<<

International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 DOI: 10.5923/j.ijtmp.20201006.02

About the Existence of Black Holes

Doron Kwiat

Israel

Abstract The existence of black holes is based on singularity in the Schwarzschild metric at the Schwarzschild radius. Another singularity is at r = 0. These singularities of a spherically symmetric non-rotating, uncharged of radius R, are considered here. Considering Newton's shell theorem, the falls off linearly with r for r < . The point r = 0 is an infinitesimally small location in space. No mass can be indefinitely condensed to this point. Thus, when investigating the concept of a mass, one has to consider its finite radius. By including the shell theorem for๐‘…๐‘… r < , the singularity at r 0 is removed. It is also shown, that a situation where rs < R but r > is possible. Therefore, the existence of a photon sphere light ring does not necessarily indicate a black hole. It is shown, that the condition๐‘…๐‘… for a โ†’ 3 ๐‘๐‘โ„Ž ๐‘…๐‘… gravitational collapse is R < r , and not R < r . Further in this work, the question of maximal density is considered and 2 compared to the quantum limit of๐‘ ๐‘  mass density put๐‘ ๐‘  by Planck's units as dictated from dimensional analysis. There are two main claims here: 1. Black holes (if exist) will result only if the Schwarzschild radius is larger than 2/3R. 2. leads to quantization of . Keywords Newton's Shell theorem, Schwarzschild singularities, Photon sphere, Planck's units, Quantization of Gravity

whether this is a true singularity one must look at quantities 1. Introduction that are independent of the choice of coordinates. One such important quantity is the Kretschmann invariant [19], which The Schwarzschild solution appears to have singularities 2 is given by Rฮฑ R . For a Schwarzschild black hole of at r = 0 and r = r , with r = which cause the metric to s s 2 mass M and radius๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ R, the Kretschmann invariant is ๐บ๐บ๐บ๐บ 2 2 ๐›ฝ๐›ฝ๐›ฝ๐›ฝ๐›ฝ๐›ฝ 2 diverge at these radii. There is no problem as long as R > rs. 48 842 ๐‘๐‘ = 4 6 2 4 . Obviously it is independent of the The singularity at r = rs divides the Schwarzschild ๐บ๐บ ๐‘€๐‘€ ๐บ๐บ radius R, and is always greater than 0 (provided we accept coordinates in two disconnected regions. The exterior ๐พ๐พ๐‘Ÿ๐‘Ÿ ๐‘๐‘ ๐‘…๐‘… โ‰ˆ ๐œŒ๐œŒ ๐‘๐‘ Schwarzschild solution with r > rs is the one that is related the physical requirement that the density is never infinite). to the gravitational fields of stars and planets. The interior At r = 0 the curvature can become infinite, if and only if, ๐œŒ๐œŒ Schwarzschild solution with 0 โ‰ค r < rs , which contains it represents a point particle of zero mass. One cannot the singularity at r = 0, is completely separated from compress a finite mass into an infinitesimal point (of radius the outer region by the so-called singularity at r = rs . R = 0). Any finite mass should have a finite radius R > 0. The Schwarzschild coordinates therefore give no physical Therefore, when looking into the point r = 0, one needs to connection between these two regions. consider the effects of the outer shells of matter which The singularity at r = rs is an illusion however; it is an surround the r = 0 point. instance of what is called a coordinate singularity. As the General relativity predicts that any object collapsing name implies, the singularity arises from a bad choice of beyond a certain point (for stars this is the Schwarzschild coordinates or coordinate conditions. When changing to a radius) would form a black hole, inside which a singularity different coordinate system, the metric becomes regular at r (covered by an event horizon) would be formed. = rs and can extend the external region to values of r smaller As will be shown in the following, no such singularities than . Using a different coordinate transformation one can exist. then relate the extended external region to the inner region. ๐‘ ๐‘  As ๐‘Ÿ๐‘Ÿwill be shown later on, this so-called singularity is completely removed even for the Schwarzschild coordinates. 2. Spherically Symmetric, Non-rotating, The case r = 0 is different, however. If one asks that the solution be valid for all r, one runs into a true physical Uncharged Spherical Body singularity, or gravitational singularity, at the origin. To see Consider a spherically symmetric, non-rotating, uncharged mass (a stellar object or an elementary particle). * Corresponding author: [email protected] (Doron Kwiat) Under spherical symmetry, and at a remote distance in Received: Nov. 19, 2020; Accepted: Dec. 7, 2020; Published: Dec. 15, 2020 empty space outside the object, the Schwarzschild metric Published online at http://journal.sapub.org/ijtmp [1,2,3] is given by:

International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 121

2 In other words 1 2 ๐บ๐บ๐บ๐บ 1 3 ๐‘Ÿ๐‘Ÿ๐‘๐‘ 2 ( ) = = ๏ฟฝ โˆ’ ๏ฟฝ 1 (1) 3 โˆ’ 2 4 ๐บ๐บ๐บ๐บ ๐‘€๐‘€ โŽ› 2 โŽž And for any finite mass M ๐œ‡๐œ‡๐œ‡๐œ‡ ๏ฟฝ โˆ’ ๐‘Ÿ๐‘Ÿ๐‘๐‘ ๏ฟฝ ๐œŒ๐œŒ ๐‘…๐‘… ๐‘”๐‘” โŽœ 2 2 โŽŸ ๐œ‹๐œ‹๐‘…๐‘… lim ( ) This metric describes very well theโˆ’ gravitational๐‘Ÿ๐‘Ÿ effects of 0 โŽ โŽ  that mass on curvature, โˆ’and๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ dynamics๐œƒ๐œƒ of However, as will be๐‘…๐‘…โŸถ shown๐œŒ๐œŒ ๐‘…๐‘… later,โŸถ theโˆž density of any object moving particles, in the empty regions outside the object. must have an upper limit and it cannot become infinitely However, it suffers of two problems: large. To resolve this contradiction, one must accept, that no 2 mass can be condensed to a singular point r = 0. A mass will = 1. At the Schwarzschild radius 2 , the metric has always have some finite density and a finite radius (volume). ๐บ๐บ๐บ๐บ a singularity. Therefore, when considering gravitation at r = 0, one must ๐‘Ÿ๐‘Ÿ๐‘ ๐‘  ๐‘๐‘ 2. At r ๏ƒ  0, the metric diverges. consider the effects of surrounding mass. Condensed as it The first singularity is not a real one, as it can be removed might be, but still of finite density and surrounding r = 0. by appropriate coordinate transformations [5-13]. In , the shell theorem, proven already The second singularity cannot be removed by coordinate by [14] states that: transformation. It is an inherent singularity at r 0 in any A spherically symmetric body affects external objects inverse square law central force problem of gravitational gravitationally as though all of its mass were concentrated at field). One so far have not been able to relateโ†’ to the a point at its center. divergency problem of force which is inversely proportional If the body is a spherically symmetric shell (i.e., a hollow to the square of the distance r from center of the field source. ball), no net gravitational force is exerted by the shell on any To solve this problem, we must investigate the behavior of object inside, regardless of the object's location within the the field inside the mass. shell. If any mass source is finite in size, the solution to the A corollary is that inside a solid sphere of constant density, potential as a function of distance must be modified, so that it the gravitational force within the object varies linearly with includes the region where r < R, the radius of the mass. distance from the center, becoming zero by symmetry at the In addition, the Einstein field equation should be related to center of mass. in non-empty space. But to a very good approximation, the Due to the shell theorem, the gravitational potential of a Einstein equation in the inside of even the heaviest stellar spherically symmetric object of mass M and radius R, as a objects can be considered same as empty space. function of distance r, from the object's center is given by: 1 This assumption will only be valid for a perfect fluid (3 2 2) 2 solution, where of the Tฮผฮฝ tensor, only energy density is ( ) = considered, while momentum density, shear stress, 3 ๐‘…๐‘… โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘“๐‘“๐‘“๐‘“๐‘“๐‘“ ๐‘Ÿ๐‘Ÿ โ‰ค ๐‘…๐‘… (2) ๐บ๐บ๐บ๐บ โŽง 3 momentum flux and pressure are either null or irrelevant. โŽช > ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ โˆ’ ๐‘…๐‘… โŽจ ๐‘…๐‘… The result for r < R โŽชis๐‘Ÿ๐‘Ÿ obtained by๐‘“๐‘“๐‘“๐‘“ summation๐‘“๐‘“ ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… of the 3. Shell Theorem potential at some point pโŽฉ inside the mass from its spherical shell between R and r, and the remaining mass inside sphere Let R be the radius of an uncharged non-rotating of radius r. spherically symmetric mass, of given density ( ), with The potential at point p due to the shell is given by r being the radial distance from center (at r = 0). 2 2 4 3 ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ ( ) = 2 ( ) (3) Assuming this object has a volume = and radius 3 3๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ The potential at ๐‘ ๐‘ sameโ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ point p due to the remaining inner R, its average density will be = and since ๐›ท๐›ท ๐‘๐‘ โˆ’ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘ฃ๐‘ฃ 4 3 ๐‘€๐‘€ sphere is given by 2 = 4 ( ) it is straightforward to see that 2 0 โŒฉ๐œŒ๐œŒโŒช ๐œ‹๐œ‹๐‘…๐‘… ( ) = 4 (4) ๐‘…๐‘… 4 3 The total potential at point p inside the sphere is a ๐‘€๐‘€ โˆซ ๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘ ๐‘‘๐‘‘= lim (0) ๐›ท๐›ท๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– ๐‘๐‘ โˆ’ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐‘Ÿ๐‘Ÿ 3 0 superposition of both ( ), and ( ). Thus, (for ๐œ‹๐œ‹ (0) r < R): This means that๐‘€๐‘€ unless the๐‘…๐‘… โŸถdensity๐‘…๐‘… ๐œŒ๐œŒ at the center is ๐‘ ๐‘ โ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– infinite, the mass must vanish (M = 0). ฮฆ ๐‘๐‘ ฮฆ ๐‘๐‘2 2 ( ) = ( ) + ( ) = 4 (5) ๐œŒ๐œŒ(0) 2 6 The only case of M > 0 is possible if and only if is ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ 3 1 infinite. And if we assume physical continuity, then we may ๐›ท๐›ท๐‘๐‘ ๐‘Ÿ๐‘Ÿ ๐›ท๐›ท๐‘ ๐‘ โ„Ž๐‘’๐‘’๐‘’๐‘’๐‘’๐‘’ ๐‘Ÿ๐‘Ÿ ( ๐›ท๐›ท) ๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–๐‘–= ๐‘Ÿ๐‘Ÿ โˆ’2 ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ 2๏ฟฝ โˆ’ ๏ฟฝ (6) 2 3 2 write ๐œŒ๐œŒ ๐บ๐บ๐บ๐บ 3 ๐›ท๐›ท๐‘๐‘ ๐‘Ÿ๐‘Ÿ โˆ’ ๐‘…๐‘… ๏ฟฝ ๐‘…๐‘… โˆ’ ๐‘Ÿ๐‘Ÿ ๏ฟฝ lim 3 ( ) = 0 4 ๐‘€๐‘€ ๐‘…๐‘…โŸถ ๐‘…๐‘… ๐œŒ๐œŒ ๐‘…๐‘… ๐œ‹๐œ‹

