Discovery of Neptune

Total Page:16

File Type:pdf, Size:1020Kb

Discovery of Neptune DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2018 Discovery of Neptune GUSTAV ERIKSSON KEVIN GARCIA MARTIN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2018 Upptäckten av Neptunus GUSTAV ERIKSSON KEVIN GARCIA MARTIN KTH SKOLAN FÖR TEKNIKVETENSKAP Abstract This project is an analysis of how a planet can be found in space with the aid of mathematics. This is based on the fact that in the 19th century two mathematicians John C. Adams and Urbain Le Verrier both independent of each other found Neptune, the 8th planet in the solar system, by calculating its location based on discrepancies between theoretical and observed longitudes. We recreate Adams’ problem and solve it with numerical analysis to see how one could improve this method of finding a planet using mathematics. We created a model of the solar system using Runge-Kutta 4 (RK4) to solve ODE’s explaining how the planets affect each other. We then created an inverse problem where we pretended that Neptune did not exist and tried to find its position and data using Gauss-Newton’s algorithm. Our method gives a better result than those of Adams, although we use a better start guess for the position of Neptune than he did. The important parameter to find is at what direction to look for the planet, also called the longitude angle. Both Adams and us get close to the correct longitude — Adams’ being 2:5◦ off and us within 1◦. This is especially interesting since without getting this parameter correct they would never have found the planet at that time. Sammanfattning Detta projekt är en analys om hur en planet kan hittas i rymden med hjälp av matematik. Det är baserat på två matematiker, John C. Adams och Urbain Le Verrier, som på 1800-talet oberoende av varandra hittade Neptunus, den åttonde planeten i solsystemet, genom att approximera dess position baserat på avvikelser mellan teoretiska och observerade longituder. Vi återskapar Adams problem och löser det med numerisk analys för att se hur man kan förbättra metoden att hitta planeter genom matematik. Vi skapade en modell av solsystemet med Runge-Kutta 4 (RK4) för att lösa ODE’s som beskriver hur planeterna påverkar varandra. Sedan skapar vi ett inverterat problem där vi låtsas om att Neptunus inte finns och försöker hitta dess position med Gauss-Newtons algoritm. Vår metod ger ett bättre resultat än Adams, vilket beror på att vi använder en bättre startgissning för Neptunus position. Den viktiga parametern att hitta är vid vilken vinkel man ska kolla efter planeten, även kallat longitudvinkeln. Både Adams och vi kommer nära det riktiga värdet — Adams är 2; 5◦ ifrån och vi är inom 1◦. Detta är särskilt intressant eftersom de aldrig skulle hittat planeten utan denna parameter. Contents 1 Introduction 1 1.1 Background.........................................1 1.2 Problem...........................................2 1.3 Result............................................3 2 Simulation of the solar system4 2.1 Newton’s law of universal gravitation...........................4 2.2 System of ODEs for the solar system............................5 2.3 Runge-Kutta 4........................................6 2.4 Acceleration.........................................7 3 Recreating Adams’ problem 12 3.1 Difference in longitude................................... 13 3.2 Changing Uranus’ initial values.............................. 14 3.3 Discussion.......................................... 15 4 Finding Neptune 16 4.1 Gauss-Newton........................................ 16 4.1.1 Stability depending on initial guess........................ 19 4.1.2 Convergence.................................... 19 4.1.3 Minimize residual for position vs angle...................... 20 4.1.4 Local minima.................................... 20 4.1.5 Problem with divergence.............................. 20 4.2 Monte Carlo method.................................... 21 4.3 Conclusions......................................... 26 Chapter 1 Introduction 1.1 Background In 1781 astronomer William Herschel observed and discovered a heavenly body he thought to be either a comet or a star. He later determined the body to be a comet since observations showed that the body was moving. Other astronomers started to research the discovery and Johann E. Bode came in 1783 to the conclusion that the body was a planet due to its nearly circular orbit [1]. This planet was named Uranus, being the 7th planet in the solar system and the first to be discovered with the aid of a telescope. In the aftermath of Uranus’ discovery, astronomers started to observe and record the arc of the planets orbit. The astronomer Alexis Bouvard found discrepancies between the observed and theoretical orbit of Uranus and came to the conclusion that an undiscovered planet beyond Uranus was the cause. In 1821 Bouvard compiled a table of the differences between theoretical