Dedicated to My Parents, Augustine and Rosemary Nti-Addae

Total Page:16

File Type:pdf, Size:1020Kb

Dedicated to My Parents, Augustine and Rosemary Nti-Addae Dedicated to my parents, Augustine and Rosemary Nti-Addae. Acknowledgements My sincere appreciation goes to my parents, Augustine and Rosemary Nti-Addae for their relentless support and loving care through out my life, and making my education a success. In addition I send my appreciation to my brothers, Yaw Appiah Nti-Addae and Akwasi Kay Nti-Addae for being my support away from home and always being there for me when ever I needed them. I would like to acknowledge my research advisor, Dr. Valentino J. Stella, for opportunity to study under his leadership. I will forever be grateful for the mentorship and contribution towards my scientific education and for his guidance to both my academic and personal life. I would also like to acknowledge my committee members and the entire faculty of the University of Kansas Pharmaceutical Chemistry Department for their contributions. Special thanks to Siegfried Lindenbaum Predoctoral Fellowship, Higuchi Biosciences Center, The University of Kansas Center for Research (KUCR), and the University of Kansas Pharmaceutical Chemistry Department for providing the much needed financial support through out the course of my studies. Special thanks also go to Nancy Helm, Karen Hall, Ann Heptig and Nicole Brooks for all the administrative help. I would like to especially acknowledge Bill Marinaro, Sundeep Dhareshwar, Jeff Hemenway, Victor Guarino, Svetlana Silchenko, Serena Tongiani-Pacor, Na Sun, Jian Lu, Hedeki Kohita and Alex Grill for their constant support in and out of the lab. I extend my appreciation to my friends Justin Pennington, Joseph Lubach, Sumit Majumdar Rosemary Ndolo, Alana Toro Ramos, Natalie Ciaccio, Elodie K. Dempah, and all the students of the Pharmaceutical chemistry department, past and present. I would also like to say a big thank you to Kofi and Tina Boye-Doe, Samuel and Naa Britwum, and Gloria Akyeampong for their love, friendship and kindness to me during my time in Lawrence KS. Finally, my appreciation goes to my Uncle, Kojo Nsiah Amanquah, without whom my move to the USA to continue my education would have not been possible. ii The synthesis, physicochemical characterization and evaluation of sulfenamide derivatives of antimicrobial oxazolidinones as prodrugs are described in this dissertation. Synthesis of sulfenamide derivatives described in this work involves the use of thiophthalimide intermediates. These thiophthalimide intermediates allow for a clean one step reaction, which requires less purification steps resulting in higher yields of sulfenamide products compared to a previously described synthetic route that incorporated the use of unstable sulfuryl chloride intermediates. The sulfenamide prodrugs undergo chemical conversion through the hydrolytic cleavage of the N-S bond during aqueous stability studies to release the parent drug molecule. However, insufficient aqueous stability characteristics may pose potential problems for future development of sulfenamide prodrugs as ready to use liquid formulations. The stability of the sulfenamide prodrugs was studied in the presence of small molecule thiols with varying thiol pKa. These studies showed that the thiolate ion was the species responsible