122 Doron Kwiat: About the Existence of Black Holes

4. The Identification of ( ) as the 6. Modified Schwarzschild Metric Gravitational Potential Inserting the expression for ( ): 2 2 ๐šฝ๐šฝ ๐ซ๐ซ ( ) = 4 (for (r R) In the Schwarzschild metric, the 00 term is a function of 2 6 ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ the distance r and one may write: 3 ๐‘”๐‘” ๐›ท๐›ท(๐‘Ÿ๐‘Ÿ) = โˆ’4๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ โˆ’ (for๏ฟฝ (r > R)โ‰ค 2 ( ) 3 00( ) = 1 + 2 (7) ๐‘…๐‘… ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ ๐›ท๐›ทThe๐‘Ÿ๐‘Ÿ Schwarzschildโˆ’ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๏ฟฝ ๐‘Ÿ๐‘Ÿ ๏ฟฝmetric inside the sphere (r โ‰ค R) First argument โ€“ dimensions๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐‘๐‘ ๏ฟฝ becomes ( ) is a function of distance r, and must have the 3 1 2 dimensions of 2 . It must obey the constraint of 2 = 1 1 2 2 3 ๐‘Ÿ๐‘Ÿ๐‘ ๐‘  ๐‘Ÿ๐‘Ÿ lim๐›ท๐›ท ๐‘Ÿ๐‘Ÿโˆž ( ) 0 as should be the case at infinite 1 2 ๐‘…๐‘… 2 2 ๐‘…๐‘… 2 2 2 distance in empty๐‘๐‘ flat space. ๐‘‘๐‘‘๐‘‘๐‘‘ ( ( ๏ฟฝ) โˆ’ ๏ฟฝ โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ) (9) ๐‘Ÿ๐‘ŸโŸถ ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ โŸถ ( ) 2 Its units should be [G][Kg]/[m] in order to make 2 ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ while outsideโˆ’ ๐‘๐‘ theโ„Ž sphere๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘ ๐‘‘๐‘‘(rโˆ’ > ๐‘Ÿ๐‘ŸR)๐‘‘๐‘‘ it๐œƒ๐œƒ becomesโˆ’ ๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œƒ๐œƒ๐œƒ๐œƒ๐œ‘๐œ‘ dimensionless. ๐‘๐‘ We therefore have a good reason to assume that ( ) is 2 = 1 2 ๐‘ ๐‘  the gravitational potential due to a spherically symmetric 1 ๐‘Ÿ๐‘Ÿ object, independent of the size and of the density ๐›ท๐›ทof๐‘Ÿ๐‘Ÿ that ( ( )๐‘‘๐‘‘๐‘‘๐‘‘2 ๏ฟฝ โˆ’2 2๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2 2) (10) 2 ๐‘Ÿ๐‘Ÿ object. Exactly as described by eq. 2. There areโˆ’ now๐‘๐‘ โ„Ž three๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ different๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘ possibilities,๐œƒ๐œƒ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œƒ๐œƒdepicted๐œƒ๐œƒ๐œ‘๐œ‘ in the Second argument- Einstein equation under spherical following: symmetry A a situation where both and are inside the objects For a curved spacetime, based on the Riemann tensor, radius R. < < R. This๐‘ ๐‘  is a standard๐‘๐‘โ„Ž object. it can be shown that ( ) must have the form of a ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ B - a situation๐‘ ๐‘  ๐‘๐‘โ„Ž where is inside the object's radius R gravitational potential (see Appendix 1). (a standard๐‘Ÿ๐‘Ÿ object)๐‘Ÿ๐‘Ÿ while is outside the object. < R ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ ๐‘ ๐‘  Following these arguments, it is justified to identify ( ), < . ๐‘Ÿ๐‘Ÿ as the gravitational potential of the field created by a ๐‘๐‘โ„Ž ๐‘ ๐‘  C - a situation of a black๐‘Ÿ๐‘Ÿ hole, where both and ๐‘Ÿ๐‘Ÿ are spherically symmetric non-rotating uncharged mass. ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ ๐‘๐‘โ„Ž ๐‘Ÿ๐‘Ÿ < < outside R. . Therefore, B represents๐‘ ๐‘  a possible๐‘๐‘โ„Ž situation where a photon sphere light ring exists๐‘Ÿ๐‘Ÿ around๐‘Ÿ๐‘Ÿ a ๐‘ ๐‘  ๐‘๐‘โ„Ž 5. Inside the Sphere (r < R) standard (not๐‘…๐‘… a black๐‘Ÿ๐‘Ÿ hole)๐‘Ÿ๐‘Ÿ body. 3 For said cases, the photon sphere radius r = r may In the case where r < R (inside the mass), โ‰  0 where ph 2 s 16 G fall inside or outside R. = 2 ฯ€ 11 27๐•‚๐•‚ G=6.6743 ร— x10 and so โ‰ˆ 37 x10 , so unless A Standard object R rph >R the order of 6 x1017 Kg/m3. For elementary particles,๐•‚๐•‚๐œŒ๐œŒ the ๐‘Ÿ๐‘Ÿ๐‘ ๐‘  neutron for instance, has density of approximately 3 x1017 Case A is a standard object, with both , and falling 3 inside R. Kg/m . So, for all practical calculations one may assume ๐‘ ๐‘  ๐‘๐‘โ„Ž = 0 inside any mass (that is, for r < R). Case B is a white object, with falling๐‘Ÿ๐‘Ÿ inside๐‘Ÿ๐‘Ÿ R but falling outside R. Light is trapped in the photon sphere, For the internal pressure p, as long as the internal pressure ๐‘ ๐‘  ๐‘๐‘โ„Ž ๐•‚๐•‚is much less than 1024 , p = 0 . For the Sun for causing the object to have a white๐‘Ÿ๐‘Ÿ glowing ring around๐‘Ÿ๐‘Ÿ it. instance, the internal core pressure is p1011 . There is no gravitational collapse. Finding the solution of๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ the๐•‚๐•‚ homogeneous differential Case C is a true black body, with both and falling equation with = 0, p = 0 , will ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒlead to the outside R. ๐‘ ๐‘  ๐‘๐‘โ„Ž non-homogeneous solution with = constant. But we will Case A, both and are inside R๐‘Ÿ๐‘Ÿ (holds๐‘Ÿ๐‘Ÿ for most concentrate on the๐•‚๐•‚ homogeneousฯ ๐•‚๐•‚ solution, since 0. stellar objects โ€“ but not for black holes). One obtains: ๐‘ ๐‘  ๐‘๐‘โ„Ž In case of a constant , the non๐•‚๐•‚ -homogeneous solution ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ 3 1 2 can be found. ๐•‚๐•‚ โ‰ˆ 2 = 1 1 2 2 3 This is the case for a perfect๐•‚๐•‚ fluid. ๐‘Ÿ๐‘Ÿ๐‘ ๐‘  ๐‘Ÿ๐‘Ÿ Under the assumption of 0, for the interior of the ๐‘‘๐‘‘๐‘‘๐‘‘ 1 ๏ฟฝ โˆ’2 ๐‘…๐‘… ๏ฟฝ 2โˆ’ 2๏ฟฝ๐‘…๐‘…๏ฟฝ ๏ฟฝ2๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘2 2 2 ( ( ) ) (11) sphere, the time separation inside the sphere is given by 2 d = g dx dx : ๐•‚๐•‚ โ‰ˆ Picking theโˆ’ ๐‘๐‘coordinateโ„Ž ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘ system๐‘‘๐‘‘ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘so๐œƒ๐œƒ thatโˆ’ ๐‘Ÿ๐‘Ÿthe๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  radius๐œƒ๐œƒ๐œƒ๐œƒ๐œ‘๐œ‘ r is along ฮผ ฮฝ the x axis, the and terms are zero ฮผฮฝ 2 2 ( ) 2 ฯ„ = 1 + 2 In other words, for r > R ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ ๐œƒ๐œƒ ๐œ‘๐œ‘ 1 2 2 2 2 2 2 2 2 2 ( ( )๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๐‘๐‘ ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ) (8) = 1 (12) ๐‘Ÿ๐‘Ÿ๐‘ ๐‘ 

