Symmetries and the Quark Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
THE STRONG INTERACTION by J
MISN-0-280 THE STRONG INTERACTION by J. R. Christman 1. Abstract . 1 2. Readings . 1 THE STRONG INTERACTION 3. Description a. General E®ects, Range, Lifetimes, Conserved Quantities . 1 b. Hadron Exchange: Exchanged Mass & Interaction Time . 1 s 0 c. Charge Exchange . 2 d L u 4. Hadron States a. Virtual Particles: Necessity, Examples . 3 - s u - S d e b. Open- and Closed-Channel States . 3 d n c. Comparison of Virtual and Real Decays . 4 d e 5. Resonance Particles L0 a. Particles as Resonances . .4 b. Overview of Resonance Particles . .5 - c. Resonance-Particle Symbols . 6 - _ e S p p- _ 6. Particle Names n T Y n e a. Baryon Names; , . 6 b. Meson Names; G-Parity, T , Y . 6 c. Evolution of Names . .7 d. The Berkeley Particle Data Group Hadron Tables . 7 7. Hadron Structure a. All Hadrons: Possible Exchange Particles . 8 b. The Excited State Hypothesis . 8 c. Quarks as Hadron Constituents . 8 Acknowledgments. .8 Project PHYSNET·Physics Bldg.·Michigan State University·East Lansing, MI 1 2 ID Sheet: MISN-0-280 THIS IS A DEVELOPMENTAL-STAGE PUBLICATION Title: The Strong Interaction OF PROJECT PHYSNET Author: J. R. Christman, Dept. of Physical Science, U. S. Coast Guard The goal of our project is to assist a network of educators and scientists in Academy, New London, CT transferring physics from one person to another. We support manuscript Version: 11/8/2001 Evaluation: Stage B1 processing and distribution, along with communication and information systems. We also work with employers to identify basic scienti¯c skills Length: 2 hr; 12 pages as well as physics topics that are needed in science and technology. -
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays
Particle Physics Dr Victoria Martin, Spring Semester 2012 Lecture 12: Hadron Decays !Resonances !Heavy Meson and Baryons !Decays and Quantum numbers !CKM matrix 1 Announcements •No lecture on Friday. •Remaining lectures: •Tuesday 13 March •Friday 16 March •Tuesday 20 March •Friday 23 March •Tuesday 27 March •Friday 30 March •Tuesday 3 April •Remaining Tutorials: •Monday 26 March •Monday 2 April 2 From Friday: Mesons and Baryons Summary • Quarks are confined to colourless bound states, collectively known as hadrons: " mesons: quark and anti-quark. Bosons (s=0, 1) with a symmetric colour wavefunction. " baryons: three quarks. Fermions (s=1/2, 3/2) with antisymmetric colour wavefunction. " anti-baryons: three anti-quarks. • Lightest mesons & baryons described by isospin (I, I3), strangeness (S) and hypercharge Y " isospin I=! for u and d quarks; (isospin combined as for spin) " I3=+! (isospin up) for up quarks; I3="! (isospin down) for down quarks " S=+1 for strange quarks (additive quantum number) " hypercharge Y = S + B • Hadrons display SU(3) flavour symmetry between u d and s quarks. Used to predict the allowed meson and baryon states. • As baryons are fermions, the overall wavefunction must be anti-symmetric. The wavefunction is product of colour, flavour, spin and spatial parts: ! = "c "f "S "L an odd number of these must be anti-symmetric. • consequences: no uuu, ddd or sss baryons with total spin J=# (S=#, L=0) • Residual strong force interactions between colourless hadrons propagated by mesons. 3 Resonances • Hadrons which decay due to the strong force have very short lifetime # ~ 10"24 s • Evidence for the existence of these states are resonances in the experimental data Γ2/4 σ = σ • Shape is Breit-Wigner distribution: max (E M)2 + Γ2/4 14 41. -
Two Tests of Isospin Symmetry Break
THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE 0+ 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN ! SYMMETRY BREAKING A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Smarajit Triambak Alejandro Garc¶³a, Director Umesh Garg, Director Graduate Program in Physics Notre Dame, Indiana July 2007 c Copyright by ° Smarajit Triambak 2007 All Rights Reserved THE ISOBARIC MULTIPLET MASS EQUATION AND ft VALUE OF THE 0+ 0+ FERMI TRANSITION IN 32Ar: TWO TESTS OF ISOSPIN ! SYMMETRY BREAKING Abstract by Smarajit Triambak This dissertation describes two high-precision measurements concerning isospin symmetry breaking in nuclei. 