for the nucleophilic attack on the sulfur atom of the N-S bond, leading to the cleavage of the bond to release the parent molecule and a mixed disulfide. Reactions of the sulfenamide prodrugs with thiol containing proteins such as human serum albumin and PRL-1 also resulted in the nucleophilic cleavage of the sulfenamide bond to release the parent molecule. The reactions of the sulfenamide prodrugs with small molecule thiols and thiol containing proteins led to the conclusion that in vivo conversion will occur via the nucleophilic attack of thiolate species. Attempts to study the permeability of the sulfenamide derivatives were hindered by the rapid conversion of the sulfenamide prodrugs to the parent molecule in the transport study setup. This rapid conversion is believed to be caused by the presence of thiol containing proteins on the surface of the Caco-2 cell monolayer and also within the cells. However, analysis of the initial permeability data shows that the sulfenamide prodrugs are contributing to the slight improvement of the permeability of the parent molecule. iii Outline Chapter 1: Application of sulfenamides as potential prodrugs to improve the physicochemical properties of amide containing drug molecules 1. Introduction and Background 1.1. Statement of goals 1.2. Prodrugs 1.3. -NH acids (amides) and their prodrugs 1.4. Advantages and disadvantages of some -NH acid prodrugs 1.4.1. N-Acyl prodrugs 1.4.2. N-Mannich base prodrugs 1.4.3. N-Hydroxymethyl prodrugs 1.4.4. N-Acyloxymethyl prodrugs 1.5. Sulfenamides 1.6. Chemistry of sulfenamides 1.7. Applications in the chemical and pharmaceutical industry 1.7.1. Applications in organic synthesis. 1.7.2. Applications in the agricultural industry. 1.7.3. Other applications of sulfenamides. 1.8. Sulfenamide Prodrugs 1.8.1. Origin of sulfenamide prodrug idea. 1.8.2. Previously studied sulfenamide prodrugs. 1.9. Summary and Specific Aims 1.10. References. Chapter 2: Synthesis and physicochemical characterization of sulfenamide prodrugs from novel antibacterial oxazolidinones. 2.1. Introduction 2.1.1. Overall objective 2.1.2. Sulfenamides: Definition and Background. 2.1.3. Oxazolidinones; Definition and background iv 2.2. Materials and Methods 2.2.1. Solvents, Chemicals and Instruments 2.2.2. Synthesis and characterization of oxazolidinones 2.2.2.1. General 2.2.2.2. (R)-[3-[3-Fluoro-4-(4-thiomorpholinyl)phenyl]-2-oxo-5 oxazolidinyl]methyl methanesulfonate (2.2) 2.2.2.3. (R)-5-(azidomethyl)-3-(3-fluoro-4-thiomorpholinophenyl) oxazolidin-2-one (2.3) 2.2.2.4. (S)-5-(aminomethyl)-3-(3-fluoro-4-thiomorpholinophenyl) oxazolidin-2-one. (2.4) 2.2.2.5. N-((3-(3-fluoro-4-thiomorpholinophenyl)-2-oxooxazolidin-5- yl)methyl)acetamide (U-100480) (2.5) 2.2.2.6. (S)-N-((3-(3-fluoro-4-(1-oxothiomorpholin-4-yl)phenyl)-2- oxo-5-oxazolidinyl) methyl)acetamide (U101603) (2.6) 2.2.3. Synthesis and characterization of sulfenamides 2.2.3.1. Ethylthiophthalimide. (2.7) 2.2.3.2. Ethyl 3-(1,3-dioxoisoindolin-2-ylthio)propanoate. (2.8) 2.2.3.3. (R)-N-((3-(3-fluoro-4-morpholinophenyl)-2- oxo oxazolidin- 5-yl)methyl)-N-(phenylthio)acetamide. (2.9) 2.2.3.4. (R)-N-((3-(3-fluoro-4-thiomorpholinophenyl)-2-oxooxa zolidin-5-yl)methyl)-N-(phenylthio)acetamide. (2.10) 2.2.3.5. (R)-N-((3-(3-fluoro-4-(1-oxothiomorpholin-4-yl)phenyl)-2- oxooxazolidin-5-yl)methyl)-N-(phenylthio)acetamide. (2.11) 2.2.3.6. (R)-N-(ethylthio)-N-((3-(3-fluoro-4-morpholinophenyl) oxooxazolidin-5-yl) methyl)acetamide.