUH), Jens Grivolla (UPF) EC Project Officer Mrs. Aleksandra WESOLOWSKA [email protected] Abstract The deliverable reports on the resources and tools that have been gathered and installed for the preliminary version of the text analysis component Keywords Text analysis component, Named Entity Recognition, Named Entity Linking, Keyphrase Extraction, Relation Extraction, Topic modelling, Sentiment Analysis Circulated to partners Yes Peer review Yes completed Peer-reviewed by Eelco Herder (L3S) Coordinator approval Yes EUMSSI_D4.1 Preliminary version of the text analysis component 2 Table of Contents 1.
    [Show full text]
  • Machine Translation for Language Preservation
    Machine translation for language preservation Steven BIRD1,2 David CHIANG3 (1) Department of Computing and Information Systems, University of Melbourne (2) Linguistic Data Consortium, University of Pennsylvania (3) Information Sciences Institute, University of Southern California [email protected], [email protected] ABSTRACT Statistical machine translation has been remarkably successful for the world’s well-resourced languages, and much effort is focussed on creating and exploiting rich resources such as treebanks and wordnets. Machine translation can also support the urgent task of document- ing the world’s endangered languages. The primary object of statistical translation models, bilingual aligned text, closely coincides with interlinear text, the primary artefact collected in documentary linguistics. It ought to be possible to exploit this similarity in order to improve the quantity and quality of documentation for a language. Yet there are many technical and logistical problems to be addressed, starting with the problem that – for most of the languages in question – no texts or lexicons exist. In this position paper, we examine these challenges, and report on a data collection effort involving 15 endangered languages spoken in the highlands of Papua New Guinea. KEYWORDS: endangered languages, documentary linguistics, language resources, bilingual texts, comparative lexicons. Proceedings of COLING 2012: Posters, pages 125–134, COLING 2012, Mumbai, December 2012. 125 1 Introduction Most of the world’s 6800 languages are relatively unstudied, even though they are no less im- portant for scientific investigation than major world languages. For example, before Hixkaryana (Carib, Brazil) was discovered to have object-verb-subject word order, it was assumed that this word order was not possible in a human language, and that some principle of universal grammar must exist to account for this systematic gap (Derbyshire, 1977).
    [Show full text]
  • Information Retrieval and Web Search
    Information Retrieval and Web Search Text processing Instructor: Rada Mihalcea (Note: Some of the slides in this slide set were adapted from an IR course taught by Prof. Ray Mooney at UT Austin) IR System Architecture User Interface Text User Text Operations Need Logical View User Query Database Indexing Feedback Operations Manager Inverted file Query Searching Index Text Ranked Retrieved Database Docs Ranking Docs Text Processing Pipeline Documents to be indexed Friends, Romans, countrymen. OR User query Tokenizer Token stream Friends Romans Countrymen Linguistic modules Modified tokens friend roman countryman Indexer friend 2 4 1 2 Inverted index roman countryman 13 16 From Text to Tokens to Terms • Tokenization = segmenting text into tokens: • token = a sequence of characters, in a particular document at a particular position. • type = the class of all tokens that contain the same character sequence. • “... to be or not to be ...” 3 tokens, 1 type • “... so be it, he said ...” • term = a (normalized) type that is included in the IR dictionary. • Example • text = “I slept and then I dreamed” • tokens = I, slept, and, then, I, dreamed • types = I, slept, and, then, dreamed • terms = sleep, dream (stopword removal). Simple Tokenization • Analyze text into a sequence of discrete tokens (words). • Sometimes punctuation (e-mail), numbers (1999), and case (Republican vs. republican) can be a meaningful part of a token. – However, frequently they are not. • Simplest approach is to ignore all numbers and punctuation and use only case-insensitive
    [Show full text]
  • Machine Translation and Computer-Assisted Translation: a New Way of Translating? Author: Olivia Craciunescu E-Mail: Olivia [email protected]
    Machine Translation and Computer-Assisted Translation: a New Way of Translating? Author: Olivia Craciunescu E-mail: [email protected] Author: Constanza Gerding-Salas E-mail: [email protected] Author: Susan Stringer-O’Keeffe E-mail: [email protected] Source: http://www.translationdirectory.com The Need for Translation IT has produced a screen culture that Technology tends to replace the print culture, with printed documents being dispensed Advances in information technology (IT) with and information being accessed have combined with modern communication and relayed directly through computers requirements to foster translation automation. (e-mail, databases and other stored The history of the relationship between information). These computer documents technology and translation goes back to are instantly available and can be opened the beginnings of the Cold War, as in the and processed with far greater fl exibility 1950s competition between the United than printed matter, with the result that the States and the Soviet Union was so intensive status of information itself has changed, at every level that thousands of documents becoming either temporary or permanent were translated from Russian to English and according to need. Over the last two vice versa. However, such high demand decades we have witnessed the enormous revealed the ineffi ciency of the translation growth of information technology with process, above all in specialized areas of the accompanying advantages of speed, knowledge, increasing interest in the idea visual