โˆ’ ๐‘๐‘ โ„Ž ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐œƒ๐œƒ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œƒ๐œƒ๐œƒ๐œƒ๐œ‘๐œ‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ โˆ’ ๐‘Ÿ๐‘Ÿ ๏ฟฝ International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 123

while for r R: In the case of infinitesimally small r, we see that the time component becomes independent of the distance r from the 3 1 2 โ‰ค 2 = 2 1 1 (13) origin. In any case, the divergence at r 0 is removed. 2 3 ๐‘Ÿ๐‘Ÿ๐‘ ๐‘  ๐‘Ÿ๐‘Ÿ The proper time , must remain well defined. Therefore, 2 ๐‘…๐‘… rs ๐‘…๐‘… โ†’ Obviously, ๐‘‘๐‘‘๐‘‘๐‘‘for r = R,๐‘‘๐‘‘๐‘‘๐‘‘ dฯ„๏ฟฝ =โˆ’ 1 ๏ฟฝ โˆ’, fo๏ฟฝr both.๏ฟฝ ๏ฟฝ๏ฟฝ an upper limit on the density must exist for a given radius R, otherwise the expression๐‘‘๐‘‘๐‘‘๐‘‘ for becomes undefined. Investigating the condition ๏ฟฝ โˆ’ ๐‘…๐‘… ๏ฟฝ Notice that this assertion leads to the constraint 2 rph 1 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 1 1 > 0 (16) 3 4 2 ๐‘Ÿ๐‘Ÿ ๐‘๐‘ we see that in โˆ’Case B,๏ฟฝ forโˆ’ all๏ฟฝ ๏ฟฝ ๏ฟฝ[0, ] and as long as In other words, there is an upper๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘…limit on the density , of 2 ๐‘…๐‘… ๐‘…๐‘… ๐œŒ๐œŒ โ‰ค there is no singularity in the Schwarzschild metric. any object with radius R. When 0, the density may 3 ๐œŒ๐œŒ 2 ๐‘Ÿ๐‘Ÿ2โˆˆ ๐‘…๐‘… increase indefinitely, but as will be shown next, there is an ๐‘ ๐‘  At = (and = ). dฯ„ becomes zero, and the ๐‘…๐‘… โ†’ ๐‘Ÿ๐‘Ÿ โ‰ค ๐‘…๐‘… 3 upper limit on the density. 2 object evaporates๐‘ ๐‘  into photons๐‘๐‘โ„Ž (dฯ„ = 0). Thus, > is ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… 3 the condition for a gravitational collapse. As๐‘ ๐‘  long as 2 ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… < the object is a standard object and does not 7. Density must have an Upper Limit 3 undergo๐‘ ๐‘  any gravitational collapse. This, in contrast to the Simple dimensional arguments show that the physical current๐‘Ÿ๐‘Ÿ ๐‘…๐‘…assertion (for r > R), is based on Eq. 37, which states phenomena where quantum gravitational effects become that > , is the condition for a gravitational collapse. relevant are those characterized by the Planck length We see that as long as the photon sphere is inside the ๐‘ ๐‘  35 = 3 = 1.616 10 m. Here is the Planck constant object๐‘Ÿ๐‘Ÿ ( rph๐‘…๐‘… [0, ]) , the Schwarzschild radius โ„๐บ๐บ โˆ’ 2 that๐‘๐‘ governs the scale of the quantum effects, G is the [0, ]. In other words, as long as the photon sphere does๐‘ ๐‘  โ„“ ๏ฟฝ๐‘๐‘ ๐‘ฅ๐‘ฅ โ„ 3 โˆˆ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ โˆˆ Newton constant that governs the strength of the not show, the object is stable and does not suffer gravitational force, and c is the speed of light, that governs gravitational๐‘…๐‘… collapse. Once the photon sphere shows up the scale of the relativistic effects. The Planck length is many (rph > ), the object undergoes gravitational collapse. 2 times smaller than what current technology is capable of Anywhere in the region where [ , ] the object observing. physical effects at scales that are so small. ๐‘…๐‘… 3 undergoes gravitational collapse, and since r = 3/2 , Because of this, we have no direct experimental guidance for ๐‘Ÿ๐‘Ÿ๐‘ ๐‘  โˆˆ ๐‘…๐‘… ๐‘…๐‘…ph the photon sphere is outside the object, creating a bright light building a quantum theory of gravity [16]. ring outside R, at r = . ๐‘…๐‘… Suppose there exists a quantum minimum for distance. r 0 We call it the Planck length and denote it by . Near the sphere's center,๐‘๐‘โ„Ž where and r < R, one has ๐‘Ÿ๐‘Ÿ It is given by ๐‘๐‘ 2 = 2 1 (14) โ„“ โ†’ 35 ๐‘Ÿ๐‘Ÿ๐‘๐‘โ„Ž = = 1.616 10 m. And, as long as๐‘‘๐‘‘๐‘‘๐‘‘, rph <๐‘‘๐‘‘๐‘‘๐‘‘ , ๏ฟฝ โˆ’> 0.๐‘…๐‘… It๏ฟฝ may be re-written as: โ„๐บ๐บ โˆ’ Defineโ„“๐‘๐‘ ๏ฟฝ in๐‘๐‘ addition the๐‘ฅ๐‘ฅ Planck mass 4 ๐‘…๐‘… ๐‘‘๐‘‘๐‘‘๐‘‘ 2 8 = 1 2 (15) Planck's mass = = 2.176 10 Kg. ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ โ„๐‘๐‘ โˆ’ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๏ฟฝ โˆ’ ๐‘๐‘ ๐‘…๐‘… ๏ฟฝ If this assumption๐‘š๐‘š๐‘๐‘ is๏ฟฝ true,๐บ๐บ then the๐‘ฅ๐‘ฅ minimal spherical volume possible is 4 3 = 3 ๐œ‹๐œ‹โ„“๐‘๐‘ Let denote the mass๐‘‰๐‘‰ of this volume, so its density will be given by ๐‘š๐‘šโ€ฒ 3 = 4 โ€ฒ 3 ๐‘š๐‘š ๐œŒ๐œŒ๐‘ƒ๐‘ƒ Since by assumption is the๐œ‹๐œ‹โ„“ minimal๐‘๐‘ length possible in nature, then for any mass ๐‘๐‘m' the density is the maximum possible. โ„“ ๐‘ƒ๐‘ƒ It can be showed, that for a classical spherically๐œŒ๐œŒ symmetric Figure 1. For an object of radius R=3(*). The lines represent the behavior object of mass m' and radius R, the general relativistic limit of dฯ„, for the cases where < R (A-STNDRD) and > 2/3R (B-WH). As gives can be seen, in case B, the inner part of the object is below the horizon ๐‘ ๐‘  ๐‘ ๐‘  ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ 4 (dฯ„ = 0), but some of the the external part is not. This case allows for the = 1 2 photon sphere to be visible outside the body and yet the object is not a black 2 (17) ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ hole yet. In this figure, dฯ„ < 0 is set to dฯ„ = 0. *(The dimensions are relative only) Since the expression๐‘‘๐‘‘๐‘‘๐‘‘ in brackets๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ๏ฟฝ โˆ’ must๐‘๐‘ be๐‘…๐‘… real,๏ฟฝ we arrive at

124 Doron Kwiat: About the Existence of Black Holes

the restriction: obtains: 4 3 2 2 4 0 1 2 0 (18) 4 ( ) = (29) 0 3 ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ โ„“๐‘๐‘ ๐œ‹๐œ‹๐œŒ๐œŒ โ„“๐‘๐‘ And therefore 2 โˆ’ ๐‘๐‘ ๐‘…๐‘… โ‰ฅ By definition, the๐œ‹๐œ‹ โˆซ average๐‘Ÿ๐‘Ÿ ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿclassical๐‘‘๐‘‘๐‘‘๐‘‘ distance is given 2 by the integral over the normalized density: (19) 4 2 โŒฉ๐‘Ÿ๐‘Ÿ โŒช ๐‘๐‘ 2 1 2 ( ) 0 0 (30) For an object of any given๐œŒ๐œŒ โ‰ค mass๐œ‹๐œ‹๐œ‹๐œ‹๐‘…๐‘… m' and radius R we have โ„“๐‘๐‘ 3 = = (20) Thus โŒฉ๐‘Ÿ๐‘Ÿ โŒช โ‰ โ„“๐‘๐‘ โˆซ ๐‘Ÿ๐‘Ÿ ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ โ„๐œŒ๐œŒ ๐‘‘๐‘‘๐‘‘๐‘‘ 4 3 ๐‘š๐‘šโ€ฒ ๐‘š๐‘šโ€ฒ 4 3 4 2 = 0 (31) Since for any mass๐œŒ๐œŒ m' of๐‘‰๐‘‰ radius๐œ‹๐œ‹๐‘…๐‘… R one must have, by Eq. 0 3 16 above, ๐œ‹๐œ‹๐œŒ๐œŒ โ„“๐‘๐‘ and so ๐‘๐‘ 3 2 ๐œ‹๐œ‹โ„“ ๐œŒ๐œŒ โŒฉ๐‘Ÿ๐‘Ÿ โŒช = (21) 1 4 3 4 2 = 2 = (32) ๐‘š๐‘šโ€ฒ ๐‘๐‘ 3 The result is that for any๐œ‹๐œ‹๐‘…๐‘… mass m'๐œ‹๐œ‹ ๐œ‹๐œ‹๐‘…๐‘… ๐œŒ๐œŒ โ‰ค Hence, the actual measured classicalโˆš radius๐‘๐‘ R is given by 2 โŒฉ๐‘Ÿ๐‘ŸโŒช ๏ฟฝโŒฉ๐‘Ÿ๐‘Ÿ โŒช โ„“ 1 ( ) (22) = = (33) ๐‘…๐‘…๐‘…๐‘… 3 Obviously, the smaller the radius๐บ๐บ R, the smaller the ๐‘š๐‘šโ€ฒ ๐‘…๐‘… โ‰ค The above result shows๐‘…๐‘… โŒฉ๐‘Ÿ๐‘ŸhowโŒช โˆštheโ„“ ๐‘๐‘lower limit of the allowed mass m'. classical gravitation theory by Einstein, is related to the For the minimal possible length (according to Planck) Planck length, which is a quantum phenomenon posed by = one obtains: dimensional analysis of the universe constants. 2 ๐‘…๐‘… โ„“๐‘๐‘ (23) Therefore, classical relativity and the relationship between โ„“๐‘๐‘ ๐‘๐‘ the universal constants leads to quantization of space. Recall now, by Planck's๐‘š๐‘šโ€ฒ โ‰คdimensionality๐บ๐บ analysis) that = and = so โ„๐บ๐บ โ„๐‘๐‘ 8. Quantization by Planck's Units and ๐‘๐‘ ๐‘๐‘ 2 โ„“ ๏ฟฝ ๐‘๐‘ ๐‘š๐‘š ๏ฟฝ ๐บ๐บ = (24) Maximal Density Limit