1. We determined, with unprecedented accuracy and precision, the excitation energy of the lowest T = 2; J ¼ = 0+ state in 32S using the 31P(p; γ) reaction. This excitation energy, together with the ground state mass of 32S, provides the most stringent test of the isobaric multiplet mass equation (IMME) for the A = 32, T = 2 multiplet. We observe a signi¯cant disagreement with the IMME and investigate the possibility of isospin mixing with nearby 0+ levels to cause such an e®ect. In addition, as byproducts of this work, we present a precise determination of the relative γ-branches and an upper limit on the isospin violating branch from the lowest T = 2 state in 32S. 2. We obtained the superallowed branch for the 0+ 0+ Fermi decay of ! 32Ar. This involved precise determinations of the beta-delayed proton and γ branches. The γ-ray detection e±ciency calibration was done using pre- cisely determined γ-ray yields from the daughter 32Cl nucleus from an- other independent measurement using a fast tape-transport system at Texas Smarajit Triambak A&M University. -
A Young Physicist's Guide to the Higgs Boson
A Young Physicist’s Guide to the Higgs Boson Tel Aviv University Future Scientists – CERN Tour Presented by Stephen Sekula Associate Professor of Experimental Particle Physics SMU, Dallas, TX Programme ● You have a problem in your theory: (why do you need the Higgs Particle?) ● How to Make a Higgs Particle (One-at-a-Time) ● How to See a Higgs Particle (Without fooling yourself too much) ● A View from the Shadows: What are the New Questions? (An Epilogue) Stephen J. Sekula - SMU 2/44 You Have a Problem in Your Theory Credit for the ideas/example in this section goes to Prof. Daniel Stolarski (Carleton University) The Usual Explanation Usual Statement: “You need the Higgs Particle to explain mass.” 2 F=ma F=G m1 m2 /r Most of the mass of matter lies in the nucleus of the atom, and most of the mass of the nucleus arises from “binding energy” - the strength of the force that holds particles together to form nuclei imparts mass-energy to the nucleus (ala E = mc2). Corrected Statement: “You need the Higgs Particle to explain fundamental mass.” (e.g. the electron’s mass) E2=m2 c4+ p2 c2→( p=0)→ E=mc2 Stephen J. Sekula - SMU 4/44 Yes, the Higgs is important for mass, but let’s try this... ● No doubt, the Higgs particle plays a role in fundamental mass (I will come back to this point) ● But, as students who’ve been exposed to introductory physics (mechanics, electricity and magnetism) and some modern physics topics (quantum mechanics and special relativity) you are more familiar with.. -
First Determination of the Electric Charge of the Top Quark
First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge. -
Lecture 1 – Symmetries & Conservation
LECTURE 1 – SYMMETRIES & CONSERVATION Contents • Symmetries & Transformations • Transformations in Quantum Mechanics • Generators • Symmetry in Quantum Mechanics • Conservations Laws in Classical Mechanics • Parity Messages • Symmetries give rise to conserved quantities . Symmetries & Conservation Laws Lecture 1, page1 Symmetry & Transformations Systems contain Symmetry if they are unchanged by a Transformation . This symmetry is often due to an absence of an absolute reference and corresponds to the concept of indistinguishability . It will turn out that symmetries are often associated with conserved quantities . Transformations may be: Active: Active • Move object • More physical Passive: • Change “description” Eg. Change Coordinate Frame • More mathematical Passive Symmetries & Conservation Laws Lecture 1, page2 We will consider two classes of Transformation: Space-time : • Translations in (x,t) } Poincaré Transformations • Rotations and Lorentz Boosts } • Parity in (x,t) (Reflections) Internal : associated with quantum numbers Translations: x → 'x = x − ∆ x t → 't = t − ∆ t Rotations (e.g. about z-axis): x → 'x = x cos θz + y sin θz & y → 'y = −x sin θz + y cos θz Lorentz (e.g. along x-axis): x → x' = γ(x − βt) & t → t' = γ(t − βx) Parity: x → x' = −x t → t' = −t For physical laws to be useful, they should exhibit a certain generality, especially under symmetry transformations. In particular, we should expect invariance of the laws to change of the status of the observer – all observers should have the same laws, even if the evaluation of measurables is different. Put differently, the laws of physics applied by different observers should lead to the same observations. It is this principle which led to the formulation of Special Relativity. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
The Homology Theory of the Closed Geodesic Problem
