(15. 11.2018) US C07K 16/28 (2006.01) A61P37/06 (2006.01) 62/767,83 1 15 November 2018 (15

Total Page:16

File Type:pdf, Size:1020Kb

(15. 11.2018) US C07K 16/28 (2006.01) A61P37/06 (2006.01) 62/767,83 1 15 November 2018 (15 ( 2 (51) International Patent Classification: 62/767,792 15 November 2018 (15. 11.2018) US C07K 16/28 (2006.01) A61P37/06 (2006.01) 62/767,83 1 15 November 2018 (15. 11.2018) US C07K 16/30 (2006.01) A61P 35/00 (2006.01) 62/789,946 08 January 2019 (08.01.2019) US C07K 16/32 (2006.01) A61P 35/02 (2006.01) 62/789,943 08 January 2019 (08.01.2019) US 62/789,947 08 January 2019 (08.01.2019) US (21) International Application Number: 62/817,450 12 March 2019 (12.03.2019) US PCT/US20 19/033255 62/817,442 12 March 2019 (12.03.2019) US (22) International Filing Date: 62/817,467 12 March 2019 (12.03.2019) US 2 1 May 2019 (21.05.2019) 62/822,243 22 March 2019 (22.03.2019) US 62/822,420 22 March 2019 (22.03.2019) US (25) Filing Language: English 62/830,417 06 April 2019 (06.04.2019) US (26) Publication Language: English 62/830,420 06 April 2019 (06.04.2019) US (30) Priority Data: (71) Applicant: COMPASS THERAPEUTICS LLC 62/674,289 2 1 May 2018 (21.05.2018) US [US/US]; 245 First Street, 3rd Floor, Cambridge, Massa¬ 62/674,279 2 1 May 2018 (21.05.2018) US chusetts 02142 (US). 62/674,286 2 1 May 2018 (21.05.2018) US (72) Inventors: WATKINS, Jennifer; 245 First Street, 3rd 62/728,542 07 September 2018 (07.09.2018) US Floor, Cambridge, Massachusetts 02142 (US). SCHMIDT, 62/73 1,030 13 September 2018 (13.09.2018) US Michael March; 245 First Street, 3rd Floor, Cambridge, 62/73 1,045 13 September 2018 (13.09.2018) US Massachusetts 02142 (US). DRAGHI, Monia; 245 First 62/73 1,047 13 September 2018 (13.09.2018) US Street, 3rd Floor, Cambridge, Massachusetts 02142 (US). 62/756,012 05 November 2018 (05. 11.2018) US OLIPHANT, Amanda Frank; 245 First Street, 3rd Floor, 62/760,473 13 November 2018 (13. 11.2018) US Cambridge, Massachusetts 02142 (US). HALMOS, Sara 62/760,670 13 November 2018 (13. 11.2018) US Marie; 245 First Street, 3rd Floor, Cambridge, Massachu¬ 62/760,644 13 November 2018 (13. 11.2018) US setts 02142 (US). SCHUETZ, Thomas Joseph; 245 First 62/767,786 15 November 2018 (15. 11.2018) US Street, 3rd Floor, Cambridge, Massachusetts 02142 (US). (54) Title: COMPOSITIONS AND METHODS FOR ENHANCING THE KILLING OF TARGET CELLS BY NK CELLS (57) Abstract: The present disclosure provides immunotherapeutic compositions and methods for enhancing an immune response and for treating cancer or inflammatory conditions mediated by autoreactive B n¬ n¬ r. d d he e¬ d et or [Continued on nextpage] W O 2019/226617 A1 LAJOIE, Jason Michael; 245 First Street, 3rd Floor, Cam¬ bridge, Massachusetts 02142 (US). NELSON, Allison; 245 First Street, 3rd Floor, Cambridge, Massachusetts 02142 (US). (74) Agent: MCKEON, Tina Williams et al.; Kilpatrick Townsend & Stockton, LLP, 1100 Peachtree Street NE, Suite 2800, Atlanta, Georgia 30309 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available) : AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) — with sequence listing part of description (Rule 5.2(a)) COMPOSITIONS AND METHODS FOR ENHANCING THE KILLING OF TARGET CELLS BY NK CELLS CROSS-REFERENCE RELATED APPLICATIONS This application claims benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/674,289, filed on May 21, 2018; U.S. Provisional Patent Application No. 62/674,279, filed on May 21, 2018; U.S. Provisional Patent Application No. 62/674,286, filed on May 21, 2018; U.S. Provisional Patent Application No. 62/728,542, filed on September 7, 2018; U.S. Provisional Patent Application No. 62/731,030, filed on September 13, 2018; U.S. Provisional Patent Application No. 62/731,045, filed on September 13, 2018; U.S. Provisional Patent Application No. 62/731,047, filed on September 13, 2018; U.S. Provisional Patent Application No. 62/756,012, filed on November 5, 2018; U.S. Provisional Patent Application No. 62/760,473, filed on November 13, 2018; U.S. Provisional Patent Application No. 62/760,670, filed on November 13, 2018; U.S. Provisional Patent Application No. 62/760,644, filed on November 13, 