๐‘š๐‘š๐‘๐‘ ๐‘๐‘ R 0 Therefore โ„“๐‘๐‘ ๐บ๐บ In the limit where , one needs to consider quantum 2 limits and the uncertainty principle. = (25) โ†’ Planck's mass = = 2.176 10 8 Kg. โ€ฒ โ„“๐‘๐‘ ๐‘๐‘ Therefore, for any mass m' (with radius๐‘๐‘ ) โ„๐‘๐‘ โˆ’ ๐‘š๐‘š โ‰ค ๐บ๐บ ๐‘š๐‘š ๐‘๐‘ Planck's length๐‘š๐‘š = ๏ฟฝ ๐บ๐บ = 1.616๐‘ฅ๐‘ฅ 10 35 m. ๐‘๐‘ (26) โ„“ โ„๐บ๐บ โˆ’ โ€ฒ However, dimensional๐‘๐‘ analysis can only determine the And since ๐‘๐‘ โ„“ ๏ฟฝ ๐‘๐‘ ๐‘ฅ๐‘ฅ ๐‘š๐‘š โ‰ค ๐‘š๐‘š Planck's units up to a dimensionless multiplicative factor. = = (27) For instance, use h instead of . ๐‘š๐‘šโ€ฒ ๐‘š๐‘š๐‘๐‘ Based on Planck's units one obtains Planck's maximal We have the result that is the ๐‘ƒ๐‘ƒmaximal possible ๐œŒ๐œŒ ๐‘‰๐‘‰ โ‰ค ๐‘‰๐‘‰ ๐œŒ๐œŒ density as Planck's mass/Planck'sโ„ volume (assuming density, namely Planck density. ๐‘ƒ๐‘ƒ is the lowest possible physical distance, leads to the maximal In other words, for any given๐œŒ๐œŒ radius R, the mass m'(R) ๐‘ƒ๐‘ƒ ๐‘๐‘ ๐œŒ๐œŒ โ„“ becomes smaller and smaller with R, but when one reaches possible physical density assumption). +96 the smallest possible radius , the mass must be smaller = 3 = 1.23074 10 (34) 4 3 ๐‘š๐‘š๐‘๐‘ than the Planck mass , and ๐‘๐‘so, the density will always be โ„“ (If one uses ๐œŒ๐œŒthe๐‘ƒ๐‘ƒ Planck๐œ‹๐œ‹โ„“๐‘๐‘ โ„ constant instead๐‘ฅ๐‘ฅ of the reduced smaller than the Planck density๐‘๐‘ . One can reduce the๐‘š๐‘š radius R, but the density will never Planck's constant, the Planck density will be modified by a ๐‘ƒ๐‘ƒ exceed the Planck density. ๐œŒ๐œŒ factor of 2 ). 3 Since one must assume that Planck's density is the ( ) = (28) maximum ๐œ‹๐œ‹possible density allowed, we now ask, what โ„“๐‘๐‘ should the minimum classical radius R be, in order for ๐‘๐‘ Assume next, that๐‘™๐‘™๐‘™๐‘™๐‘™๐‘™ the๐‘…๐‘…โ†’ โ„“sphere๐œŒ๐œŒ ๐‘…๐‘… has ๏ฟฝdensity๐‘…๐‘… ๏ฟฝ ๐œŒ๐œŒ๐‘ƒ๐‘ƒ ( ), which . (any classical density cannot exceed the Planck varies with distance r from its center. density). ๐‘ƒ๐‘ƒ Assume the sphere is of minimal possible radius๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ . ๐œŒ๐œŒ Therefore:โ‰ค ๐œŒ๐œŒ 2 We need to calculate the radius R of a quantized particle๐‘๐‘ 3 โ„“ = = 3 (35) by its average normalized density so that we obtain a reduced 4 2 4 ๐‘š๐‘š๐‘๐‘ average radius. ๐‘๐‘ Doing the calculation,๐œŒ๐œŒ ๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘…weโ‰ค find๐œŒ๐œŒ๐‘ƒ๐‘ƒ that๐œ‹๐œ‹โ„“ ๐‘๐‘one must have By comparing the integrated variable density over the 1 R = 0.93325 10 35 m. Planck radius, to a volume, with constant density 0 one 3 โˆ’ ๐‘๐‘ ๐œŒ๐œŒ โ‰ฅ โˆš โ„“ ๐‘ฅ๐‘ฅ International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 125