    [Show full text]
  • Language Service Translation SAVER Technote
    TechNote August 2020 LANGUAGE TRANSLATION APPLICATIONS The U.S. Department of Homeland Security (DHS) AEL Number: 09ME-07-TRAN established the System Assessment and Validation for Language translation equipment used by emergency services has evolved into Emergency Responders commercially available, mobile device applications (apps). The wide adoption of (SAVER) Program to help cell phones has enabled language translation applications to be useful in emergency responders emergency scenarios where first responders may interact with individuals who improve their procurement speak a different language. Most language translation applications can identify decisions. a spoken language and translate in real-time. Applications vary in functionality, Located within the Science such as the ability to translate voice or text offline and are unique in the number and Technology Directorate, of available translatable languages. These applications are useful tools to the National Urban Security remedy communication barriers in any emergency response scenario. Technology Laboratory (NUSTL) manages the SAVER Overview Program and conducts objective operational During an emergency response, language barriers can challenge a first assessments of commercial responder’s ability to quickly assess and respond to a situation. First responders equipment and systems must be able to accurately communicate with persons at an emergency scene in relevant to the emergency order to provide a prompt, appropriate response. The quick translations provided responder community. by mobile apps remove the language barrier and are essential to the safety of The SAVER Program gathers both first responders and civilians with whom they interact. and reports information about equipment that falls within the Before the adoption of smartphones, first responders used language interpreters categories listed in the DHS and later language translation equipment such as hand-held language Authorized Equipment List translation devices (Figure 1).
    [Show full text]
  • Terminology Extraction, Translation Tools and Comparable Corpora Helena Blancafort, Béatrice Daille, Tatiana Gornostay, Ulrich Heid, Claude Méchoulam, Serge Sharoff
    TTC: Terminology Extraction, Translation Tools and Comparable Corpora Helena Blancafort, Béatrice Daille, Tatiana Gornostay, Ulrich Heid, Claude Méchoulam, Serge Sharoff To cite this version: Helena Blancafort, Béatrice Daille, Tatiana Gornostay, Ulrich Heid, Claude Méchoulam, et al.. TTC: Terminology Extraction, Translation Tools and Comparable Corpora. 14th EURALEX International Congress, Jul 2010, Leeuwarden/Ljouwert, Netherlands. pp.263-268. hal-00819365 HAL Id: hal-00819365 https://hal.archives-ouvertes.fr/hal-00819365 Submitted on 2 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TTC: Terminology Extraction, Translation Tools and Comparable Corpora Helena Blancafort, Syllabs, Universitat Pompeu Fabra, Barcelona, Spain Béatrice Daille, LINA, Université de Nantes, France Tatiana Gornostay, Tilde, Latva Ulrich Heid, IMS, Universität Stuttgart, Germany Claude Mechoulam, Sogitec, France Serge Sharoff, CTS, University of Leeds, England The need for linguistic resources in any natural language application is undeniable. Lexicons and terminologies
    [Show full text]
  • Acknowledging the Needs of Computer-Assisted Translation Tools Users: the Human Perspective in Human-Machine Translation Annemarie Taravella and Alain O
    The Journal of Specialised Translation Issue 19 – January 2013 Acknowledging the needs of computer-assisted translation tools users: the human perspective in human-machine translation AnneMarie Taravella and Alain O. Villeneuve, Université de Sherbrooke, Quebec ABSTRACT The lack of translation specialists poses a problem for the growing translation markets around the world. One of the solutions proposed for the lack of human resources is automated translation tools. In the last few decades, organisations have had the opportunity to increase their use of technological resources. However, there is no consensus on the way that technological resources should be integrated into translation service providers (TSP). The approach taken by this article is to set aside both 100% human translation and 100% machine translation (without human intervention), to examine a third, more realistic solution: interactive translation where humans and machines co-operate. What is the human role? Based on the conceptual framework of information systems and organisational sciences, we recommend giving users, who are mainly translators for whom interactive translation tools are designed, a fundamental role in the thinking surrounding the implementation of a technological tool. KEYWORDS Interactive translation, information system, implementation, business process reengineering, organisational science. 1. Introduction Globalisation and the acceleration of world trade operations have led to an impressive growth of the global translation services market. According to EUATC (European Union of Associations of Translation Companies), translation industry is set to grow around five percent annually in the foreseeable future (Hager, 2008). With its two official languages, Canada is a good example of an important translation market, where highly skilled professional translators serve not only the domestic market, but international clients as well.
