Neural Machine Translation System of Indic Languages - an Attention Based Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrating Optical Character Recognition and Machine
Integrating Optical Character Recognition and Machine Translation of Historical Documents Haithem Afli and Andy Way ADAPT Centre School of Computing Dublin City University Dublin, Ireland haithem.afli, andy.way @adaptcentre.ie { } Abstract Machine Translation (MT) plays a critical role in expanding capacity in the translation industry. However, many valuable documents, including digital documents, are encoded in non-accessible formats for machine processing (e.g., Historical or Legal documents). Such documents must be passed through a process of Optical Character Recognition (OCR) to render the text suitable for MT. No matter how good the OCR is, this process introduces recognition errors, which often renders MT ineffective. In this paper, we propose a new OCR to MT framework based on adding a new OCR error correction module to enhance the overall quality of translation. Experimenta- tion shows that our new system correction based on the combination of Language Modeling and Translation methods outperforms the baseline system by nearly 30% relative improvement. 1 Introduction While research on improving Optical Character Recognition (OCR) algorithms is ongoing, our assess- ment is that Machine Translation (MT) will continue to produce unacceptable translation errors (or non- translations) based solely on the automatic output of OCR systems. The problem comes from the fact that current OCR and Machine Translation systems are commercially distinct and separate technologies. There are often mistakes in the scanned texts as the OCR system occasionally misrecognizes letters and falsely identifies scanned text, leading to misspellings and linguistic errors in the output text (Niklas, 2010). Works involved in improving translation services purchase off-the-shelf OCR technology but have limited capability to adapt the OCR processing to improve overall machine translation perfor- mance. -
The Festvox Indic Frontend for Grapheme-To-Phoneme Conversion
The Festvox Indic Frontend for Grapheme-to-Phoneme Conversion Alok Parlikar, Sunayana Sitaram, Andrew Wilkinson and Alan W Black Carnegie Mellon University Pittsburgh, USA aup, ssitaram, aewilkin, [email protected] Abstract Text-to-Speech (TTS) systems convert text into phonetic pronunciations which are then processed by Acoustic Models. TTS frontends typically include text processing, lexical lookup and Grapheme-to-Phoneme (g2p) conversion stages. This paper describes the design and implementation of the Indic frontend, which provides explicit support for many major Indian languages, along with a unified framework with easy extensibility for other Indian languages. The Indic frontend handles many phenomena common to Indian languages such as schwa deletion, contextual nasalization, and voicing. It also handles multi-script synthesis between various Indian-language scripts and English. We describe experiments comparing the quality of TTS systems built using the Indic frontend to grapheme-based systems. While this frontend was designed keeping TTS in mind, it can also be used as a general g2p system for Automatic Speech Recognition. Keywords: speech synthesis, Indian language resources, pronunciation 1. Introduction in models of the spectrum and the prosody. Another prob- lem with this approach is that since each grapheme maps Intelligible and natural-sounding Text-to-Speech to a single “phoneme” in all contexts, this technique does (TTS) systems exist for a number of languages of the world not work well in the case of languages that have pronun- today. However, for low-resource, high-population lan- ciation ambiguities. We refer to this technique as “Raw guages, such as languages of the Indian subcontinent, there Graphemes.” are very few high-quality TTS systems available. -
Machine Translation for Academic Purposes Grace Hui-Chin Lin
