Global Review of the Conservation Status of Monodontid Stocks

Total Page:16

File Type:pdf, Size:1020Kb

Global Review of the Conservation Status of Monodontid Stocks Global Review of the Conservation Status of Monodontid Stocks the International Whaling Commis- the EEZ of each country). The JCNB Preface sion (IWC). Among its 89 member makes recommendations on the con- countries are four of the five mon- servation and management of these odontid range states (Canada being shared stocks to the appropriate au- Two modern species of toothed the sole non-member). thorities of both countries. whales, the narwhal, Monodon monoc- The Scientific Committee of the The North Atlantic Marine Mammal eros, and the beluga or white whale, IWC has on two occasions reviewed the Commission (NAMMCO) was estab- Delphinapterus leucas, comprise the world’s stocks of belugas and narwhals lished in 1992 by the Faroe Islands, family Monodontidae. Both are en- (both species in 1992, IWC, 1993; only Greenland, Iceland, and Norway to co- demic to the Arctic and, in the case of belugas in 1999, IWC, 2000). These re- operate in the management and con- belugas, also certain portions of the views identified 29 stocks of belugas servation of all marine mammals in sub-Arctic. While the narwhal’s range and 3 regional stocks of narwhals. Be- the area. NAAMCO regularly reviews is centered in high-latitude waters con- luga stocks were considered in detail, the status of the stocks of narwhals nected to the North Atlantic Ocean and available information on range, and belugas within its remit. (eastern Canada, Greenland, Svalbard, abundance, trends in abundance, hunt- The NAMMCO Scientific Commit- and Franz Josef Land), the beluga’s ing removals, threats, and legal status tee’s Working Group on the Popula- distribution is nearly circumpolar, with were reviewed and summarized. The tion Status of Beluga and Narwhal in substantial populations not only in the reviews identified four stocks of high- the North Atlantic (NBWG) met for High Arctic but also in the Sea of Ok- est concern due to small population the first time in 1999 and carried out hotsk, the southern Bering Sea, Hud- size, depletion from historical levels, a detailed review of all stocks of both son Bay, the northern Gulf of Alaska, and currently declining trend, and it species in Atlantic and adjacent waters and the St. Lawrence River estuary. made recommendations regarding fu- (NAMMCO1). In 2000, the NBWG Range states of monodontids are the ture research. carried out an assessment of belugas in Russian Federation, the United States In the North and Arctic Atlantic, West Greenland and concluded that the of America, Canada, Denmark (Green- two regional management bodies op- stock there was substantially depleted land), and Norway. erate. The Canada-Greenland Joint and that harvest levels were several In addition to government agencies Commission on the Conservation times the sustainable yield, likely lead- within those states, several interna- and Management of Narwhal and Be- ing to extirpation of the stock within tional and regional bodies are involved luga (JCNB) was established in 1991 in the assessment and conservation of 1NAMMCO. 2000. Report of the 7th Meet- to conserve and manage the shared ing of the NAMMCO Scientific Committee. beluga and narwhal populations. The stocks of narwhals and belugas (i.e., In NAMMCO (Editor), Annual report 1999, p. oldest and most inclusive of these (in those stocks that migrate between Ca- 125–214. N. Atl. Mar. Mammal Comm., Trom- terms of number of state members) is sø, Norway (avail. at http://nammco.wpengine. nadian and Greenlandic waters and com/wp-content/uploads/2016/08/Annual-Re- doi: https://doi.org/10.7755/MFR.81.3–4.p spend at least part of each year within port-1999.pdf). 81(3–4) iii 20 years. The NAMMCO Scientific organizing and convening the review then posted on the NAMMCO website Committee endorsed this conclusion jointly with the IWC Scientific Com- (NAMMCO5). and recommended various conserva- mittee. The sub-committee formally This issue of Marine Fisheries Re- tion measures, including the immediate recommended this approach (IWC, view includes a revised and updated reduction of harvests to prevent further 2013a:296), which was endorsed by the version of the workshop report (Hobbs decline of the stock, as well as priori- full Committee, and a steering com- et al., 2019) and several related papers tized research topics (NAMMCO, p. mittee (consisting of Arne Bjørge from that were developed by workshop par- 2 136–145 and Annex 3) . Close coop- Norway, Randall Reeves and Robert ticipants. Three of these papers con- eration between the Scientific Commit- Suydam from the United States, Steve cern stocks of belugas in the Russian tees of NAMMCO and the JCNB was Ferguson from Canada, and representa- Far East (Shpak et al., 2019) and west- recommended (NAMMCO, p. 75)3 and tives of the IWC (Greg Donovan) and ern