J. DIFFERENTIAL GEOMETRY 11 (1976) 633-644 THE HOMOLOGY THEORY OF THE CLOSED GEODESIC PROBLEM MICHELINE VIGUE-POIRRIER & DENNIS SULLIVAN The problem—does every closed Riemannian manifold of dimension greater than one have infinitely many geometrically distinct periodic geodesies—has received much attention. An affirmative answer is easy to obtain if the funda- mental group of the manifold has infinitely many conjugacy classes, (up to powers). One merely needs to look at the closed curve representations with minimal length. In this paper we consider the opposite case of a finite fundamental group and show by using algebraic calculations and the work of Gromoll-Meyer [2] that the answer is again affirmative if the real cohomology ring of the manifold or any of its covers requires at least two generators. The calculations are based on a method of the second author sketched in [6], and he wishes to acknowledge the motivation provided by conversations with Gromoll in 1967 who pointed out the surprising fact that the available tech- niques of algebraic topology loop spaces, spectral sequences, and so forth seemed inadequate to handle the "rational problem" of calculating the Betti numbers of the space of all closed curves on a manifold. He also acknowledges the help given by John Morgan in understanding what goes on here. The Gromoll-Meyer theorem which uses nongeneric Morse theory asserts the following. Let Λ(M) denote the space of all maps of the circle S1 into M (not based). Then there are infinitely many geometrically distinct periodic geodesies in any metric on M // the Betti numbers of Λ(M) are unbounded. -
10 Group Theory and Standard Model
Physics 129b Lecture 18 Caltech, 03/05/20 10 Group Theory and Standard Model Group theory played a big role in the development of the Standard model, which explains the origin of all fundamental particles we see in nature. In order to understand how that works, we need to learn about a new Lie group: SU(3). 10.1 SU(3) and more about Lie groups SU(3) is the group of special (det U = 1) unitary (UU y = I) matrices of dimension three. What are the generators of SU(3)? If we want three dimensional matrices X such that U = eiθX is unitary (eigenvalues of absolute value 1), then X need to be Hermitian (real eigenvalue). Moreover, if U has determinant 1, X has to be traceless. Therefore, the generators of SU(3) are the set of traceless Hermitian matrices of dimension 3. Let's count how many independent parameters we need to characterize this set of matrices (what is the dimension of the Lie algebra). 3 × 3 complex matrices contains 18 real parameters. If it is to be Hermitian, then the number of parameters reduces by a half to 9. If we further impose traceless-ness, then the number of parameter reduces to 8. Therefore, the generator of SU(3) forms an 8 dimensional vector space. We can choose a basis for this eight dimensional vector space as 00 1 01 00 −i 01 01 0 01 00 0 11 λ1 = @1 0 0A ; λ2 = @i 0 0A ; λ3 = @0 −1 0A ; λ4 = @0 0 0A (1) 0 0 0 0 0 0 0 0 0 1 0 0 00 0 −i1 00 0 01 00 0 0 1 01 0 0 1 1 λ5 = @0 0 0 A ; λ6 = @0 0 1A ; λ7 = @0 0 −iA ; λ8 = p @0 1 0 A (2) i 0 0 0 1 0 0 i 0 3 0 0 −2 They are called the Gell-Mann matrices. -
Electro-Weak Interactions
Electro-weak interactions Marcello Fanti Physics Dept. | University of Milan M. Fanti (Physics Dep., UniMi) Fundamental Interactions 1 / 36 The ElectroWeak model M. Fanti (Physics Dep., UniMi) Fundamental Interactions 2 / 36 Electromagnetic vs weak interaction Electromagnetic interactions mediated by a photon, treat left/right fermions in the same way g M = [¯u (eγµ)u ] − µν [¯u (eγν)u ] 3 1 q2 4 2 1 − γ5 Weak charged interactions only apply to left-handed component: = L 2 Fermi theory (effective low-energy theory): GF µ 5 ν 5 M = p u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 Complete theory with a vector boson W mediator: g 1 − γ5 g g 1 − γ5 p µ µν p ν M = u¯3 γ u1 − 2 2 u¯4 γ u2 2 2 q − MW 2 2 2 g µ 5 ν 5 −−−! u¯3γ (1 − γ )u1 gµν u¯4γ (1 − γ )u2 2 2 low q 8 MW p 2 2 g −5 −2 ) GF = | and from weak decays GF = (1:1663787 ± 0:0000006) · 10 GeV 8 MW M. Fanti (Physics Dep., UniMi) Fundamental Interactions 3 / 36 Experimental facts e e Electromagnetic interactions γ Conserves charge along fermion lines ¡ Perfectly left/right symmetric e e Long-range interaction electromagnetic µ ) neutral mass-less mediator field A (the photon, γ) currents eL νL Weak charged current interactions Produces charge variation in the fermions, ∆Q = ±1 W ± Acts only on left-handed component, !! ¡ L u Short-range interaction L dL ) charged massive mediator field (W ±)µ weak charged − − − currents E.g.