Compared to Planck's length = 1.61625 10 35 m, This gedanken experiment can reveal whether the the classically derived radius R is smaller than the allowedโˆ’ approach to will last forever in the eyes of the external โ„“๐‘๐‘ ๐‘ฅ๐‘ฅ observer. If it does, then the particle will never be able to Planck's length , by an unexplained factor of 0.5774. ๐‘ ๐‘  These calculations were based on the assumptions of come out through๐‘Ÿ๐‘Ÿ the opposite hole. โ„“16๐‘๐‘ G negligible = 2 , and R 0 (r < R). It seems now, thatฯ€ the classical solution to the metric of a ๐•‚๐•‚ ๐‘๐‘ ๐œŒ๐œŒ โ†’ 10. Dynamics Near Center spherically symmetric object, puts a lower limit on the radius R of an object. It looks like there is a sort of quantization It is interesting to see what are the equations of motion limit to small scale objects in spacetime. near center (where r<< R). Instead of having , we find 0.5774 . Assuming spherical symmetry [21,22], it is allowed to The reason for this 0.5774 factor is due to the fact that we investigate it along the radial distance r, and assume it is the ๐‘๐‘ ๐‘๐‘ have assumed a constant๐‘…๐‘… โ‰ฅ densityโ„“ inside๐‘…๐‘… theโ‰ฅ sphere. โ„“If instead x axis. we assume variation in density with radius (highest density 2 = (37) at r 0and then it falls off to zero at ). We need to 2๐œ‡๐œ‡ ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ ๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ calculate the radius R of a quantized particle by its average where ๐›ผ๐›ผ๐›ผ๐›ผ โ†’ โ„“๐‘๐‘ ๐‘‘๐‘‘๐œ๐œ โˆ’ ๐›ค๐›ค ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ density so that we obtain a reduced average radius. 1 = + (38) By comparing the integrated variable density over the 2 Planck radius, to the same volume, but with a constant ๐œ†๐œ† ๐œ†๐œ†๐œ†๐œ† The total ๐›ค๐›คtime๐›พ๐›พ๐›พ๐›พ of flight๐‘”๐‘” ๏ฟฝ๐œ•๐œ• in๐œ‡๐œ‡ ๐‘”๐‘” the๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ classical๐œ•๐œ•๐›พ๐›พ ๐‘”๐‘”๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ โˆ’case๐œ•๐œ•๐‘Ÿ๐‘Ÿ ๐‘”๐‘” will๐›พ๐›พ๐›พ๐›พ ๏ฟฝ be given average density 0 one obtains (see paragraph VI on density by (see Appendix 2): upper limit)): 2 Q 3 ๐œŒ๐œŒ 1 2 = 1 2 1 0 = = (36) Q0 3 โˆ’ ๐‘…๐‘… 1 ๐‘๐‘ Whereas in the general๏ฟฝ relativistic case it๐บ๐บ๐บ๐บ will be: Since 0.5774 = , it is now โˆšclear where the reduction ๐‘‡๐‘‡ ๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ ๏ฟฝ โˆ’ ๏ฟฝ๏ฟฝ 3 ๐‘…๐‘… โŒฉ๐‘Ÿ๐‘ŸโŒช โ„“ 2 3 factor came from. 2 = 1 2 1 โˆš The above result shows how the lower limit of the โˆ’ ๐‘„๐‘„๐‘„๐‘„ classical gravitation theory by Einstein, (Schwarzschild Comparing the๐‘‡๐‘‡ two results,๏ฟฝ๐‘„๐‘„ ๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ . ๏ฟฝ . โˆ’> ๐บ๐บ๐บ๐บ ๏ฟฝ๏ฟฝ . As an example, for the Sun, with R = 6.963x108m and radius), and the dimensional constraints between the ๐บ๐บ๐บ๐บ๐บ๐บ ๐‘…๐‘…๐‘…๐‘…๐‘…๐‘… ๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘ 3 ๐‘‡๐‘‡ 3 ๐‘‡๐‘‡ constants of the universe, result in a quantized material Sun density ฯโ˜‰ = 150 x10 Kg/m the predicted general space. relativistic cross time will be 6.6 mSec longer than the classical calculated cross time. This result is based on average Q over r from 0 to R. 9. A Tunneled Sphere "Thought For an average Neutron star of radius R=11,000 m and Experiment" density ฯ(r) = 4x1017 Kg/m3 , the passage time under general relativity prediction, will last 0.13 mSec longer than Consider a sphere with a thin penetrating tunnel through under classical calculation. center of sphere between opposite surfaces. The sphere of radius R and of mass M will exert a gravitational attractive force on a remote particle. The force 11. Conclusions will be directed towards the center of the sphere, as if all of its mass is concentrated at its center (where r = 0). Using Newton's classical shell theorem, the The attracted particle will be accelerated until it reaches Schwarzschild metric was modified. This removed the the surface, but then will continue its path through the hole. It singularity at r = 0 for a standard object (not a black hole). will continue with no acceleration inside the shell and then For all practical matters, r < R can be treated as an empty come out through the opposite hole. space even for the densest known stellar objects (neutron On its journey, the particle will pass twice the stars) and also for elementary particles (neutrons for instance). Schwarzschild radius = 2 on its way towards the center ๐บ๐บ๐บ๐บ It was demonstrated how general relativity evidently leads and on its way out. ๐‘ ๐‘  ๐‘๐‘ The metric of this shell๐‘Ÿ๐‘Ÿ will be similar to that of a spherical to quantization of space-time. Both classical and quantum mass. Only that this time, even though is inside the body, mechanical limits on density give the same result. one can reach the Schwarzschild radius independently of ๐‘ ๐‘  whether it is a black hole or a standard mass.๐‘Ÿ๐‘Ÿ One way of doing the experiment would be to send a Appendix 1 photon through the hole in the mass and compare its time of For a curved spacetime we define the Riemann tensor: arrival with a simultaneously emitted photon traveling outside the mass. One would then be able to compare = + [1] differences in the time of arrival for the two photons. ๐œ‡๐œ‡ ๐œ‡๐œ‡ ๐œ‡๐œ‡ ๐œ‡๐œ‡ ๐œŽ๐œŽ ๐œ‡๐œ‡ ๐œŽ๐œŽ ๐‘…๐‘…๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ ๐œ•๐œ•๐›ฝ๐›ฝ ๐›ค๐›ค๐›ผ๐›ผ๐›ผ๐›ผ โˆ’ ๐œ•๐œ•๐›พ๐›พ ๐›ค๐›ค๐›ผ๐›ผ๐›ผ๐›ผ ๐›ค๐›ค๐œŽ๐œŽ๐œŽ๐œŽ ๐›ค๐›ค๐›ผ๐›ผ๐›ผ๐›ผ โˆ’ ๐›ค๐›ค๐œŽ๐œŽ๐œŽ๐œŽ ๐›ค๐›ค๐›ผ๐›ผ๐›ผ๐›ผ

126 Doron Kwiat: About the Existence of Black Holes

Where = are the Christoffel symbols: And so ๐œ‡๐œ‡ ๐œ‡๐œ‡๐œ‡๐œ‡1 ( ) ( ) ๐›ผ๐›ผ๐›ผ๐›ผ = ๐œŽ๐œŽ(๐œŽ๐œŽ๐œŽ๐œŽ + ) (39) 1 ฮ“ ๐‘”๐‘” 2ฮ“ = 1 22 ( ) 2 ( ) (โ€ฒ ๐‘Ÿ๐‘Ÿ) (โ€ฒ ๐‘Ÿ๐‘Ÿ) The Ricci tensor๐‘–๐‘–๐‘–๐‘–๐‘–๐‘– is๐‘™๐‘™ defined๐‘–๐‘–๐‘–๐‘– ๐‘˜๐‘˜ by:๐‘–๐‘–๐‘–๐‘– ๐‘–๐‘– ๐‘˜๐‘˜๐‘˜๐‘˜ ๐‘Ÿ๐‘Ÿ โ„Ž ๐‘”๐‘” ๐›ค๐›ค ๐œ•๐œ• ๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” โˆ’ ๐œ•๐œ• ๐‘”๐‘” ๐‘…๐‘… 1 โˆ’ โˆ’ ๏ฟฝ ( )โˆ’ ๏ฟฝ = 1 (51) ๐›ผ๐›ผ๐›ผ๐›ผ = (40) โ„Ž( ๐‘Ÿ๐‘Ÿ) 2 (โ„Ž) ๐‘Ÿ๐‘Ÿ โ„Ž ๐‘Ÿ๐‘Ÿ( ) ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ โ„Ž ๐‘Ÿ๐‘Ÿ ๐œŽ๐œŽ๐œŽ๐œŽ ๐‘Ÿ๐‘Ÿ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ We have then โ„Žtwo๐‘Ÿ๐‘Ÿ โˆ’ equations:โˆ’ โ„Ž ๐‘Ÿ๐‘Ÿ ๐œ•๐œ• ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๏ฟฝ And the curvature scalar๐‘…๐‘… R ๐‘”๐‘”is defined๐‘…๐‘… by: ( ) = = ( ) ( ) = (41) ( ) (52) ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ผ๐›ผ๐›ผ๐›ผ ๐œŽ๐œŽ๐œŽ๐œŽ ๐‘Ÿ๐‘Ÿโ„Ž ๐‘Ÿ๐‘Ÿ 1 ( ) For the Einstein equation๐›ผ๐›ผ ๐›ผ๐›ผone has: ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ๐›ผ ๐‘Ÿ๐‘Ÿ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๐“ก๐“ก ๐‘”๐‘” ๐‘…๐‘… ๐‘”๐‘” ๐‘”๐‘” ๐‘…๐‘… 22๐œ•๐œ• ๐‘™๐‘™๐‘™๐‘™=๏ฟฝ โ„Ž ๐‘Ÿ๐‘Ÿ ๐‘”๐‘” 1๐‘Ÿ๐‘Ÿ ๏ฟฝ โˆ’ ๐•‚๐•‚ (53) 1 8 ( ) 2 ( ) ( ) = (42) ๐‘Ÿ๐‘Ÿ โ„Ž ๐‘Ÿ๐‘Ÿ 2 4 ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹ Outside the ๐‘…๐‘…mass (rโ„Ž>R)๐‘Ÿ๐‘Ÿ โˆ’ โˆ’ โ„Ž ๐‘Ÿ๐‘Ÿ ๐œ•๐œ• ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๏ฟฝ In empty space๐‘…๐‘…๐œ‡๐œ‡๐œ‡๐œ‡ โˆ’ ๐‘”๐‘”๐œ‡๐œ‡๐œ‡๐œ‡= 0๐“ก๐“ก everywhere๐‘๐‘ ๐‘‡๐‘‡๐œ‡๐œ‡๐œ‡๐œ‡ and therefore = 0 and so: = 0 everywhere. ( ) ( ) = (some constant). ๐‘‡๐‘‡๐œ‡๐œ‡๐œ‡๐œ‡ Due to spherical symmetry, the metric must be of the form ๐•‚๐•‚Substitute in eq. 2 to obtain: ๐‘…๐‘…๐œ‡๐œ‡๐œ‡๐œ‡ ( ) โ„Ž ๐‘Ÿ๐‘Ÿ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๐›ผ๐›ผ ( ) ( ) = 1 = 0 (54) ( ) 22 2 2( ) = (43) ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐›ผ๐›ผ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ 2 ๐‘Ÿ๐‘Ÿ And after๐‘…๐‘… few steps:๐›ผ๐›ผ โˆ’ โˆ’ ๐›ผ๐›ผ ๐œ•๐œ• ๐‘™๐‘™๐‘™๐‘™ ๏ฟฝ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐œ‡๐œ‡๐œ‡๐œ‡ โ„Ž ๐‘Ÿ๐‘Ÿ 2 2 ๐‘”๐‘” ๏ฟฝ ๏ฟฝ = ( ( )) (55) Where g(r) and h(r) are functions๐‘Ÿ๐‘Ÿ of the distance r from the So finally: coordinate center (located at the center ๐‘Ÿ๐‘Ÿof ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ the mass.๐œƒ๐œƒ ๐›ผ๐›ผ ๐œ•๐œ•๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ So, the infinitesimal proper time interval between two ( ) = + (56) events along a time-like path is given by ( ) = (57) ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๐›ผ๐›ผ๐›ผ๐›ผ+ ๐›ฝ๐›ฝ 2 = ๐›ผ๐›ผ 1 ๐œ‡๐œ‡ ๐œˆ๐œˆ The metric becomes: โ„Ž ๐‘Ÿ๐‘Ÿ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฝ๐›ฝ = ( ) ( ( ) 2 ๐œ‡๐œ‡๐œ‡๐œ‡ 2 2 2 2 2) (44) 2 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘”๐‘” ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ +

With the flat ๐‘๐‘space metric g = (+ ). ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ โ„Ž ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐œƒ๐œƒ โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œƒ๐œƒ๐œƒ๐œƒ๐œ‘๐œ‘ + In order to solve Einstein's equation everywhere, one can = ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๐›ผ๐›ผ (58) ฮผฮฝ 2 โˆ’ โˆ’โˆ’ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฝ๐›ฝ no longer assume that the curvature is null anywhere. ๐œ‡๐œ‡๐œ‡๐œ‡ โŽ› 2 2 โŽž This is true only outside the mass and so = 0 only for ๐‘”๐‘” โŽœ โŽŸ ๐‘Ÿ๐‘Ÿ r > R. ๐“ก๐“ก Comparing this metric with the asymptotic weak-field ๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œƒ๐œƒ Assuming the mass density of the ๐“ก๐“กobject being metric (r ):โŽ โŽ  homogeneous and at total freeze of motion, = 0, except 2 2 1 2 for 00 = , with being the mass density. โ‰ซ ๐‘…๐‘… ๐œ‡๐œ‡๐œ‡๐œ‡ ๐บ๐บ๐บ๐บ 1 1 8 ๐‘‡๐‘‡ ๐‘Ÿ๐‘Ÿ๐‘๐‘ 2 = (45) = ๏ฟฝ โˆ’ ๏ฟฝ 1 (59) ๐‘‡๐‘‡ ๐œŒ๐œŒ๐‘๐‘ ๐œŒ๐œŒ 2 4 โˆ’ 2 ๐œ‹๐œ‹๐œ‹๐œ‹ ๐œ‡๐œ‡๐œ‡๐œ‡ ๐œ‡๐œ‡๐œ‡๐œ‡ 2 โŽ› ๐บ๐บ๐บ๐บ 2 โŽž ๐œ‡๐œ‡๐œ‡๐œ‡ ๐œ‡๐œ‡๐œ‡๐œ‡ ๐œ‡๐œ‡๐œ‡๐œ‡ ๐œ‡๐œ‡๐œ‡๐œ‡ ๏ฟฝ โˆ’ ๏ฟฝ ๐‘”๐‘” ๏ฟฝ๐‘…๐‘… โˆ’ ๐‘”๐‘” ๐“ก๐“ก๏ฟฝ ๐‘๐‘ ๐‘”๐‘” ๐‘‡๐‘‡ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ๐‘๐‘ โŽœ 2 2 โŽŸ T Under perfect fluid conditions, = ๐œŒ๐œŒ๐‘๐‘ , โˆ’๐‘Ÿ๐‘Ÿ It is suggested that ฮผฮฝ ๐‘๐‘ โŽ โˆ’๐‘Ÿ๐‘Ÿ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐œƒ๐œƒ โŽ  ๏ฟฝ ๏ฟฝ 2 ( ) where p is the pressure. ๐‘๐‘ + = 1 + 2 (60) 16 G ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ = ๐‘๐‘ Define 2 , and so, Therefore, ๐‘๐‘ ฯ€ ๐›ผ๐›ผ๐›ผ๐›ผ ๐›ฝ๐›ฝ ๏ฟฝ ๏ฟฝ 16 = 1 (61) ๐•‚๐•‚ ๐‘๐‘ 00 = 2 = (46) ๐œ‹๐œ‹๐œ‹๐œ‹ 2 ( ) = For all other terms, 11 = ๐‘๐‘ 22 = 33: ๐›ฝ๐›ฝ 2 (62) ๐‘…๐‘… ๐œŒ๐œŒ ๐•‚๐•‚๐œŒ๐œŒ ๐›ท๐›ท ๐‘Ÿ๐‘Ÿ 16 = = This shows us that the structure of the Schwarzschild ๐‘…๐‘… ๐‘…๐‘…2 ๐‘…๐‘… (47) ๐›ผ๐›ผ ๐‘Ÿ๐‘Ÿ๐‘๐‘ ๐œ‹๐œ‹๐œ‹๐œ‹ metric in Eq. 7, is not only a result of dimensional From the definitions๐‘…๐‘… ๐‘–๐‘–๐‘–๐‘–of the๐‘๐‘ Riemann๐‘๐‘ ๐•‚๐•‚ ๐‘๐‘tensor and the Ricci considerations discussed above, but also a result of spherical tensor we obtain symmetry considerations of the Einstein Equation, Eq. 17. = + (48) This result was obtained based on symmetry arguments ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๐œ†๐œ† ๐›ฟ๐›ฟ ๐œ†๐œ† only, and it is independent of the weak-field approximation. 00๐œ‡๐œ‡๐œ‡๐œ‡ = ๐›ฟ๐›ฟ 00๐œ‡๐œ‡๐œ‡๐œ‡ 0๐›พ๐›พ 0๐œ‡๐œ‡๐œ‡๐œ‡+ ๐›ฟ๐›ฟ๐›ฟ๐›ฟ 00๐›พ๐›พ๐›พ๐›พ 0๐›พ๐›พ๐›พ๐›พ 0๐›ฟ๐›ฟ๐›ฟ๐›ฟ (49) ๐‘…๐‘… ๐œ•๐œ• ๐›ค๐›ค โˆ’ ๐œ•๐œ• ๐›ค๐›ค ๐›ค๐›ค ๐›ค๐›ค โˆ’ ๐›ค๐›ค ๐›ค๐›ค Inside the mass (r < R) Following some tedious๐›ฟ๐›ฟ mathematical๐›ฟ๐›ฟ ๐›ฟ๐›ฟ ๐œ†๐œ† work, ๐›ฟ๐›ฟone๐œ†๐œ† arrives at ๐‘…๐‘… ๐œ•๐œ•๐›ฟ๐›ฟ ๐›ค๐›ค โˆ’ ๐œ•๐œ• ๐›ค๐›ค ๐›ฟ๐›ฟ ๐›ค๐›ค๐›ฟ๐›ฟ๐›ฟ๐›ฟ ๐›ค๐›ค โˆ’ ๐›ค๐›ค ๐œ†๐œ† ๐›ค๐›ค๐›ฟ๐›ฟ > 0 [4]: : The only approximation made was the assumption on 16 ( ) ( ) ( ) = ๐•‚๐•‚ 2 ( ) (50) empty space solution. For non-empty space, it will be valid ๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿโ„Ž ๐‘Ÿ๐‘Ÿ

๐œ•๐œ•๐‘Ÿ๐‘Ÿ ๐‘™๐‘™๐‘™๐‘™๏ฟฝโ„Ž ๐‘Ÿ๐‘Ÿ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ ๏ฟฝ โˆ’ ๐‘๐‘ ๐œŒ๐œŒ ๐‘”๐‘” ๐‘Ÿ๐‘Ÿ International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 127