Alaska (Lowry et al., 2019; Citta a Joint Working Group (JWG) was es- NAMMCO (Christina Lockyer, Ma- et al., 2019). Most of the recognized tablished, which met for the first time rio Acquarone, and later Jill Prewitt)) beluga stocks are differentiated by mi- in 2001 and has reviewed and assessed secretariats were duly appointed to the status of shared stocks regularly pursue planning and implementation tochondrial DNA (mtDNA) data, and since then (2004, 2005, 2009, 2012, (IWC, 2013b:58). Although the Glob- Skovrind et al. (2019) provide a cir- 2014, 2015, 20174). “National” stocks al Review of Monodontids workshop cumpolar review of beluga mtDNA are assessed either within the frame- continued to be discussed at annual variation. NAMMCO has developed work of NAMMCO or by a national IWC Scientific Committee meetings a metapopulation model for the nar- management body separately. (IWC, 2014:362), the Sub-committee whal stocks that winter in Baffin Bay, During the decade following 1999, on Small Cetaceans was advised in and Watt et al. (2019) explain how as substantial new information on 2014 that NAMMCO had decided to this model is used to allocate catches the delineation and status of beluga convene and undertake the global re- by the communities that hunt the nar- and narwhal stocks became avail- view separately from the IWC (IWC, whals from this metapopulation to the able, the need to update the previous 2015:307). We emphasize, however, individual stocks. Statistics on remov- reviews became increasingly evident. that scientists from the range states, in- als of narwhals by hunting in Green- At its annual meeting in 2010, the cluding those who regularly participate land from 1862 to 2017 (Garde et al., IWC Scientific Committee’s Standing in either the IWC Scientific Commit- 2019) were used with other data and Sub-committee on Small Cetaceans tee or the NAMMCO Scientific Com- the metapopulation model in a Bayes- noted that a “joint special meeting or mittee and NBWG, or both, continued ian analysis to generate management workshop on monodontids” involv- to collaborate closely in planning and advice for the Baffin Bay narwhal ing the IWC, NAMMCO, and the conducting the review workshop. stocks (Witting et al., 2019). JCNB “should be considered in the The steering committee for the work- Finally, this issue is dedicated to the near future” (IWC, 2011:287). At its shop was expanded to include the chair memory of Lloyd Lowry, who died in next meeting, the sub-committee was of the NBWG and NAMMCO co-chair late November 2018, soon after com- advised that an intersessional corre- of the JWG (Rod Hobbs), a represen- pleting editing of the report on west- spondence group had “moved ahead tative of the Arctic Council’s Con- ern Alaska beluga stocks (Lowry et al., … on planning a proposed global re- servation of Arctic Flora and Fauna 2019). Lloyd was a long-time beluga view of monodontids (involving, at a secretariat (Tom Barry), and scientists researcher and advocate for marine minimum, IWC, NAMMCO, and the from Russia (Olga Shpak) and Green- JCNB)” (IWC, 2012:279). land (Rikke Guldborg Hansen, JCNB mammal conservation in Alaska and In 2012 the sub-committee noted that co-chair of the JWG). The committee worldwide. He was instrumental in NAMMCO had indicated an interest in developed the terms of reference and establishing the Alaska Beluga Whale agenda for the workshop and identi- Committee and remained an active 2NAMMCO. 2001. Report of the 8th Meet- member of that committee for over 30 ing of the NAMMCO Scientific Committee. fied subject experts for each poten- In NAMMCO (Editor), Annual report 2000, p. tial monodontid stock as well as other years. See Gulland et al. (2019) for 123–296. N. Atl. Mar. Mammal Comm., Trom- further details of Lloyd’s life. sø, Norway (avail. at http://nammco.wpengine. experts who would be invited to par- com/wp-content/uploads/2016/08/Annual-Re- ticipate. Subject experts provided re- Roderick Hobbs, Jill Prewitt, Randall port-2000.pdf). ports on the status of the stocks and 3 Reeve , and Genieviéve Desportes NAMMCO. 2001. Report of the NAMMCO potential stocks prior to the workshop. s Management Committee. In NAMMCO (Edi- These reports were reviewed during the tor), Annual report 2000, p. 73–122. N. Atl. 5NAMMCO. 2018. Report of the NAMMCO Mar. Mammal Comm., Tromsø, Norway (avail. workshop and in some cases revised in Global Review of Monodontids. 13–16 March at http://nammco.wpengine.com/wp-content/up- response to comments received from 2017, Hillerød, Denmark (avail. at https:// loads/2016/08/Annual-Report-2000.pdf). nammco.no/wp-content/uploads/2018/05/report- 4Reports of the Joint Working Group (avail. at participants. A report of the workshop global-review-of-monodontids-nammco-2018_ https://nammco.no/topics/sc-wg-reports/). and the compiled stock reports were after-erratum-060518_with-appendices_2.pdf). iv Marine Fisheries Review Literature Cited stocks.