(2.12) 2.2.3.7. Ethyl 3-(N-((3-(3-fluoro-4-morpholinophenyl)-2-oxo oxazolidin-5-yl)methyl)acetamidothio)propanoate. (2.13) 2.2.3.8. Attempted Synthesis of (R)-tert-butyl 4-(N-((3-(3-fluoro-4- morpholinophenyl)-2-oxooxazolidin-5-yl)methyl)acetamidothio) butanoate (2.15) 2.2.4. Determining aqueous stability of sulfenamide prodrugs models. v 2.2.4.1. Solvents and chemicals 2.2.4.2.Aqueous stability sample preparation 2.2.4.3.HPLC conditions 2.2.4.4.Determination of degradation products by LCMS 2.3. Results and Discussion 2.3.1. Synthetic results 2.3.2. Hydrolytic degradation of N-(phenylsulfenyl)linezolid (2.9) and N-(ethylsulfenyl) linesolid (2.12). 2.4. Conclusions 2.5. References Chapter 3: Degradation of sulfenamides in the presence of small molecule thiols 3.1. Introduction 3.1.1. Overall Objective 3.1.2. Reactivity of Sulfenamides 3.1.3. Proposed reaction of sulfenamides prodrugs with thiols 3.2. Experimental Materials and Methods 3.2.1. Solvents and chemicals 3.2.2. Aqueous stability sample preparation 3.2.3. HPLC conditions 3.2.4. Determination of degradation products by LCMS 3.3. Results and discussion 3.3.1. LCMS analysis. 3.3.2. Pseudo 1st order reactions of sulfenamide prodrug models in molar excess of thiols. 3.3.3. Kinetic Analysis of sulfenamides prodrug reactions with thiols. 3.3.4. Mathematical determination of 2nd order rate constants 3.4. Conclusions 3.5. References vi Chapter 4: Degradation of sulfenamide prodrugs in the presence of thiol containing proteins 4.1. Introduction 4.1.1. Overall objective 4.1.2. Background 4.1.2.1. Thiol containing proteins and their significance 4.2. Experimental, Material and Methods 4.2.1. Solvents and chemicals 4.2.2. Determination of the free thiol concentration in HSA. 4.2.3. Degradation of 4.1 in the presence of HSA 4.2.4. Degradation of 4.1 in the presence of PRL-1 C170-171S Mutant. 4.2.5. Degradation of 4.1 and 4.2 in the presence of Human Plasma. 4.3. Results and Discussions 4.3.1. Degradation of 4.1 in the presence of HSA and PRL-1 C170-171S. 4.3.2. Degradation of sulfenamide prodrugs in the presence of Human Plasma 4.4. Conclusions. 4.5. References Chapter 5: The Determination of the Permeability Characteristics of Sulfenamide Prodrugs of Antimicrobial Oxazolidinones across Caco-2 Cells. 5.1. Introduction 5.1.1. Overall Objective 5.1.2. Permeability 5.2. Experimental Materials and Methods 5.2.1. Solvents and chemicals 5.2.2. Caco-2 Permeability Assay: 5.2.2.1. Media preparation. 5.2.2.2. Cell culture. 5.2.2.3. Sub culturing cells 5.2.2.4. Permeability Experiments 5.2.2.5. Control studies. 5.3. Results and Discussions 5.3.1. Cell transport studies vii 5.3.2. Permeability of Linezolid 5.3.3. Permeability studies of 5.1 and 5.2 5.4. Conclusions 5.5. References Chapter 6: Overall Summary, Conclusions and Future Work 6.1. Summary and Conclusions 6.1.1. Synthesis and aqueous stability of sulfenamide prodrugs of oxazolidinones.
Recommended publications
  • August/September 1999 Volume 5, Number 4/5