2018; U.S. Provisional Patent Application No. 62/767,786, filed on November 15, 2018; U.S. Provisional Patent Application No. 62/767,792, filed on November 15, 2018; U.S. Provisional Patent Application No. 62/767,831, filed on November 15, 2018; U.S. Provisional Patent Application No. 62/789,946, filed on January 8, 2019; U.S. Provisional Patent Application No. 62/789,943, filed on January 8, 2019; U.S. Provisional Patent Application No. 62/789,947, filed on January 8, 2019; U.S. Provisional Patent Application No. 62/817,450, filed on March 12, 2019; U.S. Provisional Patent Application No. 62/817,442, filed on March 12, 2019; U.S. Provisional Patent Application No. 62/817,467, filed on March 12, 2019; U.S. Provisional Patent Application No. 62/822,243, filed on March 22, 2019; U.S. Provisional Patent Application No. 62/822,420, filed on March 22, 2019; U.S. Provisional Patent Application No. 62/830,417, filed on April 6, 2019; and U.S. Provisional Patent Application No. 62/830,420, filed on April 6, 2019, the contents of each of which are incorporated herein in their entireties. BACKGROUND Cancer is one of the leading causes of death, accounting for almost one in six deaths worldwide in 2015, according to the American Association for Cancer Research (AACR) Cancer Progress Report of 2017. The molecular mechanisms involved in cancer are highly complex. In some circumstances, immune cells, such as T cells, natural killer cells, and macrophages, exhibit anti-tumor activity and can effectively control the development and/or progression of tumors. The immune cells recognize tumor antigens (tumor-specific or tumor- associated antigens) and eliminate cells expressing the antigens. However, tumors also constitute highly suppressive microenvironments and can downregulate the function of infiltrating immune cells. For example, tumor cells can downregulate the level of tumor- specific or tumor-associated antigens and escape cell death by the infiltrating immune cells. As a result, the patient’s immune system may not recognize cancer cells as foreign or may not be strong enough to destroy the cancer cells. A number of treatments for cancer are currently available, including surgery, radiation, chemotherapy, hormone therapy, immunotherapy, targeted therapy, stem cell transplants, and precision medicine. Immunotherapeutic approaches, in particular, have been developed in recent years to utilize the patient’s endogenous immune system cells (e.g., T cells, natural killer cells, and macrophages) to inhibit tumor formation and progression. CD 16 is a target for certain immunotherapies. For example, margetuximab is an Fc-optimized monoclonal antibody that recognizes human epidermal growth factor receptor 2 (HER2) expressed on a number of tumor cells and targets CDl6a on immune effector cells (e.g., NK cells). In addition, bispecific antibody fragments that recognize CD 16 and CD 19 have been developed to target immunotherapeutic drugs to B cell lymphomas. Another immunotherapy in development involves multispecific binding proteins that bind NKG2D, a tumor antigen, and CD 16. However, certain patients have cancers in which the levels of CD 16 are present at decreased levels on NK cells as compared to control NK cells. The existing immuno-oncology therapies are still somewhat ineffective for the majority of patients and tumors. When tumor cells downregulate expression of tumor antigens, for example, an immunotherapy directed to the tumor antigen can prove ineffective. Monoclonal antibodies targeting tumor-associated antigens have failed to show effectiveness against low antigen-expressing tumors. Therefore, patients with low antigen expression levels are not eligible for certain available immunotherapies. Additionally, inflammatory conditions (e.g, inflammatory conditions mediated in whole or in part by auto-reactive B cells) are common. B cells (including plasma cells) have multiple roles in such conditions, including secretion of autoantibodies, presentation of autoantigen, secretion of inflammatory cytokines, modulation of antigen processing and presentation, and generation of ectopic germinal centers.