and observed heliocentric longitude which later came to be very important for the discovery of the planet beyond Uranus, today known as Neptune. In 1843 the British mathematician John C. Adams made a first attempt at solving the problem with the positional discrepancies in Uranus’ orbit. Adams’ conclusion was that "The result showed [...] a good general agreement between theory and observation might be obtained." [2, p. 266] and he was determined to further investigate the reason for the differences in theory and observation for Uranus orbit. At the same time the French mathematician Urbain Le Verrier also tried to predict the undiscovered planets position using mathematics. Figure 1.1: John C. Adams and Urbain Le Verrier 1 Independent of each other’s work both Adams and Le Verrier presented predictions for Neptune’s position in 1846; Le Verrier on August 31st and Adams in the beginning of September [2, p. 267]. Here is a picture, figure 1.2, taken from Adams’ article presenting one of his predictions. Figure 1.2: Adams’ predictions presented in his article [2] Adams also writes that he had no intention of interfering with Le Verrier’s claims to the discovery of Neptune since the Frenchman presented his predictions first. The actual discovery of Neptune was made by Johann G. Galle on September 23rd in 1846. Using the predicted position calculated by Le Verrier, Galle found the planet within 1◦ and later observations showed that Adams’ prediction was off by 2.5◦. Both Adams and Le Verrier assumed Bode’s law (see Section 4.3) to apply for Neptune, an incorrect assumption, resulting in substantial error in the predicted data for the planet. The results of Adams’ and Le Verrier’s calculated predictions compared with Neptune’s true data is presented in table 1.1. Table 1.1: Calculated and real data for Neptune, values from [3] Neptune Adams Le Verrier Mean Distance [AU] 30.1 37.2 36.2 Longitude to Perihelon [◦] 44 299 284 Eccentricity 0.0113 0.121 0.108 Neptune’s Mass [1026 kg] 1,024 3,014 2,127 Heliocentric Longitude [◦] 328.4 330.9 327.4 The error in mean distance is a direct consequence of the assumption that Bode’s law applies for Neptune. Longitude to perihelion is the angle (longitude) to the planet’s position when it is closest to the sun (perihelion) in its orbit. Eccentricity e is a measurement of how much the orbit deviates from being circular; 0 < e < 1 gives an elliptic orbit and e = 0 makes it circular. Both the longitude to perihelion and eccentricity was determined after the actual discovery in an attempt to describe Neptune’s orbit. This involved extremely extensive calculations at the time which probably caused the errors [3]. The error in mass is a direct cause of trying to predict Neptune’s position assuming Bode’s law, where their increase of over 20% in mean distance results in a correspondingly much too large mass [4]. 1.2 Problem Both Adams and Le Verrier had to do their calculations and iterations by hand, without the aid of current technology and modern methods for solving differential equations. Their approach to predicting the position for Neptune was first to linearize the system of equations and then solve these with use of least squares. In this thesis the problem considered will be how to find Neptune using numerical analysis implemented in MATLAB using the same initial data as Adams and Le Verrier. The project will be split 2 into three parts; simulating the solar system, recreating Adams’ problem and to find Neptune using the Gauss-Newton algorithm and perturbation analysis. The simulation of the solar system was made by solving ODEs describing the planets motion with Runge-Kutta 4 in MATLAB. We decided to focus on Adams’ calculations since these are presented in English unlike Le Verrier’s which are in French. To recreate Adams’ inital problem we try to find values that satisfies the data Adams used. To find Neptune we decided to use the Gauss-Newton algorithm which solves a non-linear least square problem by minimizing the sum of the residuals. We also applied a perturbation analysis — the Monte Carlo method — on our Gauss-Newton solver to show the uncertainties in Neptune’s position due to uncertainty in observed data. 1.3 Result Here are our results compared with Le Verriers and Adams. Table 1.2: Calculated and real data for Neptune, values from [3], compared with our result Neptune Adams Le Verrier Eriksson / Garcia Martin Mean Distance [AU] 30.1 37.2 36.2 30.0± 0.06 Longitude to Perihelon [◦] 44 299 284 42.2± 5 Eccentricity 0.0113 0.121 0.108 0.0104± 0.0012 Neptune’s Mass [1026 kg] 1.024 3.014 2.127 1.024± 0.002 Heliocentric Longitude [◦] 328.4 330.9 327.4 329.0± 0.08 3 Chapter 2 Simulation of the solar system Before finding a way to calculate the location of Neptune we make a simulation of the solar system based on data from NASA [5] of the planets’ position, velocity and mass at a given date to act as a reference for the rest of the project.