Proceedings of the International Conference on TESOL and Translation 2009 December 2009: pp.133-148 Machine Translation for Academic Purposes Grace Hui-chin Lin PhD Texas A&M University College Station Master of Science, University of Southern California Paul Shih Chieh Chien Center for General Education, Taipei Medical University Abstract Due to the globalization trend and knowledge boost in the second millennium, multi-lingual translation has become a noteworthy issue. For the purposes of learning knowledge in academic fields, Machine Translation (MT) should be noticed not only academically but also practically. MT should be informed to the translating learners because it is a valuable approach to apply by professional translators for diverse professional fields. For learning translating skills and finding a way to learn and teach through bi-lingual/multilingual translating functions in software, machine translation is an ideal approach that translation trainers, translation learners, and professional translators should be familiar with. In fact, theories for machine translation and computer assistance had been highly valued by many scholars. (e.g., Hutchines, 2003; Thriveni, 2002) Based on MIT’s Open Courseware into Chinese that Lee, Lin and Bonk (2007) have introduced, this paper demonstrates how MT can be efficiently applied as a superior way of teaching and learning. This article predicts the translated courses utilizing MT for residents of global village should emerge and be provided soon in industrialized nations and it exhibits an overview about what the current developmental status of MT is, why the MT should be fully applied for academic purpose, such as translating a textbook or teaching and learning a course, and what types of software can be successfully applied. -
Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe Romanization: KNAB 2012
Institute of the Estonian Language KNAB: Place Names Database 2012-10-11 Tai Lü / ᦺᦑᦟᦹᧉ Tai Lùe romanization: KNAB 2012 I. Consonant characters 1 ᦀ ’a 13 ᦌ sa 25 ᦘ pha 37 ᦤ da A 2 ᦁ a 14 ᦍ ya 26 ᦙ ma 38 ᦥ ba A 3 ᦂ k’a 15 ᦎ t’a 27 ᦚ f’a 39 ᦦ kw’a 4 ᦃ kh’a 16 ᦏ th’a 28 ᦛ v’a 40 ᦧ khw’a 5 ᦄ ng’a 17 ᦐ n’a 29 ᦜ l’a 41 ᦨ kwa 6 ᦅ ka 18 ᦑ ta 30 ᦝ fa 42 ᦩ khwa A 7 ᦆ kha 19 ᦒ tha 31 ᦞ va 43 ᦪ sw’a A A 8 ᦇ nga 20 ᦓ na 32 ᦟ la 44 ᦫ swa 9 ᦈ ts’a 21 ᦔ p’a 33 ᦠ h’a 45 ᧞ lae A 10 ᦉ s’a 22 ᦕ ph’a 34 ᦡ d’a 46 ᧟ laew A 11 ᦊ y’a 23 ᦖ m’a 35 ᦢ b’a 12 ᦋ tsa 24 ᦗ pa 36 ᦣ ha A Syllable-final forms of these characters: ᧅ -k, ᧂ -ng, ᧃ -n, ᧄ -m, ᧁ -u, ᧆ -d, ᧇ -b. See also Note D to Table II. II. Vowel characters (ᦀ stands for any consonant character) C 1 ᦀ a 6 ᦀᦴ u 11 ᦀᦹ ue 16 ᦀᦽ oi A 2 ᦰ ( ) 7 ᦵᦀ e 12 ᦵᦀᦲ oe 17 ᦀᦾ awy 3 ᦀᦱ aa 8 ᦶᦀ ae 13 ᦺᦀ ai 18 ᦀᦿ uei 4 ᦀᦲ i 9 ᦷᦀ o 14 ᦀᦻ aai 19 ᦀᧀ oei B D 5 ᦀᦳ ŭ,u 10 ᦀᦸ aw 15 ᦀᦼ ui A Indicates vowel shortness in the following cases: ᦀᦲᦰ ĭ [i], ᦵᦀᦰ ĕ [e], ᦶᦀᦰ ăe [ ∎ ], ᦷᦀᦰ ŏ [o], ᦀᦸᦰ ăw [ ], ᦀᦹᦰ ŭe [ ɯ ], ᦵᦀᦲᦰ ŏe [ ]. -
Machine Translation for Language Preservation
Machine translation for language preservation Steven BIRD1,2 David CHIANG3 (1) Department of Computing and Information Systems, University of Melbourne (2) Linguistic Data Consortium, University of Pennsylvania (3) Information Sciences Institute, University of Southern California [email protected], [email protected] ABSTRACT Statistical machine translation has been remarkably successful for the world’s well-resourced languages, and much effort is focussed on creating and exploiting rich resources such as treebanks and wordnets. Machine translation can also support the urgent task of document- ing the world’s endangered languages. The primary object of statistical translation models, bilingual aligned text, closely coincides with interlinear text, the primary artefact collected in documentary linguistics. It ought to be possible to exploit this similarity in order to improve the quantity and quality of documentation for a language. Yet there are many technical and logistical problems to be addressed, starting with the problem that – for most of the languages in question – no texts or lexicons exist. In this position paper, we examine these challenges, and report on a data collection effort involving 15 endangered languages spoken in the highlands of Papua New Guinea. KEYWORDS: endangered languages, documentary linguistics, language resources, bilingual texts, comparative lexicons. Proceedings of COLING 2012: Posters, pages 125–134, COLING 2012, Mumbai, December 2012. 125 1 Introduction Most of the world’s 6800 languages are relatively unstudied, even though they are no less im- portant for scientific investigation than major world languages. For example, before Hixkaryana (Carib, Brazil) was discovered to have object-verb-subject word order, it was assumed that this word order was not possible in a human language, and that some principle of universal grammar must exist to account for this systematic gap (Derbyshire, 1977). -