    T ECHNOLOGY, PRODUCTS, MA RKETS AND SERVICE OPPORTUNITIES A NEW MEDICINE PUBLICATION AUGUST/SEPTEMBER 1999 VOLUME 5, NUMBER 4/5 Flutamide 1090 STATE-OF-THE-ART IN THE MANAGEMENT OF CANCER Goserelin 1090 LUNG CANCER — PART II Leuprolide acetate 1091 SCREENING, DIAGNOSIS, AND Nilutamide 1091 CLASSIFICATION OTHER CHEMOTHERAPEUTICS 1091 LUNG CANCER SCREENING 1074 Alitretinoin 1091 Chest X-ray 1076 Anthracyclines 1092 Low-dose Helical Computed Tomography (CT) 1076 Daunorubicin 1092 Sputum Cytology 1078 Epirubicin 1092 Breath Analysis 1079 Liposomal daunorubicin 1092 Molecular Markers 1079 Liposomal doxorubicin 1092 Mitoxantrone 1094 PRESENTATION AND DIAGNOSIS 1080 Valrubicin 1094 Brush Cytology 1080 Busulfan 1094 Endoscopy/Bronchoscopy 1080 Carmustine Wafer 1094 Biopsy 1083 Etoposide Phosphate 1095 Noninvasive Imaging 1083 Flutarabine 1095 Computed tomography (CT) 1083 Gemcitabine 1095 Nuclear medicine 1083 Liposomal Cytarabine 1095 HISTOLOGY AND CLASSIFICATION 1084 Methoxsalen 1096 Porfimer Sodium 1096 SPECIAL REVIEW Temozolomide 1096 BIOLOGICALS 1098 ONCOLOGY TRENDS PRODUCT MARKETS — PART II Aldesleukin 1098 Denileukin Diftitox 1098 HORMONE MODULATING DRUGS 1084 Interferon α 1099 Antiestrogens 10854 Interferon α-2a 1099 Tamoxifene 1085 Interferon α-2b 1099 Raloxifene 1085 Rituximab 1099 Toremifene 1086 Trastuzumab 1101 Aromatase Inhibitors 1086 ADJUNCT THERAPIES 1101 Anastozole 1087 Amifostine 1101 Exemestane 1088 Colony Stimulating Factors 1102 Fadrozole 1088 Filgrastim 1102 Formestane 1089 Lenograstim 1102 Letrozole 1089 Sargramostim 1102 Antiandrogens 1089 Octreotide Acetate 1103 Bicalutamide 1090 Oprelvekin 1103 Cyproterone acetate 1090 Pamidronate Disodium 1104 COPYRIGHT © 1999 NEW MEDICINE INC. UNAUTHORIZED PHOTOCOPYING, DISTRIBUTION OR ELECTRONIC STORAGE IS PROHIBITED BY LAW. FUTURE ONCOLOGY AUGUST/SEPTEMBER 1999 VOLUME 5, NUMBER 4/5 ■ the Mayo Lung Project, initiated in 1971, that enrolled STATE-OF-THE-ART IN THE MANAGEMENT OF CANCER 9,211 males ≥45 years-of-age, who were heavy smok- ers.
    [Show full text]
  • Discovery of Anti-Amoebic Inhibitors from Screening the MMV Pandemic Response Box on Balamuthia Mandrillaris, Naegleria Fowleri
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.096776; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Article 2 Discovery of anti-amoebic inhibitors from screening 3 the MMV Pandemic Response Box on Balamuthia 4 mandrillaris, Naegleria fowleri and Acanthamoeba 5 castellanii 6 Christopher A. Rice1,2,Δ,†,*, Emma V. Troth2,3,†, A. Cassiopeia Russell2,3,†, and Dennis E. Kyle1,2,3,* 7 1 Department of Cellular Biology, University of Georgia, Athens, Georgia, USA. 8 2 Center for Tropical and Emerging Global Diseases, Athens, Georgia, USA. 9 3 Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA. 10 Δ Current address: Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, 11 University of Georgia, Athens, Georgia, USA. 12 † These authors contributed equally to this work. 13 14 *Author correspondence: [email protected] (D.E.K) and [email protected] (C.A.R) 15 Received: date; Accepted: date; Published: date 16 Abstract: Pathogenic free-living amoebae, Balamuthia mandrillaris, Naegleria fowleri and several 17 Acanthamoeba species are the etiological agents of severe brain diseases, with case mortality rates 18 >90%. A number of constraints including misdiagnosis and partially effective treatments lead to 19 these high fatality rates. The unmet medical need is for rapidly acting, highly potent new drugs to 20 reduce these alarming mortality rates. Herein, we report the discovery of new drugs as potential 21 anti-amoebic agents.