Recommended publications
  • Chapter Two: the Astronomers and Extraterrestrials
    Warning Concerning Copyright Restrictions The Copyright Law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted materials, Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction, One of these specified conditions is that the photocopy or reproduction is not to be used for any purpose other than private study, scholarship, or research , If electronic transmission of reserve material is used for purposes in excess of what constitutes "fair use," that user may be liable for copyright infringement. • THE EXTRATERRESTRIAL LIFE DEBATE 1750-1900 The idea of a plurality of worlds from Kant to Lowell J MICHAEL]. CROWE University of Notre Dame TII~ right 0/ ,It, U,,;v"Jily 0/ Camb,idg4' to P'''''' a"d s,1I all MO""" of oooks WM grattlrd by H,rr,y Vlf(;ff I $J4. TM U,wNn;fyltas pritr"d and pu"fisllrd rOffti",.ously sincr J5U. Cambridge University Press Cambridge London New York New Rochelle Melbourne Sydney Published by the Press Syndicate of the University of Cambridge In lovi ng The Pirr Building, Trumpingron Srreer, Cambridge CB2. I RP Claire H 32. Easr 57th Streer, New York, NY 1002.2., U SA J 0 Sramford Road, Oakleigh, Melbourne 3166, Australia and Mi ha © Cambridge Univ ersiry Press 1986 firsr published 1986 Prinred in rh e Unired Srares of America Library of Congress Cataloging in Publication Data Crowe, Michael J. The exrrarerresrriallife debare '750-1900. Bibliography: p. Includes index. I. Pluraliry of worlds - Hisrory.
    [Show full text]
  • Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere
    Thinking Outside the Sphere Views of the Stars from Aristotle to Herschel Thinking Outside the Sphere A Constellation of Rare Books from the History of Science Collection The exhibition was made possible by generous support from Mr. & Mrs. James B. Hebenstreit and Mrs. Lathrop M. Gates. CATALOG OF THE EXHIBITION Linda Hall Library Linda Hall Library of Science, Engineering and Technology Cynthia J. Rogers, Curator 5109 Cherry Street Kansas City MO 64110 1 Thinking Outside the Sphere is held in copyright by the Linda Hall Library, 2010, and any reproduction of text or images requires permission. The Linda Hall Library is an independently funded library devoted to science, engineering and technology which is used extensively by The exhibition opened at the Linda Hall Library April 22 and closed companies, academic institutions and individuals throughout the world. September 18, 2010. The Library was established by the wills of Herbert and Linda Hall and opened in 1946. It is located on a 14 acre arboretum in Kansas City, Missouri, the site of the former home of Herbert and Linda Hall. Sources of images on preliminary pages: Page 1, cover left: Peter Apian. Cosmographia, 1550. We invite you to visit the Library or our website at www.lindahlll.org. Page 1, right: Camille Flammarion. L'atmosphère météorologie populaire, 1888. Page 3, Table of contents: Leonhard Euler. Theoria motuum planetarum et cometarum, 1744. 2 Table of Contents Introduction Section1 The Ancient Universe Section2 The Enduring Earth-Centered System Section3 The Sun Takes
    [Show full text]
  • New Force at Large Distances
    New force at large distances Daniel Grumiller Institute for Theoretical Physics Vienna University of Technology TEDx Vienna, November 2010 I What are the fundamental forces in Nature? I What is the nature of space, time and matter? Some questions physics cannot address: We live in the golden age of fundamental physics Goal: want to understand how the Universe works Some questions physics can address: I What is the Universe made of? (picture by NASA) D. Grumiller | New force 2/11 I What is the nature of space, time and matter? Some questions physics cannot address: We live in the golden age of fundamental physics Goal: want to understand how the Universe works Some questions physics can address: I What is the Universe made of? I What are the fundamental forces in Nature? (picture by lifesbalancebeam) D. Grumiller | New force 2/11 Some questions physics cannot address: We live in the golden age of fundamental physics Goal: want to understand how the Universe works Some questions physics can address: I What is the Universe made of? I What are the fundamental forces in Nature? I What is the nature of space, time and matter? (picture by spacescan.org) D. Grumiller | New force 2/11 We live in the golden age of fundamental physics Goal: want to understand how the Universe works Some questions physics can address: I What is the Universe made of? I What are the fundamental forces in Nature? I What is the nature of space, time and matter? Some questions physics cannot address: D. Grumiller | New force 2/11 What is the Universe made of? D.