2 2 for a perfect fluid of zero pressure. 1 1 11 1 2 1 1 = (77) 2 2 2 00 2 2 2 However, one may use a model where the pressure p is ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 00 ๐‘‘๐‘‘๐‘‘๐‘‘ proportional o the density [18], and so p = where And so๐ด๐ด ๐‘‘๐‘‘๐‘ก๐‘ก ๐‘”๐‘” ๐œ•๐œ•๐‘Ÿ๐‘Ÿ ๐‘”๐‘” ๏ฟฝ๐ด๐ด ๐‘๐‘ โˆ’ ๐‘”๐‘” ๐ด๐ด ๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ is a proportionality factor. 2 1 1 1 2 ๐œ”๐œ”๐œ”๐œ” ๐œ”๐œ” = 2 (78) 2 2 00 2 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 00 00 ๐‘‘๐‘‘๐‘‘๐‘‘ For ๐‘‘๐‘‘๐‘ก๐‘ก 1 โˆ’ ๐‘”๐‘” ๐œ•๐œ•๐‘Ÿ๐‘Ÿ ๐‘”๐‘” ๏ฟฝ๐‘๐‘ โˆ’ ๐‘”๐‘” ๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ Appendix 2 ๐‘Ÿ๐‘Ÿ 4 2 ๐‘…๐‘… Since by coordinates choice and symmetry, only 00 and โ‰ช 00 = 2 1 (79) ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… 11 are non-zero (assuming constant gravitationalฮป field 2 g = 0 ๐‘๐‘ = 0 ฮปg = 0 ฮ“ And so 00 , ๐‘”๐‘”which means thatโˆ’ 2 . ). ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ฮ“ 2 2 2 The acceleration๐‘Ÿ๐‘Ÿ near the center is zero.๐‘‘๐‘‘๐‘ก๐‘ก ๐‘ก๐‘ก ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ 1 1 ๐œ•๐œ• ๐œ•๐œ• 2 = 00 11 (63) However, if one moves away from the center: ๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ 1 4 2 1 2 1 ๐‘‘๐‘‘๐œ๐œ 1 ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ = 1 1 (80) = โˆ’( ๐›ค๐›ค ๏ฟฝ+๏ฟฝ โˆ’ ๐›ค๐›ค ๏ฟฝ ๏ฟฝ ) 00 2 3 00 2 0 0 0 0 00 ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ 1 11 ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ 1 ๐‘Ÿ๐‘Ÿ 11 And so ๐‘”๐‘” ๐‘๐‘ ๏ฟฝ โˆ’ ๏ฟฝ๐‘…๐‘…๏ฟฝ ๏ฟฝ โˆ’ = ๐›ค๐›ค( 0 10 + ๐‘”๐‘” 0 10๐œ•๐œ• ๐‘”๐‘” 1 00๐œ•๐œ•)๐‘”๐‘”= โˆ’ ๐œ•๐œ• ๐‘”๐‘” 1 00 (64) 2 2 4 2 2 8 = = (81) 00 2 3 2 3 2 and likewise๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” โˆ’ ๐œ•๐œ• ๐‘”๐‘” โˆ’ ๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ 1 1 2 2 1 11 11 ๐‘Ÿ๐‘Ÿ 1 ๐‘๐‘ 1 ๐‘…๐‘… 2 1 ๐‘๐‘ 11 = ( 1 11 + 1 11 1 11) = 1 11(65) ๐œ•๐œ• ๐‘”๐‘” = ๏ฟฝโˆ’ ๏ฟฝ โˆ’ ๐‘Ÿ๐‘Ÿ (82) 2 2 2 2 00 2 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 00 00 ๐‘‘๐‘‘๐‘‘๐‘‘ 2 ๐›ค๐›คThe equation๐‘”๐‘” ๐œ•๐œ• of๐‘”๐‘” motion๐œ•๐œ• in๐‘”๐‘” theโˆ’ x๐œ•๐œ• direction๐‘”๐‘” becomes๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” ๐‘‘๐‘‘๐‘ก๐‘ก2 1 1๐‘”๐‘” 8๐‘Ÿ๐‘Ÿ ๐‘”๐‘” 1 ๐‘‘๐‘‘๐‘‘๐‘‘ =โˆ’ ๐œ•๐œ• ๐‘”๐‘” ๏ฟฝ๐‘๐‘ โˆ’2 + ๏ฟฝ ๏ฟฝ ๏ฟฝ (83) 2 2 2 2 2 2 3 2 4 1 11 2 1 11 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 = 1 00 1 11 (66) 2 2 2 4 1 2 ๐‘‘๐‘‘ ๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ก๐‘ก = ๐ด๐ด ๏ฟฝโˆ’ ๐‘๐‘ 2 +๐‘Ÿ๐‘Ÿ๏ฟฝ ๏ฟฝ๐‘๐‘ ๐ด๐ด ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ (84) 2 3 2 2 4 ๐‘‘๐‘‘๐œ๐œSince ๏ฟฝ the๐‘”๐‘” choice๐œ•๐œ• ๐‘”๐‘” ๏ฟฝ of๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝcoordinates๐‘๐‘ โˆ’ ๏ฟฝ ๐‘”๐‘” is ๐œ•๐œ•such๐‘”๐‘” ๏ฟฝ that๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ x is ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 represented by r, one can write ๐‘‘๐‘‘๐‘ก๐‘ก2 โˆ’ 4๐‘๐‘ ๐ด๐ด ๐‘Ÿ๐‘Ÿ ๏ฟฝ๐‘๐‘ ๐ด๐ด1 ๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ 2 = 2 1 + 2 4 (85) 2 1 2 1 2 3 = 11 2 11 (67) ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘‘๐‘‘๐‘‘๐‘‘ 2 2 00 2 11 4 2 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ก๐‘ก โˆ’ ๐ด๐ด ๐‘Ÿ๐‘Ÿ ๏ฟฝ 2๐‘๐‘ ๐ด๐ด ๏ฟฝ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๏ฟฝ Near center (where r ๏ƒ  0), A = 1 2 depends on From๐‘‘๐‘‘๐œ๐œ the proper-๐‘Ÿ๐‘Ÿtime result๐‘‘๐‘‘๐‘‘๐‘‘ (which holds ๐‘Ÿ๐‘Ÿinside the๐‘‘๐‘‘๐‘‘๐‘‘ sphere, ๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” ๏ฟฝ ๏ฟฝ ๐‘๐‘ โˆ’ ๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” ๏ฟฝ ๏ฟฝ r only through the density ( ). ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… where r < R) ๐‘๐‘ We may write โˆ’ 2 2 2 2 4 1 2 2 ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ 2 = 1 1 = (68) ( ) 2 3 00 = ( ) 1 + ( ) (86) ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ 2 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐‘ฃ๐‘ฃ ๐‘Ÿ๐‘Ÿ ๐‘๐‘ ๐‘…๐‘… ๐‘‘๐‘‘๐‘‘๐‘‘Define ๐‘‘๐‘‘๐‘‘๐‘‘for convenience๏ฟฝ โˆ’ ๏ฟฝ โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ โˆ’๐‘”๐‘” ๐‘‘๐‘‘๐‘‘๐‘‘ Here, ( )๐‘‘๐‘‘ ๐‘ก๐‘กis the๐‘„๐‘„ approach๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๏ฟฝ velocity.๐‘Š๐‘Š ๐‘Ÿ๐‘Ÿ ๏ฟฝQ ๐‘๐‘and๏ฟฝ W๏ฟฝ depend on r 4 2 1 2 and are defined by: = 2( ) = 1 1 (69) 00 2 3 ๐‘ฃ๐‘ฃ ๐‘Ÿ๐‘Ÿ 4 ( ) ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ ( ) (87) 3 2( ) And so ๐‘”๐‘” ๐ด๐ด ๐‘Ÿ๐‘Ÿ โˆ’ ๐‘๐‘ ๏ฟฝ โˆ’ ๏ฟฝ๐‘…๐‘…๏ฟฝ ๏ฟฝ ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿ 1 ๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ( )โ‰ ๐ด๐ด ๐‘Ÿ๐‘Ÿ (88) = (70) 4( ) ๐‘‘๐‘‘๐‘‘๐‘‘ 1 The result shows how๐‘Š๐‘Š on๐‘Ÿ๐‘Ÿ approachโ‰ ๐ด๐ด ๐‘Ÿ๐‘Ÿ to center (r ๏ƒ  0), ๐‘‘๐‘‘๐‘‘๐‘‘ = = ๐ด๐ด (71) where ( ) is assumed constant, the acceleration decreases ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ And ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘‘๐‘‘ ๐ด๐ด ๐‘‘๐‘‘๐‘‘๐‘‘ in proportion with r on one hand, but depends also on the ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ 2 1 2 square of the approach velocity. 2 = 2 2 (72) For small approach-to-center velocity ( 1) ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 2 From the metric definition: ๐‘‘๐‘‘๐œ๐œ ๐ด๐ด ๐‘‘๐‘‘๐‘ก๐‘ก 2 = ๐‘ฃ๐‘ฃ โ„ ๐‘๐‘ โ‰ช (89) 2 0 0 1 1 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ = = 00 + 11 (73) One may approximate though๐‘‘๐‘‘๐‘ก๐‘ก forโˆ’๐‘„๐‘„ a slow๐‘Ÿ๐‘Ÿ approach velocity ๐œ‡๐œ‡ ๐œˆ๐œˆ ( 1): and since๐‘‘๐‘‘๐‘‘๐‘‘ ๐‘”๐‘”๐œ‡๐œ‡๐œ‡๐œ‡ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘”๐‘” ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘”๐‘” ๐‘‘๐‘‘๐‘ฅ๐‘ฅ ๐‘‘๐‘‘๐‘ฅ๐‘ฅ 2 2 00 = (74) ๐‘ฃ๐‘ฃโ„๐‘๐‘ โ‰ช 2 = ( ) (90) 1 1 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 11 = = 2 (75) ๐‘”๐‘” ๐ด๐ด 00 where ๐‘‘๐‘‘๐‘ก๐‘ก โˆ’๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ 4 ( ) One obtains: ๐‘”๐‘” โˆ’ ๐‘”๐‘” โˆ’ ๐ด๐ด ( ) = 4 ( ) 2 1 2 (91) 3 1 1 1 2๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿ 3 11 = 2 00 (76) ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿ ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ 00 ๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ (Recall that by the assumption๏ฟฝ โˆ’ ๐‘๐‘ on ๏ฟฝtheโˆ’ maximal๏ฟฝ๐‘…๐‘…๏ฟฝ ๏ฟฝ๏ฟฝ density ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ Inserting into Eq. [49] one obtains:๐‘”๐‘” 4ฯ€Gฯ(r)R2 ๐œ•๐œ• ๐‘”๐‘” ๐œ•๐œ• ๐‘”๐‘” (Eq. 38), < 1, and so, Q(r) 0. Also, note that c2