Recommended publications
  • Marine Mammal Taxonomy
    Marine Mammal Taxonomy Kingdom: Animalia (Animals) Phylum: Chordata (Animals with notochords) Subphylum: Vertebrata (Vertebrates) Class: Mammalia (Mammals) Order: Cetacea (Cetaceans) Suborder: Mysticeti (Baleen Whales) Family: Balaenidae (Right Whales) Balaena mysticetus Bowhead whale Eubalaena australis Southern right whale Eubalaena glacialis North Atlantic right whale Eubalaena japonica North Pacific right whale Family: Neobalaenidae (Pygmy Right Whale) Caperea marginata Pygmy right whale Family: Eschrichtiidae (Grey Whale) Eschrichtius robustus Grey whale Family: Balaenopteridae (Rorquals) Balaenoptera acutorostrata Minke whale Balaenoptera bonaerensis Arctic Minke whale Balaenoptera borealis Sei whale Balaenoptera edeni Byrde’s whale Balaenoptera musculus Blue whale Balaenoptera physalus Fin whale Megaptera novaeangliae Humpback whale Order: Cetacea (Cetaceans) Suborder: Odontoceti (Toothed Whales) Family: Physeteridae (Sperm Whale) Physeter macrocephalus Sperm whale Family: Kogiidae (Pygmy and Dwarf Sperm Whales) Kogia breviceps Pygmy sperm whale Kogia sima Dwarf sperm whale DOLPHIN R ESEARCH C ENTER , 58901 Overseas Hwy, Grassy Key, FL 33050 (305) 289 -1121 www.dolphins.org Family: Platanistidae (South Asian River Dolphin) Platanista gangetica gangetica South Asian river dolphin (also known as Ganges and Indus river dolphins) Family: Iniidae (Amazon River Dolphin) Inia geoffrensis Amazon river dolphin (boto) Family: Lipotidae (Chinese River Dolphin) Lipotes vexillifer Chinese river dolphin (baiji) Family: Pontoporiidae (Franciscana)
    [Show full text]
  • Review of Small Cetaceans. Distribution, Behaviour, Migration and Threats
    Review of Small Cetaceans Distribution, Behaviour, Migration and Threats by Boris M. Culik Illustrations by Maurizio Wurtz, Artescienza Marine Mammal Action Plan / Regional Seas Reports and Studies no. 177 Published by United Nations Environment Programme (UNEP) and the Secretariat of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). Review of Small Cetaceans. Distribution, Behaviour, Migration and Threats. 2004. Compiled for CMS by Boris M. Culik. Illustrations by Maurizio Wurtz, Artescienza. UNEP / CMS Secretariat, Bonn, Germany. 343 pages. Marine Mammal Action Plan / Regional Seas Reports and Studies no. 177 Produced by CMS Secretariat, Bonn, Germany in collaboration with UNEP Coordination team Marco Barbieri, Veronika Lenarz, Laura Meszaros, Hanneke Van Lavieren Editing Rüdiger Strempel Design Karina Waedt The author Boris M. Culik is associate Professor The drawings stem from Prof. Maurizio of Marine Zoology at the Leibnitz Institute of Wurtz, Dept. of Biology at Genova Univer- Marine Sciences at Kiel University (IFM-GEOMAR) sity and illustrator/artist at Artescienza. and works free-lance as a marine biologist. Contact address: Contact address: Prof. Dr. Boris Culik Prof. Maurizio Wurtz F3: Forschung / Fakten / Fantasie Dept. of Biology, Genova University Am Reff 1 Viale Benedetto XV, 5 24226 Heikendorf, Germany 16132 Genova, Italy Email: [email protected] Email: [email protected] www.fh3.de www.artescienza.org © 2004 United Nations Environment Programme (UNEP) / Convention on Migratory Species (CMS). This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made.
