Microbial Genomics of the Global Ocean System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identical Bacterial Populations Colonize Premature Infant Gut, Skin, and Oral Microbiomes And
Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates Matthew R. Olm1, Christopher T. Brown1, Brandon Brooks1, Brian Firek2, Robyn Baker3, David Burstein4, Karina Soenjoyo1, Brian C. Thomas4, Michael Morowitz2 and Jillian F. Banfield4,5,6* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. 3Division of Newborn Medicine, Children’s Hospital of Pittsburgh and Magee-Womens Hospital of UPMC, Pittsburgh, United States 4Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 5Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 6Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. *Corresponding author Running title Metagenomics of infant skin, mouth, and gut Keywords Microbiome, metagenomics, growth rates, premature infants, strains Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth and gut of two hospitalized premature infants during the first month of life. -
Deluge of Oil Highlights Research and Technology Needs for Effective Cleanup of Oil Spills
DELUGE OF OIL HIGHLIGHTS RESEARCH AND TECHNOLOGY NEEDS FOR EFFECTIVE CLEANUP OF OIL SPILLS HEARING BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED ELEVENTH CONGRESS SECOND SESSION JUNE 9, 2010 Serial No. 111–98 Printed for the use of the Committee on Science and Technology ( Available via the World Wide Web: http://www.science.house.gov U.S. GOVERNMENT PRINTING OFFICE 57–176PDF WASHINGTON : 2010 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE AND TECHNOLOGY HON. BART GORDON, Tennessee, Chair JERRY F. COSTELLO, Illinois RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER JR., LYNN C. WOOLSEY, California Wisconsin DAVID WU, Oregon LAMAR S. SMITH, Texas BRIAN BAIRD, Washington DANA ROHRABACHER, California BRAD MILLER, North Carolina ROSCOE G. BARTLETT, Maryland DANIEL LIPINSKI, Illinois VERNON J. EHLERS, Michigan GABRIELLE GIFFORDS, Arizona FRANK D. LUCAS, Oklahoma DONNA F. EDWARDS, Maryland JUDY BIGGERT, Illinois MARCIA L. FUDGE, Ohio W. TODD AKIN, Missouri BEN R. LUJA´ N, New Mexico RANDY NEUGEBAUER, Texas PAUL D. TONKO, New York BOB INGLIS, South Carolina STEVEN R. ROTHMAN, New Jersey MICHAEL T. MCCAUL, Texas JIM MATHESON, Utah MARIO DIAZ-BALART, Florida LINCOLN DAVIS, Tennessee BRIAN P. BILBRAY, California BEN CHANDLER, Kentucky ADRIAN SMITH, Nebraska RUSS CARNAHAN, Missouri PAUL C. BROUN, Georgia BARON P. HILL, Indiana PETE OLSON, Texas HARRY E. MITCHELL, Arizona CHARLES A. -
Genome-Reconstruction for Eukaryotes from Complex Natural Microbial Communities
Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-reconstruction for eukaryotes from complex natural microbial communities ,$ Patrick T. West1, Alexander J. Probst2 , Igor V. Grigoriev1,5, Brian C. Thomas2, Jillian F. Banfield2,3,4* 1Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. 2Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 3Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA. 4Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5US Department of Energy Joint Genome Institute, Walnut Creek, California, USA. * Corresponding Author $present address: Group for Aquatic Microbial Ecology, Biofilm Center, Department of Chemistry, University of Duisburg-Essen, Essen, Germany Running title Metagenomic Reconstruction of Eukaryotic Genomes Keywords metagenomics, eukaryotes, genome, gene prediction Corresponding author contact info Jillian Banfield Department of Environmental Science, Policy, & Management UC Berkeley 130 Mulford Hall #3114 Berkeley, CA 94720 [email protected] (510) 643-2155 1 Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Microbial eukaryotes are integral components of natural microbial communities and their inclusion is critical for many ecosystem studies yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k-mer- based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation and prediction of metabolic potential. -
Michel Foucault Ronald C Kessler Graham Colditz Sigmund Freud