โ‰ฅ 128 Doron Kwiat: About the Existence of Black Holes

2 2 3 [ ] 4 0 4 0 Q = 1/ ]). = = = (106) 2 3 3 3 3 One may solve this under certain approximation: ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐บ๐บ๐บ๐บ ๐บ๐บ ๐œ‹๐œ‹๐œŒ๐œŒ ๐‘…๐‘… ๐œ‹๐œ‹๐œ‹๐œ‹๐œŒ๐œŒ ( ) = ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ 0 constant density inside r < R. Classically,๐‘‘๐‘‘๐‘ก๐‘ก theโˆ’ acceleration๐‘…๐‘… ๐‘Ÿ๐‘Ÿ โˆ’ will๐‘…๐‘… be ๐‘Ÿ๐‘Ÿ โˆ’ ๐‘Ÿ๐‘Ÿ In this case Q(r) is nearly a constant independent of r, 2 4 = = (107) and๐œŒ๐œŒ the๐‘Ÿ๐‘Ÿ equation๐œŒ๐œŒ becomes 2 3 0 0 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹ 2 4 G with 0 = 0 ๐‘‘๐‘‘๐‘ก๐‘ก โˆ’ ๐œŒ๐œŒ ๐‘Ÿ๐‘Ÿ โˆ’๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ 2 = (92) 3 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ This, in comparisonฯ€ to the general relativistic solution: ๐‘„๐‘„ ฯ Which general solution is๐‘‘๐‘‘ ๐‘ก๐‘ก โˆ’๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ 2 = ( ) ( ) = + ( ) + ( ) (93) 2 (108) ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ 4 G (r)R2 Even though๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก ๐ต๐ต(r)๐ถ๐ถ is๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ not ๐‘„๐‘„constant,๐‘ก๐‘ก ๐ท๐ท๐ท๐ท๐ท๐ท๐ท๐ท the term๐‘„๐‘„ ๐‘ก๐‘ก in ๐‘‘๐‘‘๐‘ก๐‘ก โˆ’๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๏ฟฝ c2 the denominator of ( ) is of the order of, or ฯ€lessฯ than, 9.2 10 9. Q(r) may๐‘„๐‘„ be approximated as: REFERENCES โˆ’ ๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ4 ( ) 4 ( ) ( ) 1 2 (94) [1] Kevin Brown, Reflections on Relativity, ISBN-12: ๐‘ฅ๐‘ฅ 3 1 9.2 10 9 1 3 ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿ 3 ๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹๐œ‹ ๐‘Ÿ๐‘Ÿ 9781257033027 Lulu.com. 2010. โˆ’ ๐‘Ÿ๐‘Ÿ ๐‘„๐‘„ ๐‘Ÿ๐‘Ÿ โ‰… ๏ฟฝ โˆ’ ๐‘ฅ๐‘ฅ ๏ฟฝ โˆ’ ๏ฟฝ๐‘…๐‘…๏ฟฝ ๏ฟฝ๏ฟฝ โ‰… ( ) = ( ) + ( ) (95) [2] Landau, L. D.; Lifshitz, E. M.. The Classical Theory of Fields. r(0) = Q D Course of Theoretical Physics. 2 (4th Revised English ed.). Assuming๐‘Ÿ๐‘Ÿฬ‡ ๐‘ก๐‘ก zeroโˆ’ ๐ถ๐ถstart๏ฟฝ๐‘„๐‘„ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ velocity,๏ฟฝ๐‘„๐‘„ ๐‘ก๐‘ก ๐ท๐ท๏ฟฝ๐‘„๐‘„ ๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ๐‘„๐‘„ ๐‘ก๐‘กone must Pergamon Press. (1950). have D = 0. Hence ฬ‡ โˆ’๏ฟฝ [3] Buchdahl H. A., Isotropic Coordinates and Schwarzschild Metric, International Journal of Theoretical Physics, Volume ( ) = ( ) (96) 24, Issue 7, pp.731-739, (1985). r(0) = R Also, .๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก ๐ต๐ต โˆ’ ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ ๏ฟฝ๐‘„๐‘„ ๐‘ก๐‘ก [4] Davie R, Schwarzschild metric 1-3, Therefore https://www.youtube.com/watch?v=D1mmLjR-szY. = (97) [5] Josรฉ P. S. Lemos, Diogo L. F. G. Silva. "Maximal extension ( ) = ( ) ( ) (98) of the Schwarzschild metric: From Painlevรฉ-Gullstrand to ๐‘…๐‘… ๐ต๐ต โˆ’ ๐ถ๐ถ Kruskal-Szekeres", arXiv:2005.14211. (2020). GM Assume the acceleration r(0) = , ๐‘Ÿ๐‘Ÿ ๐‘ก๐‘ก ๐ต๐ต โˆ’ ๐ต๐ต โˆ’ ๐‘…๐‘… ๐‘๐‘R๐‘๐‘๐‘๐‘2 ๏ฟฝ๐‘„๐‘„ ๐‘ก๐‘ก [6] P. Painlevรฉ, โ€œLa mรฉcanique classique et la thรฉorie de la ( ) = ( ) relativitรฉโ€, Comptes Rendus de lโ€™Acadรฉmie des Sciences 173, ฬˆ โˆ’ (99) 677 (1921). Using these assumptions, one obtains: ๐‘Ÿ๐‘Ÿฬˆ ๐‘ก๐‘ก ๐ต๐ต โˆ’ ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ๐ถ ๏ฟฝ๐‘„๐‘„ ๐‘ก๐‘ก [7] A. Gullstrand, โ€œAllgemeine Lรถsung des statischen

( ) = + 2 ( ) 1 (100) Einkรถrperproblems in der Einsteinschen Gravitationstheorieโ€, ๐บ๐บ๐บ๐บ Arkiv fรถr Matematik, Astronomi och Fysik 16, 1 (1922). Furthermore, ๐‘Ÿ๐‘Ÿif ๐‘ก๐‘กthe object๐‘…๐‘… ๐‘„๐‘„ arrives๐‘„๐‘„ ๏ฟฝ๐‘๐‘๐‘๐‘๐‘๐‘ at๏ฟฝ ๐‘„๐‘„the๐‘ก๐‘ก centerโˆ’ ๏ฟฝ (r = 0) at some later time T, one has: [8] A. S. Eddington, โ€œA comparison of Whiteheadโ€™s and Einsteinโ€™s formulaโ€, Nature 113, 192 (1924).

( ) = 0 = + 2 ( ) 1 (101) ๐บ๐บ๐บ๐บ [9] D. Finkelstein, โ€œPast-future asymmetry of the gravitational field of a โ€, Phys. Rev. 110, 965 (1958). The time to๐‘Ÿ๐‘Ÿ ๐‘‡๐‘‡cross the diameter๐‘…๐‘… ๐‘„๐‘„๐‘„๐‘„ ๏ฟฝ2R๐‘๐‘๐‘๐‘๐‘๐‘ (from๏ฟฝ๐‘„๐‘„ ๐‘‡๐‘‡surfaceโˆ’ ๏ฟฝ to surface through the center) is thus [10] G. Lemaรฎtre, โ€œLโ€™Univers en expansionโ€, Annales de la 2 3 Sociรฉtรฉ Scientifique de Bruxelles 53A, 51 (1933). 2 = 1 1 (102)

โˆ’ ๐‘„๐‘„๐‘„๐‘„ [11] J. Synge, โ€œThe gravitational field of a particleโ€, Proceedings Where ๐‘‡๐‘‡ ๏ฟฝ๐‘„๐‘„ ๐‘๐‘๐‘๐‘๐‘๐‘ ๏ฟฝ โˆ’ ๐บ๐บ๐บ๐บ ๏ฟฝ of the Royal Irish Academy, Section A: Mathematical and Physical Sciences 53, 83 (1950). ( ) 4 G (r) Q r = 4 G (r)R2 1 r 2 3 1 1 c2ฯ€ ฯ 3 R [12] M. Kruskal, โ€œMaximal extension of Schwarzschild metricโ€, ฯ€ ฯ Phys. Rev. 119, 1743 (1959). In this case ๏ฟฝ โˆ’ ๏ฟฝ โˆ’ ๏ฟฝ ๏ฟฝ ๏ฟฝ๏ฟฝ 2 4 [13] G. Szekeres, โ€œOn the singularities of a Riemannian manifoldโ€, = ( ) (103) Publicationes Mathematicae Debrecen 7, 285 (1959). 2 3 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐œ‹๐œ‹๐œ‹๐œ‹ Classically, a falling๐‘‘๐‘‘ object๐‘ก๐‘ก โˆ’ of mass๐‘Ÿ๐‘Ÿ ๐œŒ๐œŒ m,๐‘Ÿ๐‘Ÿ starting at r < R, [14] I. Newton, Philosophiae Naturalis Principia Mathematica. will be accelerated towards center according to the potential: London. pp. Theorem XXXI. (1687). ( ) = (3 2 2) (104) [15] R. Arens, "Newton\'s observations about the field of a 2 3 ๐บ๐บ๐บ๐บ uniform thin spherical shell ".Note di Matematica, Vol. x, And the acceleration๐›ท๐›ท ๐‘Ÿ๐‘Ÿ willโˆ’ be๐‘…๐‘… ๐‘…๐‘… โˆ’ ๐‘Ÿ๐‘Ÿ Suppl. n. 1, 39-45. (1990). 2 ( ) = = = 2 (105) [16] Carlo Rovelli, Scholarpedia, 3(5): 7117. 2 2 3 ๐‘‘๐‘‘ ๐‘Ÿ๐‘Ÿ ๐œ•๐œ•๐œ•๐œ• ๐‘Ÿ๐‘Ÿ ๐บ๐บ๐บ๐บ doi.org/10.4249/scholarpedia.7117 (2008). ๐น๐น ๐‘š๐‘š ๐‘‘๐‘‘๐‘ก๐‘ก โˆ’๐‘š๐‘š ๐œ•๐œ•๐œ•๐œ• โˆ’๐‘š๐‘š ๐‘…๐‘… ๐‘Ÿ๐‘Ÿ International Journal of Theoretical and Mathematical Physics 2020, 10(6): 120-129 129

[17] I. Gkigkitzis, I. Haranas, O. Ragos, "Kretschmann Invariant Kerr-Newman Black Hole". The Astrophysical Journal. The and Relations between Spacetime Singularities, Entropy and American Astronomical Society. 535 (1): 350โ€“353. Information". arXiv preprint arXiv:1406.1581, (2014). [20] A. Zee, "Einstein Gravity in a Nutshell",Princeton University [18] R. Moradi, J. T. Firouzjaee, R. Mansouri. "Cosmological Press, 2013. black holes: the spherical perfect fluid collapse with pressure in a FRW background", Classical and Quantum Gravity. 32, [21] Ray D'Inverno, ""Introducing Einstein's Relativity", Oxford 21 (2015). University Press, 1992. [19] Richard C. Henry (2000). "Kretschmann Scalar for a [22] Misner, K. Thorne and A. Wheeler, "Gravitation", Freeman and Co. 1975.

Copyright ยฉ 2020 The Author(s). Published by Scientific & Academic Publishing This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/