    [Show full text]
  • Mitochondrial Genomics Reveals the Evolutionary History of The
    www.nature.com/scientificreports OPEN Mitochondrial genomics reveals the evolutionary history of the porpoises (Phocoenidae) across the speciation continuum Yacine Ben Chehida 1, Julie Thumloup1, Cassie Schumacher2, Timothy Harkins2, Alex Aguilar 3, Asunción Borrell 3, Marisa Ferreira 4,5, Lorenzo Rojas‑Bracho6, Kelly M. Robertson7, Barbara L. Taylor7, Gísli A. Víkingsson 8, Arthur Weyna9, Jonathan Romiguier9, Phillip A. Morin 7 & Michael C. Fontaine 1,10* Historical variation in food resources is expected to be a major driver of cetacean evolution, especially for the smallest species like porpoises. Despite major conservation issues among porpoise species (e.g., vaquita and fnless), their evolutionary history remains understudied. Here, we reconstructed their evolutionary history across the speciation continuum. Phylogenetic analyses of 63 mitochondrial genomes suggest that porpoises radiated during the deep environmental changes of the Pliocene. However, all intra-specifc subdivisions were shaped during the Quaternary glaciations. We observed analogous evolutionary patterns in both hemispheres associated with convergent evolution to coastal versus oceanic environments. This suggests that similar mechanisms are driving species diversifcation in northern (harbor and Dall’s) and southern species (spectacled and Burmeister’s). In contrast to previous studies, spectacled and Burmeister’s porpoises shared a more recent common ancestor than with the vaquita that diverged from southern species during the Pliocene. The low genetic diversity observed in the vaquita carried signatures of a very low population size since the last 5,000 years. Cryptic lineages within Dall’s, spectacled and Pacifc harbor porpoises suggest a richer evolutionary history than previously suspected. These results provide a new perspective on the mechanisms driving diversifcation in porpoises and an evolutionary framework for their conservation.
    [Show full text]
  • First Record of Monodontidae (Cetacea, Odontoceti) in the Mediterranean Basin from the Pliocene Sands of Arcille (Grosseto, Tuscany, Italy)
    Fossilia, Volume 2018: 37-39 First record of Monodontidae (Cetacea, Odontoceti) in the Mediterranean Basin from the Pliocene sands of Arcille (Grosseto, Tuscany, Italy) Fabio Pesci, Alberto Collareta , Chiara Tinelli & Giovanni Bianucci Dipartimento di Scienze della Terra, Università di Pisa, via Santa Maria 53, 56126 Pisa (Italy); [email protected] BULLET-POINTS ABSTRACT • MSNUP I17602 represents one of the few monodontid skull of early Pliocene KEYWORDS: age worldwide. Monodontidae; • This discovery testifies the presence of a monodontid taxon in the Mediterranean Pliocene; Basin. Mediterranean Basin. • The fossil skull shares several characters with the skull of both extant monodontid genera. • Past monodontid species seems to have been adapted to subtropical climate conditions. AC3151; MACUP AC3488; MCSNT 773; MLSUF INTRODUCTION 870; MSNB 1387; MSNUP C274; MSNUP C275). Extant monodontids (Cetacea: Odontoceti: Mono- dontidae) are cold-water toothed whales that inhabit Institutional abbreviations the Artic, the North Atlantic, and the North Pacific Oceans. The family includes two extant species: Mo- MACUB, Museo di Anatomia Comparata dell’U- nodon monoceros Linnaeus, 1758 and Delphinapterus leu- niversità di Bologna; MACUP, Museo di Anatomia cas (Pallas, 1776), commonly known as narwhal and Comparata dell’Università di Pavia; MCSNT, Museo beluga, respectively. The fossil history of Monodonti- Civico di Storia Naturale di Trieste; MZUF, Museo dae is still scanty. Indeed, only two extinct species of “La Specola” Università di Firenze; MSNB, Museo di monodontids are known to date, namely Denebola bra- Scienze Naturali di Bergamo “E. Caffini”; MSNUP, chycephala Barnes, 1984 from the upper Miocene Al- Museo di Storia Naturale dell’Università di Pisa; mejas Formation (Isla Cedros, Mexico), and Bohaskaia MZUN, Museo zoologico dell’Università degli Studi monodontoides Vélez-Juarbe & Pyenson, 2012 from the di Napoli “Federico II”.