Machine Translation and Computer-Assisted Translation: a New Way of Translating? Author: Olivia Craciunescu E-Mail: Olivia [email protected]
Machine Translation and Computer-Assisted Translation: a New Way of Translating? Author: Olivia Craciunescu E-mail: [email protected] Author: Constanza Gerding-Salas E-mail: [email protected] Author: Susan Stringer-O’Keeffe E-mail: [email protected] Source: http://www.translationdirectory.com The Need for Translation IT has produced a screen culture that Technology tends to replace the print culture, with printed documents being dispensed Advances in information technology (IT) with and information being accessed have combined with modern communication and relayed directly through computers requirements to foster translation automation. (e-mail, databases and other stored The history of the relationship between information). These computer documents technology and translation goes back to are instantly available and can be opened the beginnings of the Cold War, as in the and processed with far greater fl exibility 1950s competition between the United than printed matter, with the result that the States and the Soviet Union was so intensive status of information itself has changed, at every level that thousands of documents becoming either temporary or permanent were translated from Russian to English and according to need. Over the last two vice versa. However, such high demand decades we have witnessed the enormous revealed the ineffi ciency of the translation growth of information technology with process, above all in specialized areas of the accompanying advantages of speed, knowledge, increasing interest in the idea visual -
Language Service Translation SAVER Technote
TechNote August 2020 LANGUAGE TRANSLATION APPLICATIONS The U.S. Department of Homeland Security (DHS) AEL Number: 09ME-07-TRAN established the System Assessment and Validation for Language translation equipment used by emergency services has evolved into Emergency Responders commercially available, mobile device applications (apps). The wide adoption of (SAVER) Program to help cell phones has enabled language translation applications to be useful in emergency responders emergency scenarios where first responders may interact with individuals who improve their procurement speak a different language. Most language translation applications can identify decisions. a spoken language and translate in real-time. Applications vary in functionality, Located within the Science such as the ability to translate voice or text offline and are unique in the number and Technology Directorate, of available translatable languages. These applications are useful tools to the National Urban Security remedy communication barriers in any emergency response scenario. Technology Laboratory (NUSTL) manages the SAVER Overview Program and conducts objective operational During an emergency response, language barriers can challenge a first assessments of commercial responder’s ability to quickly assess and respond to a situation. First responders equipment and systems must be able to accurately communicate with persons at an emergency scene in relevant to the emergency order to provide a prompt, appropriate response. The quick translations provided responder community. by mobile apps remove the language barrier and are essential to the safety of The SAVER Program gathers both first responders and civilians with whom they interact. and reports information about equipment that falls within the Before the adoption of smartphones, first responders used language interpreters categories listed in the DHS and later language translation equipment such as hand-held language Authorized Equipment List translation devices (Figure 1). -