    [Show full text]
  • The Other Blue Planet Tapping, Ken
    NRC Publications Archive Archives des publications du CNRC The other blue planet Tapping, Ken This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/23002752 Skygazing: Astronomy through the seasons, 2018-01-30 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=e8d4ccca-5079-4df5-9083-db0517aff329 https://publications-cnrc.canada.ca/fra/voir/objet/?id=e8d4ccca-5079-4df5-9083-db0517aff329 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider.
    [Show full text]
  • The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer
    Online Modules from The University of Chicago Multiwavelength Astronomy: The History of Optical Astronomy, by Caroline Herschel and Lyman Spitzer http://ecuip.lib.uchicago.edu/multiwavelength-astronomy/optical/history/index.html Subject(s): Astronomy/Space Science Grade(s) Level: 9-12 Duration: One Class Period Objectives: As a result of reading The History of Optical Astronomy, students will be able to • Discriminate between reflecting and refracting telescope designs and describe the differences between them; • Explain how a telescope focuses light; • Articulate the limitations of ground-based telescopes and propose solutions to these limitations; • Identify important astronomical discoveries made and personages working in the optical regime; • Discuss examples of problem-solving and creativity in astronomy. Materials: Internet connection and browser for displaying the lesson. Pre-requisites: Students should be familiar with the Electromagnetic Spectrum. Before using the lesson, students should familiarize themselves with all vocabulary terms. Procedures: Students will read the lesson and answer assessment questions (listed under evaluation). Introduction: In reading this lesson, you will meet important individuals in the History of Optical Astronomy. They are: Caroline Lucretia Herschel was a German-born British astronomer and the sister of astronomer Sir William Herschel. She is the discoverer of several comets, in particular, the periodic comet 35P/Herschel-Rigollet, which bears her name. Lyman Strong Spitzer, Jr. was an American theoretical physicist, astronomer and mountaineer. He carried out research into star formation, plasma physics, and in 1946, conceived the idea of telescopes operating in outer space. Spitzer is the namesake of NASA's Spitzer Space Telescope. 1 Online Modules from The University of Chicago William Herschel was an astronomer and composer.
    [Show full text]
  • Sensing the Invisible: the Herschel Experiment
    MESS E N G E R S ENSIN G THE I NVISIB L E Y R HE ERSCHEL XPERIMENT U T H E C R E M TO N M I S S I O L E S S O N O V E RV I E W GRADE LEVEL 5 - 8 L ESSON S UMMARY In this lesson, students find out that there is radiation other than visible light arriving from the Sun. The students reproduce a version of William DURATION 1-2 hours Herschel’s experiment of 800 that discovered the existence of infrared radiation. The process of conducting the experiment and placing it in the historical context illustrates how scientific discoveries are often made ESSENTIAL QUESTION via creative thinking, careful design of the experiment, and adaptation of Are there forms of light other than visible light the experiment to accommodate unexpected results. Students discuss emitted by the Sun? current uses of infrared radiation and learn that it is both very beneficial and a major concern for planetary explorations such as the MESSENGER mission to Mercury. Lesson 1 of Grades 5-8 Component of Staying Cool O BJECTIVES Students will be able to: ▼ Construct a device to measure the presence of infrared radiation in sunlight. ▼ Explain that visible light is only part of the electromagnetic spectrum of radiation emitted by the Sun. ▼ Follow the path taken by Herschel through scientific discovery. ▼ Explain why we would want to use infrared radiation to study Mercury and other planets. ▼ Explain how excess infrared radiation is a concern for the MESSENGER mission.