    [Show full text]
  • Beluga Whales Background Beluga Whales Live up to 35 Years of Age to 50 a Beluga Whale Has a Big Head to Use Its Echolocation
    Beluga Whales Background Beluga whales live up to 35 years of age to 50 a beluga whale has a big head to use its echolocation. Appearance The melon is a rounded structure on the dorsal surface of a whale's head, just in front of the blowhole. On beluga whales it is prominent and overhangs the rostrum. The melon is composed of lipids (fats) It changes shape when the whale is producing sounds. Diet/Habitat Beluga whales are opportunistic feeders. They prey on about 100 different kinds of primarily bottom-dwelling animals. They eat octopus; squid; crabs; snails; sandworms; and fishes such as capelin, cod, herring, smelt, and flounder. They can be found along the shores of Canada,Alaska,Greenland and Russia. Adaptations Belugas are extremely sociable mammals that live, hunt and migrate together in pods, ranging from a few individuals to hundreds of whales. Their bulbous forehead, called a "melon”, is flexible and capable of changing shape. This allows them to make different facial expressions. Belugas can produce a series of chirps, clicks, whistles and squeals, which give the beluga its other name, "the canary of the sea." They may sound like music or even nonsense to us, but to fellow belugas they convey important information. Jaw Dropping Facts 10. Also known as "sea canaries," belugas are one of the most the most vocal of all whales. 9. The beluga is closely related to the narwhal; they are the only two members of the Monodontidae family. 8. Beluga whales' dives may last up to 25 minutes and can reach depths of 800 meters.
    [Show full text]
  • Speciation in the Face of Gene Flow Within the Toothed Whale Superfamily Delphinoidea 2 3 Michael V Westbury1*, Andrea A
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.23.352286; this version posted October 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Speciation in the face of gene flow within the toothed whale superfamily Delphinoidea 2 3 Michael V Westbury1*, Andrea A. Cabrera1, Alba Rey-Iglesia1, Binia De Cahsan1, Stefanie 4 Hartmann2, Eline D Lorenzen1* 5 1. The GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, Copenhagen, 6 Denmark 7 2. Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 8 24-25, Potsdam, Germany 9 10 * Corresponding authors: [email protected], [email protected] 11 12 Abstract 13 14 Understanding speciation is a central aspect in Biology. The formation of new species 15 was once thought to be a simple bifurcation process. However, recent advances in genomic 16 resources now provide the opportunity to investigate the role of post-divergence gene flow in 17 the speciation process. The diversification of lineages in the presence of gene flow appears 18 almost paradoxical. However, with enough time and in the presence of incomplete physical 19 and/or ecological barriers to gene flow, speciation can and does occur. Speciation without 20 complete isolation seems especially likely to occur in highly mobile, wide ranging marine 21 species, such as cetaceans, which face limited geographic barriers. The toothed whale 22 superfamily Delphinoidea represents a good example to further explore speciation in the 23 presence of interspecific gene flow.
    [Show full text]
  • Whales: Giants of the Deep March 19, 2016 Through September 5, 2016
    Whales: Giants of the Deep March 19, 2016 through September 5, 2016 Contents Welcome ....................................................................................................................................................... 1 Volunteer Logistics ........................................................................................................................................ 1 Reporting for Service ................................................................................................................................ 1 Scheduling ................................................................................................................................................. 1 Logistics for Interpretative Cart ................................................................................................................ 1 Representing the Museum ....................................................................................................................... 2 Logging Your Volunteer Hours .................................................................................................................. 2 Adding Yourself to the Schedule ............................................................................................................... 3 Introduction to Cetaceans ............................................................................................................................ 3 Classification of Cetaceans ......................................................................... Error! Bookmark
    [Show full text]
  • Are Cetacea Ecologically Important?