Terminology Extraction, Translation Tools and Comparable Corpora Helena Blancafort, Béatrice Daille, Tatiana Gornostay, Ulrich Heid, Claude Méchoulam, Serge Sharoff
TTC: Terminology Extraction, Translation Tools and Comparable Corpora Helena Blancafort, Béatrice Daille, Tatiana Gornostay, Ulrich Heid, Claude Méchoulam, Serge Sharoff To cite this version: Helena Blancafort, Béatrice Daille, Tatiana Gornostay, Ulrich Heid, Claude Méchoulam, et al.. TTC: Terminology Extraction, Translation Tools and Comparable Corpora. 14th EURALEX International Congress, Jul 2010, Leeuwarden/Ljouwert, Netherlands. pp.263-268. hal-00819365 HAL Id: hal-00819365 https://hal.archives-ouvertes.fr/hal-00819365 Submitted on 2 May 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TTC: Terminology Extraction, Translation Tools and Comparable Corpora Helena Blancafort, Syllabs, Universitat Pompeu Fabra, Barcelona, Spain Béatrice Daille, LINA, Université de Nantes, France Tatiana Gornostay, Tilde, Latva Ulrich Heid, IMS, Universität Stuttgart, Germany Claude Mechoulam, Sogitec, France Serge Sharoff, CTS, University of Leeds, England The need for linguistic resources in any natural language application is undeniable. Lexicons and terminologies -
Acknowledging the Needs of Computer-Assisted Translation Tools Users: the Human Perspective in Human-Machine Translation Annemarie Taravella and Alain O
The Journal of Specialised Translation Issue 19 – January 2013 Acknowledging the needs of computer-assisted translation tools users: the human perspective in human-machine translation AnneMarie Taravella and Alain O. Villeneuve, Université de Sherbrooke, Quebec ABSTRACT The lack of translation specialists poses a problem for the growing translation markets around the world. One of the solutions proposed for the lack of human resources is automated translation tools. In the last few decades, organisations have had the opportunity to increase their use of technological resources. However, there is no consensus on the way that technological resources should be integrated into translation service providers (TSP). The approach taken by this article is to set aside both 100% human translation and 100% machine translation (without human intervention), to examine a third, more realistic solution: interactive translation where humans and machines co-operate. What is the human role? Based on the conceptual framework of information systems and organisational sciences, we recommend giving users, who are mainly translators for whom interactive translation tools are designed, a fundamental role in the thinking surrounding the implementation of a technological tool. KEYWORDS Interactive translation, information system, implementation, business process reengineering, organisational science. 1. Introduction Globalisation and the acceleration of world trade operations have led to an impressive growth of the global translation services market. According to EUATC (European Union of Associations of Translation Companies), translation industry is set to grow around five percent annually in the foreseeable future (Hager, 2008). With its two official languages, Canada is a good example of an important translation market, where highly skilled professional translators serve not only the domestic market, but international clients as well. -
MULTILINGUAL CHATBOT with HUMAN CONVERSATIONAL ABILITY [1] Aradhana Bisht, [2] Gopan Doshi, [3] Bhavna Arora, [4] Suvarna Pansambal [1][2] Student, Dept
International Journal of Future Generation Communication and Networking Vol. 13, No. 1s, (2020), pp. 138- 146 MULTILINGUAL CHATBOT WITH HUMAN CONVERSATIONAL ABILITY [1] Aradhana Bisht, [2] Gopan Doshi, [3] Bhavna Arora, [4] Suvarna Pansambal [1][2] Student, Dept. of Computer Engineering,[3][4] Asst. Prof., Dept. of Computer Engineering, Atharva College of Engineering, Mumbai, India Abstract Chatbots - The chatbot technology has become very fascinating to people around the globe because of its ability to communicate with humans. They respond to the user query and are sometimes capable of executing sundry tasks. Its implementation is easier because of wide availability of development platforms and language libraries. Most of the chatbots support English language only and very few have the skill to communicate