ANK RESEARCHER ORGANIZATION H INDEX CITATIONS 1 Michel Foucault Collège de France 296 1026230 2 Ronald C Kessler Harvard University 289 392494 3 Graham Colditz Washington University in St Louis 288 316548 4 Sigmund Freud University of Vienna 284 552109 Brigham and Women's Hospital 5 284 332728 JoAnn E Manson Harvard Medical School 6 Shizuo Akira Osaka University 276 362588 Centre de Sociologie Européenne; 7 274 771039 Pierre Bourdieu Collège de France Massachusetts Institute of Technology 8 273 308874 Robert Langer MIT 9 Eric Lander Broad Institute Harvard MIT 272 454569 10 Bert Vogelstein Johns Hopkins University 270 410260 Brigham and Women's Hospital 11 267 363862 Eugene Braunwald Harvard Medical School Ecole Polytechnique Fédérale de 12 264 364838 Michael Graetzel Lausanne 13 Frank B Hu Harvard University 256 307111 14 Yi Hwa Liu Yale University 255 332019 15 M A Caligiuri City of Hope National Medical Center 253 345173 16 Gordon Guyatt McMaster University 252 284725 17 Salim Yusuf McMaster University 250 357419 18 Michael Karin University of California San Diego 250 273000 Yale University; Howard Hughes 19 244 221895 Richard A Flavell Medical Institute 20 T W Robbins University of Cambridge 239 180615 21 Zhong Lin Wang Georgia Institute of Technology 238 234085 22 Martín Heidegger Universität Freiburg 234 335652 23 Paul M Ridker Harvard Medical School 234 318801 24 Daniel Levy National Institutes of Health NIH 232 286694 25 Guido Kroemer INSERM 231 240372 26 Steven A Rosenberg National Institutes of Health NIH 231 224154 Max Planck -
Genome-Resolved Metagenomics Reveals Site-Specific Diversity of Episymbiotic CPR Bacteria and DPANN Archaea in Groundwater Ecosystems
ARTICLES https://doi.org/10.1038/s41564-020-00840-5 Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems Christine He 1, Ray Keren 2, Michael L. Whittaker3,4, Ibrahim F. Farag 1, Jennifer A. Doudna 1,5,6,7,8, Jamie H. D. Cate 1,5,6,7 and Jillian F. Banfield 1,4,9 ✉ Candidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host associa- tion of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pristine sites, which serve as local sources of drinking water, contained up to 31% CPR bacteria and 4% DPANN archaea. We observed little species-level overlap of metagenome-assembled genomes (MAGs) across the groundwater sites, indicating that CPR and DPANN communities may be differentiated according to physicochemical conditions and host populations. Cryogenic transmission electron microscopy imaging and genomic analyses enabled us to identify CPR and DPANN lineages that reproduc- ibly attach to host cells and showed that the growth of CPR bacteria seems to be stimulated by attachment to host-cell surfaces. Our analysis reveals site-specific diversity of CPR bacteria and DPANN archaea that coexist with diverse hosts in groundwater aquifers. Given that CPR and DPANN organisms have been identified in human microbiomes and their presence is correlated with diseases such as periodontitis, our findings are relevant to considerations of drinking water quality and human health. -
Laboratory Directed Research and Development Program FY 2002
LBNL/PUB -54 8 5 Laboratory Directed Research and Development Program FY 2002 March 2003 Disclaimer This document wlls prepared as an account or work sponsored by the United Stales Government. While this document is believed ta contain correct inrormution, neither the United Stntes Government nor any agcncy thereof, nor The Regents orthe University of California, nor any of their employees, makes any wmnty, express or implied. or assumes any legal linbility or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclased, or represents that its use would not infringc privately awned rights. Reference herein to any specific commcrcial product, process, or service by its tradc name, trademark, manufacturer, or otherwise, does not necessnrily constitute or imply its endoaemcnt, recommendation, or favoring by the United States Government or any ogency thereof, ar The Regcnls of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of ihe United Siates Gwernment or any agency thercol or The Regents of the University of Caliktmia nnd shall not be used lor advertising or product endorsement purposes. Ernest Orlnndo hwrence Berkeley National Laboratory is an equal opportunity employer. Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2002 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, California 94720 Off ice of Science USDepartment -
Downloaded Under Project PRJNA273161 [13] Expressed As Mean ± Standard Error of Mean (SEM)