    [Show full text]
  • Vulcanization & Accelerators
    Vulcanization & Accelerators Vulcanization is a cross linking process in which individual molecules of rubber (polymer) are converted into a three dimensional network of interconnected (polymer) chains through chemical cross links(of sulfur). The vulcanization process was discovered in 1839 and the individuals responsible for this discovery were Charles Goodyear in USA and Thomas Hancock in England. Both discovered the use of Sulfur and White Lead as a vulcanization system for Natural Rubber. This discovery was a major technological breakthrough for the advancement of the world economy. Vulcanization of rubbers by sulfur alone is an extremely slow and inefficient process. The chemical reaction between sulfur and the Rubber Hydrocarbon occurs mainly at the C = C (double bonds) and each crosslink requires 40 to 55 sulphur atoms (in the absence of accelerator). The process takes around 6 hours at 140°C for completion, which is uneconomical by any production standards. The vulcanizates thus produced are extremely prone to oxidative degradation and do not possess adequate mechanical properties for practical rubber applications. These limitations were overcome through inventions of accelerators which subsequently became a part of rubber compounding formulations as well as subjects of further R&D. Following is the summary of events which led to the progress of ‘Accelerated Sulfur Vulcanization'. Event Year Progress - Discovery of Sulfur Vulcanization: Charles Goodyear. 1839 Vulcanizing Agent - Use of ammonia & aliphatic ammonium derivatives: Rowley. 1881 Acceleration need - Use of aniline as accelerator in USA & Germany: Oenslager. 1906 Accelerated Cure - Use of Piperidine accelerator- Germany. 1911 New Molecules - Use of aldehyde-amine & HMT as accelerators in USA & UK 1914-15 Amine Accelerators - Use of Zn-Alkyl Xanthates accelerators in Russia.
    [Show full text]
  • 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, in Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study
    molecules Article 1,2,4-Triazine Sulfonamides: Synthesis by Sulfenamide Intermediates, In Vitro Anticancer Screening, Structural Characterization, and Molecular Docking Study Danuta Branowska 1, Zbigniew Karczmarzyk 1,*, Ewa Woli ´nska 1, Waldemar Wysocki 1, Maja Morawiak 2 , Zofia Urba ´nczyk-Lipkowska 2 , Anna Bielawska 3 and Krzysztof Bielawski 3 1 Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland; [email protected] (D.B.); [email protected] (E.W.); [email protected] (W.W.) 2 Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; [email protected] (M.M.); zofi[email protected] (Z.U.-L.) 3 Medical University of Bialystok, Department of Medicinal Chemistry and Drug Technology, J. Kilinskiego 1, 15-089 Bialystok, Poland; [email protected] (A.B.); [email protected] (K.B.) * Correspondence: [email protected]; Tel.: +48-25-643-1017 Received: 24 March 2020; Accepted: 14 May 2020; Published: 16 May 2020 Abstract: In this study, we synthesized novel sulfonamides with a 1,2,4-triazine moiety according to pharmacophore requirements for biological activity. All the synthesized compounds were tested in vitro to verify whether they exhibited anticancer activity against the human breast cancer cell lines MCF-7 and MDA-MB-231. Among them, two most active ones, having IC50 values of 50 and 42 µM, respectively, were found to show higher anticancer activity than chlorambucil used as the reference in the in vitro tests. In addition, two other compounds, which had IC50 values of 78 and 91 µM, respectively, exhibited a similar level of activity as chlorambucil.
    [Show full text]
  • Integrated Molecular Profiling for Analyzing and Predicting Therapeutic Mechanism, Response, Biomarker and Target
    INTEGRATED MOLECULAR PROFILING FOR ANALYZING AND PREDICTING THERAPEUTIC MECHANISM, RESPONSE, BIOMARKER AND TARGET Jia Jia (B. Sci & M. Sci, Zhejiang University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACY NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgements ACKNOWLEDGEMENTS I would like to deeply thank Professor Chen Yu Zong, for his constant encouragement and advice during the entire period of my postgraduate studies. In particular, he has guided me to make my research applicable to the real world problem. This work would not have been possible without his kindness in supporting me to shape up the manuscript for publication. I am also tremendously benefited from his profound knowledge, expertise in scientific research, as well as his enormous support, which will inspire and motivate me to go further in my future professional career. I am also grateful to our BIDD group members for their insight suggestions and collaborations in my research work: Dr. Tang Zhiqun, Ms. Ma Xiaohua, Mr. Zhu Feng, Ms. Liu Xin, Ms. Shi Zhe, Dr. Cui Juan, Mr. Tu Weimin, Dr. Zhang Hailei, Dr. Lin Honghuang, Dr. Liu Xianghui, Dr. Pankaj Kumar, Dr Yap Chun wei, Ms. Wei Xiaona, Ms. Huang Lu, Mr. Zhang Jinxian, Mr. Han Bucong, Mr. Tao Lin, Dr. Wang Rong, Dr. Yan Kun. I thank them for their valuable support and encouragement in my work. Finally, I owe my gratitude to my parents for their forever love, constant support, understanding, encouragement and strength throughout my life. A special appreciation goes to all for love and support. Jia Jia August 2010 I Table of Contents TABLE OF CONTENTS 1.1 Overview of mechanism and strategies of molecular-targeted therapeutics ...................................