    Margaret Barnes, Aberdeen Univers ARE CETACEA ECOLOGICALLY IMPORTANT? STEVEN KATONA College of the Atlantic, Bar Harbor. Maine, USA 04609 and HAL WHITEHEAD Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada B3H 411 ABSTRACT In undisturbed ecosystems, cetacean biomass is similar to that of other smaller site classes and ceiacea"s may be useful indicators of ecos)stem health and productivity. Cetaceans are important in energ) flux uithin marine and selected freshwater systems, hut usually do not affect nutrient cycling to a significant degree. Cctacean CiirGdSSfi pro\ide imporIan1 food sources for terrestrial and bcnthic scab- engers. Feeding grey whales disturb local benthic environments on a scale equivalent to major geological forces. Living cetaceans are colonized by a diverse fauna of commensal and parasitic invertebrates. Seabirds and some fishes benefit from feeding associations with cetaceans. Cetacean sounds are prominent in the ocean and could be useful as cues to other animals. Fishes and invertebrates do not show noticeable adaptations to cetacean predat rs hut cetaceans themselves display defensive adapt- ations aeainst killer whales. W%a'. line has altered ecosvstem structure in Antarctica and other places, and thewhaling industry caused profoundecologicaleffects, esneciallv on some oceanic islands. Cetacean entanglement in fishing gear can harm local fisheries, but there is no concrete evidence that they harm fisheriesn other ways In some cases they may benefit fishermen by removing species that could compete for commercially hawestable fish INTRODUCTION Whales and dolphins live and feed in almost every part of the marine environ- ment including the great rivers and their estuaries (Platanistidae), continen- tal shelves (Mysticeti, Phocoenidae), deep ocean canyons (Physetertdae, Ziphiidae), tropical oceans (Delphinidae), and even amidst ice in the Arctic (Monodontidae, Balaenidae) or Antarctic (Mysticeti, Orcintnae).
    [Show full text]
  • San Diego Natural History Museum Whalers Museum Whalers Handbook Jmorris
    San Diego Natural History Museum Whalers Museum Whalers Handbook jmorris Revised 2016 by Uli Burgin This page intentionally blank SECTION 1: VOLUNTEER BASICS 1 SECTION 2: MARINE MAMMALS AND THEIR ADAPTATIONS 5 SECTION 3: INTRODUCTION TO CETACEANS 10 INTRODUCTION TO THE GRAY WHALE 15 SECTION 5: RORQUALS 23 SECTION 6: ODONTOCETES (TOOTHED WHALES) 31 SECTION 7: PINNIPEDS—SEA LIONS AND SEALS 41 SECTION 8: OTHER MARINE LIFE YOU MAY SEE 45 SECTION 9: BIRDING ON THE HORNBLOWER 49 SECTION 10: SAN DIEGO BAY 55 SECTION 11: DOING THE PRESENTATION 63 SECTION 12: FACTS YOU SHOULD KNOW 69 SECTION 13: VOLGISTICS AND SIGHTINGS LOG 75 SECTION 14: ON BOARD THE HORNBLOWER, CRUISE INFO AND MORE 79 SECTION 15: REFERENCES 83 This page intentionally blank Section 1: Volunteer Basics Welcome! We are pleased to have you as a volunteer Museum Whaler for the San Diego Natural History Museum. As a Museum Whaler you are carrying on a long tradition of whale watching here in southern California. Our first trips were offered to the public in 1957. These trips were led by pioneer whale watching naturalist Ray Gilmore, an employee of the U.S. Fish & Wildlife Service and a research associate of the San Diego Natural History Museum. Ray’s whale-watching trips became well known over the years and integrated science and education with a lot of fun. We are sure that Ray would be very pleased with the San Diego Natural History Museum’s continued involvement in offering fun and educational whale watching experiences to the public through our connection with Hornblower Cruises and Events.