    [Show full text]
  • MULTILINGUAL CHATBOT with HUMAN CONVERSATIONAL ABILITY [1] Aradhana Bisht, [2] Gopan Doshi, [3] Bhavna Arora, [4] Suvarna Pansambal [1][2] Student, Dept
    International Journal of Future Generation Communication and Networking Vol. 13, No. 1s, (2020), pp. 138- 146 MULTILINGUAL CHATBOT WITH HUMAN CONVERSATIONAL ABILITY [1] Aradhana Bisht, [2] Gopan Doshi, [3] Bhavna Arora, [4] Suvarna Pansambal [1][2] Student, Dept. of Computer Engineering,[3][4] Asst. Prof., Dept. of Computer Engineering, Atharva College of Engineering, Mumbai, India Abstract Chatbots - The chatbot technology has become very fascinating to people around the globe because of its ability to communicate with humans. They respond to the user query and are sometimes capable of executing sundry tasks. Its implementation is easier because of wide availability of development platforms and language libraries. Most of the chatbots support English language only and very few have the skill to communicate in multiple languages. In this paper we are proposing an idea to build a chatbot that can communicate in as many languages as google translator supports and also the chatbot will be capable of doing humanly conversation. This can be done by using various technologies such as Natural Language Processing (NLP) techniques, Sequence To Sequence Modeling with encoder decoder architecture[12]. We aim to build a chatbot which will be like virtual assistant and will have the ability to have conversations more like human to human rather than human to bot and will also be able to communicate in multiple languages. Keywords: Chatbot, Multilingual, Communication, Human Conversational, Virtual agent, NLP, GNMT. 1. Introduction A chatbot is a virtual agent for conversation, which is capable of answering user queries in the form of text or speech. In other words, a chatbot is a software application/program that can chat with a user on any topic[5].
    [Show full text]
  • Exploring the Use of Acoustic Embeddings in Neural Machine Translation
    This is a repository copy of Exploring the use of Acoustic Embeddings in Neural Machine Translation. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/121515/ Version: Accepted Version Proceedings Paper: Deena, S., Ng, R.W.M., Madhyashtha, P. et al. (2 more authors) (2018) Exploring the use of Acoustic Embeddings in Neural Machine Translation. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop. 2017 IEEE Automatic Speech Recognition and Understanding Workshop, December 16-20, 2017, Okinawa, Japan. IEEE . ISBN 978-1-5090-4788-8 https://doi.org/10.1109/ASRU.2017.8268971 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ EXPLORING THE USE OF ACOUSTIC EMBEDDINGS IN NEURAL MACHINE TRANSLATION Salil Deena1, Raymond W. M. Ng1, Pranava Madhyastha2, Lucia Specia2 and Thomas Hain1 1Speech and Hearing Research Group, The University of Sheffield, UK 2Natural Language Processing Research Group, The University of Sheffield, UK {s.deena, wm.ng, p.madhyastha, l.specia, t.hain}@sheffield.ac.uk ABSTRACT subsequently used to obtain a topic-informed encoder context Neural Machine Translation (NMT) has recently demon- vector, which is then passed to the decoder.
    [Show full text]
  • Constructing a Lexicon of Arabic-English Named Entity Using SMT and Semantic Linked Data
    Constructing a Lexicon of Arabic-English Named Entity using SMT and Semantic Linked Data Emna Hkiri, Souheyl Mallat, and Mounir Zrigui LaTICE Laboratory, Faculty of Sciences of Monastir, Tunisia Abstract: Named entity recognition is the problem of locating and categorizing atomic entities in a given text. In this work, we used DBpedia Linked datasets and combined existing open source tools to generate from a parallel corpus a bilingual lexicon of Named Entities (NE). To annotate NE in the monolingual English corpus, we used linked data entities by mapping them to Gate Gazetteers. In order to translate entities identified by the gate tool from the English corpus, we used moses, a statistical machine translation system. The construction of the Arabic-English named entities lexicon is based on the results of moses translation. Our method is fully automatic and aims to help Natural Language Processing (NLP) tasks such as, machine translation information retrieval, text mining and question answering. Our lexicon contains 48753 pairs of Arabic-English NE, it is freely available for use by other researchers Keywords: Named Entity Recognition (NER), Named entity translation, Parallel Arabic-English lexicon, DBpedia, linked data entities, parallel corpus, SMT. Received April 1, 2015; accepted October 7, 2015 1. Introduction Section 5 concludes the paper with directions for future work. Named Entity Recognition (NER) consists in recognizing and categorizing all the Named Entities 2. State of the art (NE) in a given text, corresponding to two intuitive IAJIT First classes; proper names (persons, locations and Written and spoken Arabic is considered as difficult organizations), numeric expressions (time, date, money language to apprehend in the domain of Natural and percent).
    [Show full text]