    [Show full text]
  • 1,4-Disubstituted-1,2,3-Triazole Compounds Induce Ultrastructural Alterations in Leishmania Amazonensis Promastigote
    International Journal of Molecular Sciences Article 1,4-Disubstituted-1,2,3-Triazole Compounds Induce Ultrastructural Alterations in Leishmania amazonensis Promastigote: An in Vitro Antileishmanial and in Silico Pharmacokinetic Study Fernando Almeida-Souza 1,2,* , Verônica Diniz da Silva 3,4, Gabriel Xavier Silva 5, Noemi Nosomi Taniwaki 6, Daiana de Jesus Hardoim 2, Camilla Djenne Buarque 3, 1, , 2, Ana Lucia Abreu-Silva * y and Kátia da Silva Calabrese y 1 Pós-graduação em Ciência Animal, Universidade Estadual do Maranhão, São Luís 65055-310, Brazil 2 Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; [email protected] (D.d.J.H.); calabrese@ioc.fiocruz.br (K.d.S.C.) 3 Laboratório de Síntese Orgânica, Pontifícia Universidade Católica, Rio de Janeiro 22451-900, Brazil; [email protected] (V.D.d.S.); [email protected] (C.D.B.) 4 Faculdade de Ciência e Tecnologia, Universidade Nova de Lisboa, 2825-149 Caparica, Portugal 5 Rede Nordeste de Biotecnologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; [email protected] 6 Núcleo de Microscopia Eletrônica, Instituto Adolfo Lutz, São Paulo 01246-000, Brazil; [email protected] * Correspondence: [email protected] (F.A.-S.); [email protected] (A.L.A.-S.) These authors equally contributed to this work. y Received: 26 June 2020; Accepted: 14 July 2020; Published: 18 September 2020 Abstract: The current standard treatment for leishmaniasis has remained the same for over 100 years, despite inducing several adverse effects and increasing cases of resistance. In this study we evaluated the in vitro antileishmanial activity of 1,4-disubstituted-1,2,3 triazole compounds and carried out in silico predictive study of their pharmacokinetic and toxicity properties.
    [Show full text]
  • Free-Radical Chain Reactions of Organic Mercury and Tin Compounds Hasan I
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 Free-radical chain reactions of organic mercury and tin compounds Hasan I. Tashtoush Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Tashtoush, Hasan I., "Free-radical chain reactions of organic mercury and tin compounds " (1984). Retrospective Theses and Dissertations. 7733. https://lib.dr.iastate.edu/rtd/7733 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • THE CHEMISTRY of SULFENIMIDES by Barbara Ann Orwig a Thesis
    THE CHEMISTRY OF SULFENIMIDES by Barbara Ann Orwig A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Science Department of Chemistry McGill University Montreal, P.Q. Canada May 1971 @) Barbara Ann Orwig 1972 Dedicated to My Parents Il Thanx Il i ACKNOWLEDGEMENTS 3l MY thanks to Dr. D.F.R. Gilson for the p nmr spectra, to Victor Yu for the A-60 nmr spectra, and to Peter Currie for the mass spectra. For helpful discussions and worthwhile suggestions l thank David Ash 1 Errol Chang 1 and John Gleason. For his guidance and help as my research director l thank Dr. David N. Harpp. And to Elva and Hermann Heyge go special thanks for their help and for "putting up wi th œil. TABLE OF CONTENTS Page ACKNOWLEDGEMENTS i INTRODUcrION 1 EXPERIMENTAL SECTION 22 RESULTS AND DISCUSSION 42 TABLES 1 Preparation of Sulfenyl Chlorides 72 2 Preparation of N-(alkyl/aryl thio)phthalimides 73 3 Desulfurization Reactions of N-(alkyl/aryl thio)phthalimides 76 4 Mass Spectra of N-(alkyl/aryl thio)phthalimides 77 FIGURES (Spectra) 78 - 87 BIBLIOGRAPHY 88 INTRODUcrION AND BACKGROUND Sulfenic acids Cl), in which sulfur exists in its R-S-OH l lcwest oxidation state, are highly lmstable compolmds and only a few l have been isolated. The derivatives of sulfenic acid {~.> however, are generally isolable and usually stable. 2 R-S-Y 2 When Y is -NH ' -~HR, or -NR ' the resulting class of compolmds is 2 2 ter.med sulfenamides.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,458 B2 Podolski Et Al