Recommended publications
  • Depatuxizumab Mafodotin (ABT-414)
    Published OnlineFirst May 5, 2020; DOI: 10.1158/1535-7163.MCT-19-0609 MOLECULAR CANCER THERAPEUTICS | CANCER BIOLOGY AND TRANSLATIONAL STUDIES Depatuxizumab Mafodotin (ABT-414)-induced Glioblastoma Cell Death Requires EGFR Overexpression, but not EGFRY1068 Phosphorylation Caroline von Achenbach1, Manuela Silginer1, Vincent Blot2, William A. Weiss3, and Michael Weller1 ABSTRACT ◥ Glioblastomas commonly (40%) exhibit epidermal growth factor Exposure to ABT-414 in vivo eliminated EGFRvIII-expressing receptor EGFR amplification; half of these tumors carry the EGFR- tumor cells, and recurrent tumors were devoid of EGFRvIII vIII deletion variant characterized by an in-frame deletion of exons expression. There is no bystander killing of cells devoid of EGFR 2–7, resulting in constitutive EGFR activation. Although EGFR expression. Surprisingly, either exposure to EGF or to EGFR tyrosine kinase inhibitors had only modest effects in glioblastoma, tyrosin kinase inhibitors reduce EGFR protein levels and are thus novel therapeutic agents targeting amplified EGFR or EGFRvIII not strategies to promote ABT-414–induced cell killing. Further- continue to be developed. more, glioma cells overexpressing kinase-dead EGFR or EGFR- Depatuxizumab mafodotin (ABT-414) is an EGFR-targeting vIII retain binding of mAb 806 and sensitivity to ABT-414, antibody–drug conjugate consisting of the mAb 806 and a toxic allowing to dissociate EGFR phosphorylation from the emer- payload, monomethyl auristatin F. Because glioma cell lines and gence of the “active” EGFR conformation required for ABT-414 patient-derived glioma-initiating cell models expressed too little binding. EGFR in vitro to be ABT-414–sensitive, we generated glioma The combination of EGFR-targeting antibody–drug conju- sublines overexpressing EGFR or EGFRvIII to explore determinants gates with EGFR tyrosine kinase inhibitors carries a high risk of ABT-414–induced cell death.
    [Show full text]
  • Prior Approaches and Future Directions Marna Williams1, Anna Spreafico2, Kapil Vashisht3, Mary Jane Hinrichs4
    Author Manuscript Published OnlineFirst on June 16, 2020; DOI: 10.1158/1535-7163.MCT-19-0993 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Patient Selection Strategies to Maximize Therapeutic Index of Antibody Drug Conjugates: Prior Approaches and Future Directions Marna Williams1, Anna Spreafico2, Kapil Vashisht3, Mary Jane Hinrichs4 1Translational Medicine, Oncology, AstraZeneca, Gaithersburg, USA 2Drug Development Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada 3AstraZeneca, Gaithersburg, USA. 4Early Development Oncology, Ipsen LLC, USA Corresponding author: Marna Williams Email: [email protected] Postal address: One MedImmune Way, Gaithersburg, MD, 20878 Phone: 301-398-1241 Fax: 240-306-1545 Running title Patient Selection Strategies for Antibody Drug Conjugates Keywords Antibody drug conjugates; therapeutic index; patient selection; biomarkers; cancer Conflicts of interest This study was funded by AstraZeneca. MW, KV and MJH are all current or former employees of AstraZeneca with stock/stock options in AstraZeneca. AS has been Advisory Board Consultant to Merck, Bristol-Myers Squibb, Novartis, Oncorus, Janssen, and has received Grant/Research support from Novartis, Bristol-Myers Squibb, Symphogen AstraZeneca/Medimmune, Merck, Bayer, Surface Oncology, Northern Biologics, Janssen Oncology/Johnson & Johnson, Roche, Regeneron, and Alkermes. Word count: Abstract: 197 Manuscript: 5,268 (excluding abstract) + 683 figure/table legends and footnotes Figures/tables: 5 (as agreed) 1 Downloaded from mct.aacrjournals.org on September 24, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on June 16, 2020; DOI: 10.1158/1535-7163.MCT-19-0993 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Deciphering Molecular Mechanisms and Prioritizing Therapeutic Targets in Cardio-Oncology
    Figure 1. This is a pilot view to explore the potential of EpiGraphDB to inform us about proteins that are linked to the pathophysiology of cancer and cardiovascular disease (CVD). For each cancer type (pink diamonds), we searched for cancer related proteins (light blue circles) that interact with other proteins identified as protein quantitative trait loci (pQTLs) for CVD (red diamonds for pathologies, orange triangles for risk factors). These pQTLs can be acting in cis (solid lines) or trans-acting (dotted lines). Proteins can interact either directly, a protein-protein interaction (dotted blue edges), or through the participation in the same pathway (red parallel lines). Shared pathways are represented with blue hexagons. We also queried which of these proteins are targeted by existing drugs. We found that the cancer drug cetuximab (yellow circle) inhibits EGFR. Other potential drugs are depicted in light brown hexagonal meta-nodes that are detailed below. Deciphering molecular mechanisms and prioritizing therapeutic targets in cardio-oncology Pau Erola1,2, Benjamin Elsworth1,2, Yi Liu2, Valeriia Haberland2 and Tom R Gaunt1,2,3 1 CRUK Integrative Cancer Epidemiology Programme; 2 MRC Integrative Epidemiology Unit, University of Bristol; 3 The Alan Turing Institute Cancer and cardiovascular disease (CVD) make by far the immense What is EpiGraphDB? contribution to the totality of human disease burden, and although mortality EpiGraphDB is an analytical platform and graph database that aims to is declining the number of those living with the disease shows little address the necessity of innovative and scalable approaches to harness evidence of change (Bhatnagar et al., Heart, 2016).