    [Show full text]
  • Neptune Closest to Earth for 2020 - a September 2020 Sky Event from the Astronomy Club of Asheville
    Neptune Closest to Earth for 2020 - a September 2020 Sky Event from the Astronomy Club of Asheville Earth reaches “opposition” with the solar Not to Scale system’s most distant planet on September 11th. At opposition, speedier Earth, moving counterclockwise on its inside lane, laps the outer planet, positioning the Sun directly opposite the Earth from Neptune. This puts Neptune closest to Earth for the year and in great observing position for those using a telescope. Rising at dusk and setting at dawn, the planet Neptune is visible all night during the month of September. Located in the constellation Aquarius, Neptune is positioned some 2.7 billion miles (or 4 light-hours) away from Earth at “opposition” this month. _________________________________ At magnitude 7.8, Neptune will appear as a small blue disk in most amateur telescopes. You will find Neptune along the ecliptic in the constellation Aquarius this year. In September, it will be located about 2° southeast of the 4.2 magnitude star Phi (φ) Aquarii. Like Uranus, Neptune has an upper atmosphere with significant methane gas (CH4). Methane strongly absorbs red light; thus, the blue end of the light spectrum, from the reflected sunlight, is what primarily passes through to our eyes, when observing this distant planet. Neptune’s Discovery Neptune was the 2nd solar system planet to be discovered! Uranus’ discovery preceded it, when William Herschel observed its blue disk, quite by accident, in 1781. But Uranus’ orbit had an unexplained problem – a deviation that astronomers called a “perturbation”. Johannes Kepler’s laws of planetary motion and Isaac Newton’s laws of motion and gravity could not adequately explain this perturbation in Uranus’ orbit.
    [Show full text]
  • Recent News 28,270 MILES - WAY to GO!
    Number 62 Spring 2017 TREASURE HUNT – 16 Where is this bridge (hint: it is not in the UK) and who designed it? Can you see the parabola and its tangent? Recent News 28,270 MILES - WAY TO GO! In October last year a record was set for the longest single road route ever worked out. The Travelling Salesperson Problem (TSP) was first posed in the 1930’s by Merrill Flood who was looking to solve a school bus routing problem in the US and it asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?" This is an example of an optimisation problem and is of immense importance to businesses who need to make deliveries to many places as the shortest route between the warehouse and drop off points generally means considerable saving in time and money. The TSP also has applications in computing DNA sequences, aiming telescopes and designing computer chip circuits. William Cook and a team of researchers at the University of Waterloo in Ontario, Canada calculated a round route that starts in Portland, Dorset and finishes in Weymouth, four miles away has at least 100 times more stops than the previous longest TSP. It links 24,727 hostelries in the UK. EDITORIAL SQUARE NUMBERS Welcome back to a new term and a new year! We In SYMmetryplus 61, Autumn 2016, modular arithmetic congratulate Mathematical Pie for their 200th edition was used to find a prime factor of 283 1.
    [Show full text]
  • The Mystery and Majesty
    The mystery and majesty Nearly 40 years after THE SPACE AGE BLASTED off when the Soviet Union launched the Voyager 2 visited Uranus world’s first artificial satellite in 1957. Since then, humanity has explored our cosmic and Neptune, scientists are backyard with vigor — and yet two planets have fallen to the planetary probe wayside. eager for new expeditions. In the 63 years since Sputnik, humanity has only visited Neptune and Uranus once BY JOEL DAVIS — when Voyager 2 flew past Uranus in January 1986 and Neptune in August 1989 40 ASTRONOMY • DECEMBER 2020 of the ICE GIANTS — and even that wasn’t entirely pre- interstellar mission, more than a dozen pro- In 1781, Uranus became the first planet planned. The unmitigated success of posals have been offered for return missions ever discovered using a telescope. Nearly 200 years later, Voyager 2 Voyager 1 and 2 on their original mission to one or both ice giants. So far, none have became the first spacecraft to visit to explore Jupiter and Saturn earned the made it past the proposal stage due to lack Uranus and Neptune, in 1986 and 1989 respectively. NASA/JPL twin spacecrafts further missions in our of substantial scientific interest. Effectively, solar system and beyond, with Neptune and the planetary research community has been Uranus acting as the last stops on a Grand giving the ice giants the cold shoulder. Tour of the outer solar system. But recently, exoplanet data began In the 31 years since Voyager 2 left the revealing the abundance of icy exoplanets Neptune system in 1989 and began its in our galaxy “and new questions about WWW.ASTRONOMY.COM 41 With a rotation axis tilted more than 90 degrees compared to its orbital plane, Neptune likewise has a highly tilted rotation axis and tilted magnetic axis.