    US009687458B2 (12) United States Patent (10) Patent No.: US 9,687,458 B2 Podolski et al. (45) Date of Patent: Jun. 27, 2017 (54) TRANS-CLOMIPHENE FOR USE IN 6,143,353 A 1 1/2000 Oshlack CANCER THERAPY 6,190,591 B1 2/2001 Van Lengerich 6,221,399 B1 4/2001 Rolfes 6,248,363 B1 6, 2001 Patel (71) Applicant: REPROS THERAPEUTICS INC., 6,291,505 B1 9/2001 Huebner et al. The Woodlands, TX (US) 6,342,250 B1 1/2002 Masters 6,391920 B1 5, 2002 Fisch (72) Inventors: Joseph S. Podolski. The Woodlands, 6,511.986 B2 1/2003 Zhang et al. TX (US); Ronald D. Wiehle, Houston, 826 R $398 Ma'al TX (US); Kuang Hsu, The Woodlands, 6,638,528s- ww. B1 10/2003 KaniosaO ( a. TX (US); Greg Fontenot, The 6,645,974 B2 11/2003 Hutchinson et al. Woodlands, TX (US) 6,653,297 B1 11/2003 Hodgen 6,685,957 B1 2/2004 Bezemer et al. (73) Assignee: Repros Therapeutics Inc., The $33. R: 3. ErSC Woodlands, TX (US) 7,105,679 B2 9/2006 Kanojia et al. 7,354,581 B2 4/2008 Cedarb tal. (*) Notice: Subject to any disclaimer, the term of this 7,799,782 B2 9/2010 T al patent is extended or adjusted under 35 8,247456 B2 8/2012 Podolski U.S.C. 154(b) by 0 days. 8,377,991 B2 2/2013 Van AS 2002/O1200 12 A1 8, 2002 Fisch (21) Appl. No.: 14/440,007 (Continued) (22) PCT Filed: Oct.
    [Show full text]
  • Preparation, Characterization, and in Vitro Enzymatic Hydrolysis in Biorelevant Media☆
    European Journal of Pharmaceutical Sciences 92 (2016) 203–211 Contents lists available at ScienceDirect European Journal of Pharmaceutical Sciences journal homepage: www.elsevier.com/locate/ejps Modulating lipophilicity of rohitukine via prodrug approach: Preparation, characterization, and in vitro enzymatic hydrolysis in biorelevant media☆ Vikas Kumar a,b, Sonali S. Bharate a,⁎, Ram A. Vishwakarma b,c,⁎⁎ a Preformulation Laboratory, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India b Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India c Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India article info abstract Article history: Rohitukine is a medicinally important natural product which has inspired the discovery of two anticancer clinical Received 26 May 2016 candidates. Rohitukine is highly hydrophilic in nature which hampers its oral bioavailability. Thus, herein our ob- Received in revised form 27 June 2016 jective was to improve the drug-like properties of rohitukine via prodrug-strategy. Various ester prodrugs were Accepted 11 July 2016 synthesized and studied for solubility, lipophilicity, chemical stability and enzymatic hydrolysis in plasma/ester- Available online 12 July 2016 ase. All prodrugs displayed lower aqueous solubility and improved lipophilicity compared with rohitukine, which was in accordance with the criteria of compounds in drug-discovery. The stability of synthesized prodrugs was Keywords: Prodrugs evaluated in buffers at different pH, SGF, SIF, rat plasma and in esterase enzyme. The rate of hydrolysis in all in- Drug discovery cubation media was dependent primarily on the acyl promoieties. Hexanoyl ester prodrug of rohitukine, 3d,was Rohitukine stable under chemical conditions; however it was completely hydrolyzed to rohitukine, in plasma and in esterase Solubility in 4 h.