    [Show full text]
  • Advances and Limitations of Antibody Drug Conjugates for Cancer
    biomedicines Review Advances and Limitations of Antibody Drug Conjugates for Cancer Candice Maria Mckertish and Veysel Kayser * Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-2-9351-3391 Abstract: The popularity of antibody drug conjugates (ADCs) has increased in recent years, mainly due to their unrivalled efficacy and specificity over chemotherapy agents. The success of the ADC is partly based on the stability and successful cleavage of selective linkers for the delivery of the payload. The current research focuses on overcoming intrinsic shortcomings that impact the successful devel- opment of ADCs. This review summarizes marketed and recently approved ADCs, compares the features of various linker designs and payloads commonly used for ADC conjugation, and outlines cancer specific ADCs that are currently in late-stage clinical trials for the treatment of cancer. In addition, it addresses the issues surrounding drug resistance and strategies to overcome resistance, the impact of a narrow therapeutic index on treatment outcomes, the impact of drug–antibody ratio (DAR) and hydrophobicity on ADC clearance and protein aggregation. Keywords: antibody drug conjugates; drug resistance; linkers; payloads; therapeutic index; target specific; ADC clearance; protein aggregation Citation: Mckertish, C.M.; Kayser, V. Advances and Limitations of Antibody Drug Conjugates for 1. Introduction Cancer. Biomedicines 2021, 9, 872. Conventional cancer therapy often entails a low therapeutic window and non-specificity https://doi.org/10.3390/ of chemotherapeutic agents that consequently affects normal cells with high mitotic rates biomedicines9080872 and provokes an array of adverse effects, and in some cases leads to drug resistance [1].
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • Patient Resource Free
    PATIENT RESOURCE FREE Third Edition CancerUnderstanding Immunotherapy Published in partnership with CONTENT REVIEWED BY A DISTINGUISHED PRP MEDICAL PATIENT ADVISORY RESOURCE BOARD PUBLISHING® Understanding TABLE OF CONTENTS Cancer Immunotherapy Third Edition IN THIS GUIDE 1 Immunotherapy Today 2 The Immune System 4 Immunotherapy Strategies 6 Melanoma Survivor Story: Jane McNee Chief Executive Officer Mark A. Uhlig I didn’t look sick, so I didn’t want to act sick. Publisher Linette Atwood Having and treating cancer is only one part of your life. Co-Editor-in-Chief Charles M. Balch, MD, FACS Jane McNee, melanoma survivor Co-Editor-in-Chief Howard L. Kaufman, MD, FACS Senior Vice President Debby Easum 7 The Road to Immunotherapy Vice President, Operations Leann Sandifar 8 Cancer Types Managing Editor Lori Alexander, MTPW, ELS, MWC™ 14 Side Effects Senior Editors Dana Campbell Colleen Scherer 15 Glossary Graphic Designer Michael St. George 16 About Clinical Trials Medical Illustrator Todd Smith 16 Cancer Immunotherapy Clinical Trials by Disease Production Manager Jennifer Hiltunen 35 Support & Financial Resources Vice Presidents, Amy Galey Business Development Kathy Hungerford 37 Notes Stephanie Myers Kenney Account Executive Melissa Amaya Office Address 8455 Lenexa Drive CO-EDITORS-IN-CHIEF Overland Park, KS 66214 For Additional Information [email protected] Charles M. Balch, MD, FACS Advisory Board Visit our website at Professor of Surgery, The University of Texas PatientResource.com to read bios of MD Anderson Cancer Center our Medical and Patient Advisory Board. Editor-in-Chief, Patient Resource LLC Editor-in-Chief, Annals of Surgical Oncology Past President, Society of Surgical Oncology For Additional Copies: To order additional copies of Patient Resource Cancer Guide: Understanding Cancer Immunotherapy, Howard L.