    [Show full text]
  • The Herschels and Their Astronomy
    The Herschels and their Astronomy Mary Kay Hemenway 24 March 2005 outline • William Herschel • Herschel telescopes • Caroline Herschel • Considerations of the Milky Way • William Herschel’s discoveries • John Herschel Wm. Herschel (1738-1822) • Born Friedrich Wilhelm Herschel in Hanover, Germany • A bandboy with the Hanoverian Guards, later served in the military; his father helped him to leave Germany for England in 1757 • Musician in Bath • He read Smith's Harmonies, and followed by reading Smith's Optics - it changed his life. Miniature portrait from 1764 Discovery of Uranus 1781 • William Herschel used a seven-foot Newtonian telescope • "in the quartile near zeta Tauri the lowest of the two is a curious either Nebulous Star or perhaps a Comet” • He called it “Georgium Sidus" after his new patron, George Ill. • Pension of 200 pounds a year and knighted, the "King's Astronomer” -- now astronomy full time. Sir William Herschel • Those who had received a classical education in astronomy agreed that their job was to study the sun, moon, planets, comets, individual stars. • Herschel acted like a naturalist, collecting specimens in great numbers, counting and classifying them, and later trying to organize some into life cycles. • Before his discovery of Uranus, Fellows of the Royal Society had contempt for his ignorance of basic procedures and conventions. Isaac Newton's reflecting telescope 1671 William Herschel's 20-foot, 1783 Account of some Observations tending to investigate the Construction of the Heavens Philosophical Transactions of the Royal Society of London (1784) vol. 74, pp. 437-451 In a former paper I mentioned, that a more powerful instrument was preparing for continuing my reviews of the heavens.
    [Show full text]
  • ATTENTION: Epreuve Non Définitive!!!
    Verrier, Urbain-Jean-Joseph Le V 1 Verrier, Urbain-Jean-Joseph Le Born Saint-Lô, Manche, France, 11 March 1811 Died Paris, France, 23 September 1877 Urbain-Jean-Joseph le Verrier explained the unruly behavior of Uranus by positing the existence of an unknown planet, which was subsequently discovered and named Neptune. His father, Louis-Baptiste le Verrier, a civil servant, and mother, Pauline de Baudre, came from the lower Norman aristocracy. Th eir only son received his lycée education in Cherbourg, and failed the entrance examination to the École Polytechnique on his fi rst try but was admitted in 1831. In 1837, he married Lucille Marie Clothilde Choquet, the daughter of his former teacher. Th ey had three children: Léon, Lucille, and Urbain. In 1837, le Verrier was off ered a position in geodesy and machines as an assistant to Félix Savary at the École Polytechnique. Aft er Savary’s death a few years later, le Verrier succeeded him to the chair in astronomy. He devoted his attention to celestial mechanics to reclaim the heritage of Pierre de Laplace . His fi rst memoir presented to the Paris Academy of Sciences addressed Laplace’s solution to the stability of the Solar System. Later, le Verrier laid the groundwork for a new theory of Mercury’s orbit and successfully tackled the theory of several recently discovered periodic comets, on the basis of which he was successful in his bid for a seat at the academy on 19 January 1846. Two months earlier, le Verrier had published his fi rst memoir on Uranus’s orbital irregularities, a work he had undertaken with encouragement by François Arago .
    [Show full text]
  • The Astronomy of Sir John Herschel
    Introduction m m m m m m m m m m m Herschel’s Stars The Stars flourish, and in spite of all my attempts to thin them and . stuff them in my pockets, continue to afford a rich harvest. John Herschel to James Calder Stewart, July 17, 1834 n 2017, TRAPPIST-1, a red dwarf star forty light years from Earth, made headlines as the center of a system with not one or two but Iseven potentially habitable exoplanets.1 This dim, nearby star offers only the most recent example of verification of the sort of planetary system common in science fiction: multiple temperate, terrestrial worlds within a single star’s family of planets. Indeed, this discovery followed the an- nouncement only a few years earlier of the very first Earth-sized world orbiting within the habitable zone of its star, Kepler-186, five hundred light years from Earth.2 Along with other ongoing surveys and advanced instruments, the Kepler mission, which recently added an additional 715 worlds to a total of over five thousand exoplanet candidates, is re- vealing a universe in which exoplanets proliferate, Earth-like worlds are common, and planets within the habitable zone of their host star are far from rare.3 Exoplanetary astronomy has developed to the point that as- tronomers can not only detect these objects but also describe the phys- ical characteristics of many with a high degree of confidence and pre- cision, gaining information on their composition, atmospheric makeup, temperature, and even weather patterns. 3 © 2018 University of Pittsburgh Press. All rights reserved.
    [Show full text]