in multiple languages. In this paper we are proposing an idea to build a chatbot that can communicate in as many languages as google translator supports and also the chatbot will be capable of doing humanly conversation. This can be done by using various technologies such as Natural Language Processing (NLP) techniques, Sequence To Sequence Modeling with encoder decoder architecture[12]. We aim to build a chatbot which will be like virtual assistant and will have the ability to have conversations more like human to human rather than human to bot and will also be able to communicate in multiple languages. Keywords: Chatbot, Multilingual, Communication, Human Conversational, Virtual agent, NLP, GNMT. 1. Introduction A chatbot is a virtual agent for conversation, which is capable of answering user queries in the form of text or speech. In other words, a chatbot is a software application/program that can chat with a user on any topic[5]. -
Exploring the Use of Acoustic Embeddings in Neural Machine Translation
This is a repository copy of Exploring the use of Acoustic Embeddings in Neural Machine Translation. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/121515/ Version: Accepted Version Proceedings Paper: Deena, S., Ng, R.W.M., Madhyashtha, P. et al. (2 more authors) (2018) Exploring the use of Acoustic Embeddings in Neural Machine Translation. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop. 2017 IEEE Automatic Speech Recognition and Understanding Workshop, December 16-20, 2017, Okinawa, Japan. IEEE . ISBN 978-1-5090-4788-8 https://doi.org/10.1109/ASRU.2017.8268971 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ EXPLORING THE USE OF ACOUSTIC EMBEDDINGS IN NEURAL MACHINE TRANSLATION Salil Deena1, Raymond W. M. Ng1, Pranava Madhyastha2, Lucia Specia2 and Thomas Hain1 1Speech and Hearing Research Group, The University of Sheffield, UK 2Natural Language Processing Research Group, The University of Sheffield, UK {s.deena, wm.ng, p.madhyastha, l.specia, t.hain}@sheffield.ac.uk ABSTRACT subsequently used to obtain a topic-informed encoder context Neural Machine Translation (NMT) has recently demon- vector, which is then passed to the decoder. -
Download Download
Phonotactic frequencies in Marathi KELLY HARPER BERKSON1 and MAX NELSON Indiana University Bloomington, Indiana ABSTRACT: Breathy sonorants are cross-linguistically rare, occurring in just 1% of the languages indexed in the UCLA Phonological Segment Inventory Database (UPSID) and 0.2% of those in the PHOIBLE database (Moran, McCloy and Wright 2014). Prior work has shed some light on their acoustic properties, but little work has investigated the language-internal distribution of these sounds in a language where they do occur, such as Marathi (Indic, spoken mainly in Maharashtra, India). With this in mind, we present an overview of the phonotactic frequencies of consonants, vowels, and CV-bigrams in the Marathi portion of the EMILLE/CIIL corpus. Results of a descriptive analysis show that breathy sonorants are underrepresented, making up fewer than 1% of the consonants in the 2.2 million-word corpus, and that they are disfavored in back vowel contexts. 1 Introduction Languages are rife with gradience. While some sounds, morphological patterns, and syntactic structures occur with great frequency in a language, others—though legal—occur rarely. The same is observed crosslinguistically: some elements and structures are found in language after language, while others are quite rare. For at least the last several decades, cognitive and psycholinguistic investigation of language processing has revealed that language users are sensitive not only to categorical phonological knowledge—such as, for example, the sounds and sound combinations that are legal and illegal in one’s language— but also to this kind of gradient information about phonotactic probabilities. This has been demonstrated in a variety of experimental tasks (Ellis 2002; Frisch, Large, and Pisoni 2000; Storkel and Maekawa 2005; Vitevitch and Luce 2005), which indicate that gradience influences language production, comprehension, and processing phenomena (Ellis 2002; Vitevitch, Armbrüster, and Chu 2004) for infants as well as adults (Jusczyk and Luce 1994).