Tian et al. Microbiome (2020) 8:51 https://doi.org/10.1186/s40168-020-00825-w RESEARCH Open Access Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity Renmao Tian1, Daliang Ning1, Zhili He1, Ping Zhang1, Sarah J. Spencer2, Shuhong Gao1, Weiling Shi1, Linwei Wu1, Ya Zhang1, Yunfeng Yang3, Benjamin G. Adams4, Andrea M. Rocha5, Brittny L. Detienne4, Kenneth A. Lowe5, Dominique C. Joyner4, Dawn M. Klingeman5, Adam P. Arkin6,7, Matthew W. Fields8, Terry C. Hazen4,5, David A. Stahl9, Eric J. Alm2 and Jizhong Zhou1,3,10* Abstract Background: The newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known. Results: Here, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. -
Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities
Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities By Christine Ling Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Steven Brenner Professor Jennifer Doudna Professor Steven Lindow Spring 2013 Abstract Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities by Christine Ling Sun Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Viruses of Bacteria (bacteriophages) and Archaea have the ability to significantly alter the structure and function of microbial communities. Thus, it is critical to obtain a greater understanding of the dynamic interaction between microbial hosts and their associated viral populations. The CRISPR-Cas system in Bacteria and Archaea serves as a method to connect viruses to their hosts and provides insight into virus-host interactions. A clustered regularly interspaced short palindromic repeat (CRISPR) locus and CRISPR-associated (Cas) proteins function together in the CRISPR-Cas adaptive immune system. Transcripts of the spacers that separate the repeats in the CRISPR locus confer immunity through sequence identity with targeted viral, plasmid, or other foreign DNA. The CRISPR locus can be interpreted as a historical timeline of virus exposure as spacers are incorporated in a unidirectional manner at the leader end of the CRISPR locus. Metagenomic approaches were employed to simultaneously analyze CRISPR loci in microbial hosts and sequences of their associated viruses to examine: 1) the viral response to CRISPR spacer diversification in a closed model system, 2) the retention of older spacers without co- existing targets through time, 3) the information about population histories revealed from the CRISPR locus, and 4) the factors impacting phage and viral diversity in a model natural system. -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities Permalink https://escholarship.org/uc/item/5n12m3d3 Author Sun, Christine Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/5n12m3d3#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities By Christine Ling Sun A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Steven Brenner Professor Jennifer Doudna Professor Steven Lindow Spring 2013 Abstract Metagenomic Analysis of CRISPR-Mediated Host-Virus Interactions in Microbial Communities by Christine Ling Sun Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Viruses of Bacteria (bacteriophages) and Archaea have the ability to significantly alter the structure and function of microbial communities. Thus, it is critical to obtain a greater understanding of the dynamic interaction between microbial hosts and their associated viral populations. The CRISPR-Cas system in Bacteria and Archaea serves as a method to connect viruses to their hosts and provides insight into virus-host interactions. A clustered regularly interspaced short palindromic repeat (CRISPR) locus and CRISPR-associated (Cas) proteins function together in the CRISPR-Cas adaptive immune system. Transcripts of the spacers that separate the repeats in the CRISPR locus confer immunity through sequence identity with targeted viral, plasmid, or other foreign DNA. -
Association for the Sciences of Limnology and Oceanography
FUTURE ASLO MEETINGS 2018 OCEAN SCIENCES MEETING 2020 OCEAN SCIENCES MEETING (A joint meeting with ASLO, AGU and TOS) 16-21 February 2020 11-16 February 2018 San Diego Convention Center Oregon Convention Center San Diego, California, USA Portland, Oregon, USA 2020 ASLO SUMMER MEETING 2018 ASLO SUMMER MEETING 7 -12 June 2020 10-15 June 2018 Monona Terrace Community and Convention Center Victoria Convention Center Madison, Wisconsin, USA Victoria, British Columbia, Canada 2022 OCEAN SCIENCES MEETING 2019 ASLO AQUATIC SCIENCES MEETING (A joint meeting with ASLO, AGU and TOS) 24 February – 1 March 2019 27 February – 4 March 2022 Puerto Rico Convention Center Hawaii Convention Center San Juan, Puerto Rico Honolulu, Hawaii, USA