    [Show full text]
  • The Beluga Whale a Species in Need of Your Help in Newfoundland and Labrador
    The Beluga Whale A species in need of your help in Newfoundland and Labrador There are seven distinct populations of beluga whales in Schedule 1 of the national Species at Risk Act (SARA) and Canada: Eastern High Arctic-Baffin Bay, Southeast Baffin other populations are under consideration for listing. Island-Cumberland Sound, Ungava Bay, St. Lawrence River, Western Hudson Bay, Eastern Hudson Bay and Regulations respecting the beluga whales can be Beaufort Sea-Arctic Ocean. Individuals from any of these found in the federal Marine Mammal Regulations made populations of beluga whales may visit Newfoundland pursuant to the Fisheries Act. Aside from the already- and Labrador waters at some point. listed St. Lawrence population, if other populations of the beluga whale are listed under SARA, they will be All of the beluga whale populations have been assessed given additional protection. Under SARA, recovery by the Committee on the Status of Endangered Wildlife strategies followed by action plans are required for in Canada (COSEWIC) as Threatened, Endangered or species listed as extirpated, endangered and threatened, Special Concern. The St. Lawrence River beluga whale and management plans are required for species listed as population has also been listed as Threatened under special concern. Please report all beluga whale sightings in Newfoundland and Labrador: [email protected] Section 32(1) of the Species at Risk Act (SARA) states that “no person shall kill, harm, harass, capture or take an individual of a wildlife species that is listed as an extirpated species, an endangered species or a threatened species.” Fisheries and Oceans Pêches et Océans Canada Canada GENERAL DESCRIPTION: The beluga whale (Delphinapterus leucas) is a toothed whale and belongs to the family Monodontidae.
    [Show full text]
  • SUBORDER ODONTOCETI - Toothed Whales
    click for previous page 64 Marine Mammals of the World 2.4 SUBORDER ODONTOCETI - Toothed Whales ODONTOCETI With the exception of the sperm whale (males of which can reach lengths of at least 18 m), odontocetes are small to medium-sized cetaceans. Sexual dimorphism is the rule. Toothed whales are characterized by the presence of teeth throughout life (although teeth are buried in the gum or jawbone in some species, worn or lost in others, and take peculiar shapes in still others), a single blowhole, an asymmetrical skull with a concave profile, a sternum with 3 or more parts, a complex system of nasal sacs, and a fatty organ in the forehead areacalled the melon. All are hypothesized to be capable of echolocation (i.e., producing specialized sounds, and receiving and processing the echoes from these sounds to navigate, find food, and avoid predators), although this ability has been experimentally verified for only a handful of species held successfully in captivity. Odontocetes take individual prey, which consists largely of fishes and squids. 2.4.1 Guide to Families of Toothed Whales PHYSETERIDAE Sperm Whale (1 species in 1 genus) p. 68 The sperm whale is the largest toothed cetacean and has the highest degree of sexual dimorphism. There is a low dorsal hump, followed by a series of crenulations. It has a large head with a squarish profile, narrow underslung lower jaw, and functional teeth only in the lower jaw (these fit into sockets in the upper jaw). The blowhole is located at the left front of the head. The head is highly modified, and is divided into sections called the “junk" and the spermaceti organ, or “case.” The spermaceti organ is a large oil-filled [ reservoir, the function of which is controversial.
    [Show full text]
  • Global Cetacean Summary Report
    CONSERVATION AND VALUES GLOBAL CETACEAN SUMMARY REPORT This is a summary report on research commissioned by the Australian Government and undertaken by the Southern Cross University Whale Research Centre and Syneca Pty Ltd, Sydney Australia. The findings draw from a wide range of current literature, notably the reports of the International Union for Conservation of Nature (IUCN) and the International Whaling Commission (IWC). In the interests of brevity, references have not been included in this report although they can be obtained from the original reports which are available on the Department of the Environment, Water, Heritage and the Arts website at www.environment.gov.au/coasts/species/cetaceans/index.html The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts. Acknowledgments Research and analysis provided by: Professor Peter Harrison, Daniel Burns, Christine Fury, and Greg Luker, Southern Cross University Whale Research Centre; and, Peter Dempster and Ron Groenhout from Syneca Consulting Pty Ltd. The GIS distribution maps were developed and funded through the Southern Cross University Whale Research Centre. We thank the IUCN for access to cetacean distribution data files, Maree Blewitt for work on the cetacean distribution maps, and Renee Carter for assisting with compiling the summary report. The Southern Cross University Whale Research Centre researchers consulted Dr Bill Perrin and Professor Scott Baker. June 2009 Minister’s introduction I am pleased to present The report also highlights the value people place on this summary of the global cetaceans and their conservation – a value that conservation status of can be directly translated into economic terms whales, dolphins and without compromising the conservation of these porpoises, and the economic creatures.
    [Show full text]