    [Show full text]
  • Effect of Estrogens on Skin Aging and the Potential Role of Selective Estrogen Receptor Modulators
    CLIMACTERIC 2007;10:289–297 Effect of estrogens on skin aging and the potential role of selective estrogen receptor modulators S. Verdier-Se´vrain Bio-Hybrid, LLC, West Palm Beach, Florida, USA Key words: SKIN AGING, HORMONE REPLACEMENT THERAPY, TOPICAL ESTROGEN, PHYTOESTROGENS, SELECTIVE ESTROGEN RECEPTOR MODULATORS ABSTRACT Estrogens have a profound influence on skin. The relative hypoestrogenism that accom- panies menopause exacerbates the deleterious effects of both intrinsic and environ- mental aging. Estrogens prevent skin aging. They increase skin thickness and improve skin moisture. Beneficial effects of hormone replacement therapy (HRT) on skin aging have been well documented, but HRT cannot obviously be recommended solely to treat skin aging in menopausal women. Topical estrogen application is highly effective and safe if used by a dermatologist with expertise in endocrinology. The question of whether estrogen alternatives such as phytoestrogens and selective estrogen receptor modulators are effective estrogens for the prevention of skin aging in postmenopausal women remains unanswered. However, preliminary data indicate that such treatment may be of benefit for skin aging treatment. For personal use only. INTRODUCTION There are approximately 40 million postmeno- Intrinsic aging is characterized by smooth, pale, pausal women in the United States, contributing finely wrinkled skin and dryness2. Photoaging is to 17% of the total population1. As the popula- characterized by severe wrinkling and pigmentary tion of older women continues to grow at a rapid changes such as solar lentigo and mottled pig- rate, the challenges of learning more about the mentation3. Estrogens affect several skin functions health-care concerns and priorities of this group of and the estrogen deprivation that accompanies Climacteric Downloaded from informahealthcare.com by University of Washington on 05/23/13 patients become apparent.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8.442,629 B2 Suzuki Et Al
    USOO8442629B2 (12) United States Patent (10) Patent No.: US 8.442,629 B2 Suzuki et al. (45) Date of Patent: May 14, 2013 (54) IONTOPHORESIS PREPARATION FOR (56) References Cited TREATING BREAST CANCER AND/OR MASTITIS U.S. PATENT DOCUMENTS 7,384,418 B2 * 6/2008 Hung et al. ................ 604/890.1 (75) Inventors: Kenichi Suzuki, Fuji (JP); Makoto 2008: R ck 1939. aVleSs et al.. 600,547 Kanebako, Fuji (JP); Toshio Inagi, Fuji 2004/O152997 A1 ck 8, 2004 Davies . 600,547 (JP) 2004/02298.13 A1 11/2004 DiPiano et al. 2004/0253652 A1* 12/2004 Davies ......................... 435/723 (73) Assignee: Kowa Co., Ltd., Nagoya-shi (JP) 2004/0258747 A1 12/2004 Ponzoni et al. 2004/0267.189 A1* 12/2004 Mavor et al. .................... 604/20 c - r - 2005/020343.6 A1* 9, 2005 Davies .......................... 600,547 (*) Notice: Subject to any disclaimer, the term of this 2006/0177449 A1 8/2006 Matsumoto et al. patent is extended or adjusted under 35 2006/0184092 A1* 8, 2006 Atanasoska et al. ............ 604/20 U.S.C. 154(b) by 277 days. FOREIGN PATENT DOCUMENTS (21) Appl. No.: 12/988,047 EP 1 008365 A1 6, 2000 JP 2004-30014.7 10, 2004 JP 4000185 8, 2007 (22) PCT Filed: Apr. 17, 2009 WO 98.35722 8, 1998 (86). PCT No.: PCT/UP2009/001770 (Continued) S371 (c)(1), OTHER PUBLICATIONS (2), (4) Date: Oct. 15, 2010 U.S. Appl. No. 13/204.803, filed Aug. 8, 2011, Inagi, et al. (87) PCT Pub. No.: WO2009/128273 (Continued) PCT Pub. Date: Oct.
    [Show full text]