For more information on the 2017 ASLO BUSINESS OFFICE PHONE 1 — (800) 929-ASLO This program is produced for reference on site at the ASLO Aquatic Sciences Meeting, 5400 BOSQUE BOULEVARD, SUITE 680 U.S., CANADA, AND THE CARIBBEAN meeting. It contains the most up-to-date program please address all correspondence WACO, TEXAS 76710-4446 information. Changes received after the printing of the and questions regarding registration, PHONE 2 — (254) 399-9635 program will be available using the meeting mobile app. conference logistics, and hotel EMAIL — [email protected] ALL OTHER COUNTRIES Additional information also can be found on the SPONSORED BY THE ASSOCIATION FOR THE accommodations to: conference web site. SCIENCES OF LIMNOLOGY & OCEANOGRAPHY WWW.SGMEET.COM/ASLO/HONOLULU2017 FAX — (254) 776-3767 www.sgmeet.com/aslo/honolulu2017 www.aslo.org We encourage you to use the meeting website and mobile app for all current information and to navigate the meeting. -
Itai Sharon – Curriculum Vitae
Itai Sharon – Curriculum Vitae Email: [email protected] RESEARCH AND ACADEMIC EXPERIENCE Principle Investigator, MIGAL – Galilee Research Institute, 08/2015 – present Research focuses on the development of computational and other tools for microbial ecology Senior Lecturer (Assistant Professor), Tel-Hai College, 10/2015 – present Teaches basic and advanced courses at the Computer Science Department Postdoctoral Researcher, University of California, Berkeley, 2010 – 2015 Research focus: dynamics and structure of microbial communities across different environments Advisor: Prof. Jillian Banfield Short postdoc, Technion, Israel Institute of Technology, 04 – 08/2010 Research focus: analysis of next generation sequencing Affiliation: Laboratory of Dr. Itai Yanai Algorithm developer, NDS Technologies, Haifa, Israel, 1998 – 2007 Developed algorithms and software for image analysis and understanding EDUCATION PhD, Technion – Israel Institute of Technology, Computer Science, 2010 Dissertation title: Computational methods for metagenomic analysis Advisors: Prof. Oded Béjà and Prof. Ron Pinter MSc, Technion – Israel Institute of Technology, Computer Science, 2005 Research focus: similarity detection for low complexity and remotely related proteins Advisors: Dr. Golan Yona and Assoc. Prof. Ran El-Yaniv BSc, Technion – Israel Institute of Technology, Computer Science, 1998 GPA: 89.6 REFEREED PUBLICATIONS 1. Suez, J., Zmora, N., Zilberman-Schapira, G., Mor, U., Dori-Bachash, M., Bashiardes, S., Zur, M., Regev-Lehavi, D., Ben-Zeev Brik, R., Federici, S., Horn, M., Cohen, Y., Moor, A.E., Zeevi, D., Korem, T., Kotler, E., Harmelin, A., Itzkovitz, S., Maharshak, N., Shibolet, O., Pevsner- Fischer, M., Shapiro, H., Sharon, I., Halpern, Z., Segal, S. and Elinav, E. (2018). Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. -
S.E. Macavoy Phd, CV Updated 6/2019 1
S.E. MacAvoy PhD, CV Stephen E. MacAvoy Department of Environmental Science 104 Beeghly Hall, American University Washington, DC 20016 [email protected] Office (202) 558-3003 EDUCATION: 2000 Ph.D. Environmental Sciences, concentration in Geochemistry/Ecology University of Virginia, Charlottesville, VA Advisor: Dr. Stephen Macko Dissertation: The exploitation of variable nutrient pools by aquatic predators in tidal freshwater and chemosynthetic communities: a multiple stable isotope and compound specific approach 1996 M.S. Environmental Sciences, concentration in Ecology University of Virginia, Charlottesville, VA Advisor: Dr. Arthur Bulger Thesis: Susceptibility of the early life stages of brook trout (Salvelinus fontinalis) and adult blacknose dace (Rhinichthys atratulus) to acidification in Shenandoah National Park 1992 B.S. Biology Fairfield University, Fairfield, CT Advisor: Dr. Diane Brousseau Senior project: Comparison of bivalve hemocytes using the feuglen picromethyl blue staining method EMPLOYMENT HISTORY (ACADEMIC): current- Associate Professor- Department Chair (2016-current): Department of Environmental 2015 Science, American University Developed and directed course structure and lecture material Directed and co-directed M.S. students and undergraduate research projects Supervised undergraduate teaching and research assistants current- Director: Graduate Environmental Studies Program. Department of Environmental 2003 Science, American University Program administration, from recruiting to comprehensive exams Designed curriculum