    [Show full text]
  • IMGN779, a Novel CD33-Targeting Antibody-Drug Conjugate with DNA Alkylating Activity, Exhibits Potent Antitumor Activity in Models of AML
    Author Manuscript Published OnlineFirst on March 27, 2018; DOI: 10.1158/1535-7163.MCT-17-1077 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. IMGN779, a Novel CD33-Targeting Antibody-Drug Conjugate with DNA Alkylating Activity, Exhibits Potent Antitumor Activity in Models of AML Yelena Kovtun1*, Paul Noordhuis2*, Kathleen R. Whiteman1, Krystal Watkins1, Gregory E. Jones1, Lauren Harvey1, Katharine C. Lai1, Scott Portwood3, Sharlene Adams1, Callum M. Sloss1, Gerrit Jan Schuurhuis2, Gert Ossenkoppele2, Eunice S. Wang3, and Jan Pinkas1 1ImmunoGen, Inc., Waltham, Massachusetts. 2Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands. 3Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York *These authors contributed equally to the work Running Title: Preclinical activity of IMGN779 in AML Corresponding author: Yelena Kovtun, ImmunoGen Inc., 830 Winter St, Waltham, MA 02451. Phone: (781) 895-0716; Fax: (781) 895-0611; Email: [email protected] Potential conflict of interests: E.S. Wang received financial support from, and has served on an advisory board for, Immunogen Inc. There are no other competing interests to declare. 1 Downloaded from mct.aacrjournals.org on September 24, 2021. © 2018 American Association for Cancer Research. Author Manuscript Published OnlineFirst on March 27, 2018; DOI: 10.1158/1535-7163.MCT-17-1077 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract The myeloid differentiation antigen CD33 has long been exploited as a target for antibody-based therapeutic approaches in acute myeloid leukemia (AML). Validation of this strategy was provided with the approval of the CD33-targeting antibody-drug conjugate (ADC) gemtuzumab ozogamicin in 2000; the clinical utility of this agent has however been hampered by safety concerns.
    [Show full text]
  • Horizon Scanning Status Report June 2019
    Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors.
    [Show full text]
  • Advances in Epidermal Growth Factor Receptor Specific Immunotherapy: Lessons to Be Learned from Armed Antibodies
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 38), pp: 3531-3557 Review Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies Fleury Augustin Nsole Biteghe1,*, Neelakshi Mungra2,*, Nyangone Ekome Toung Chalomie4, Jean De La Croix Ndong5, Jean Engohang-Ndong6, Guillaume Vignaux7, Eden Padayachee8, Krupa Naran2,* and Stefan Barth2,3,* 1Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA 2Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa 3South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa 4Sun Yat-Sen University, Zhongshan Medical School, Guangzhou, China 5Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA 6Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA 7Arctic Slope Regional Corporation Federal, Beltsville, MD, USA 8Department of Physiology, University of Kentucky, Lexington, KY, USA *These authors contributed equally to this work Correspondence to: Stefan Barth, email: [email protected] Keywords: epidermal growth factor receptor (EGFR); recombinant immunotoxins (ITs); targeted human cytolytic fusion proteins (hCFPs); recombinant antibody-drug conjugates (rADCs); recombinant antibody photoimmunoconjugates (rAPCs) Received: May 30, 2020 Accepted: August 11, 2020 Published: September 22, 2020 Copyright: © 2020 Biteghe et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • Antibody–Drug Conjugates: the Last Decade
    pharmaceuticals Review Antibody–Drug Conjugates: The Last Decade Nicolas Joubert 1,* , Alain Beck 2 , Charles Dumontet 3,4 and Caroline Denevault-Sabourin 1 1 GICC EA7501, Equipe IMT, Université de Tours, UFR des Sciences Pharmaceutiques, 31 Avenue Monge, 37200 Tours, France; [email protected] 2 Institut de Recherche Pierre Fabre, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoléon III, 74160 Saint Julien en Genevois, France; [email protected] 3 Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS 5286/UCBL, 69000 Lyon, France; [email protected] 4 Hospices Civils de Lyon, 69000 Lyon, France * Correspondence: [email protected] Received: 17 August 2020; Accepted: 10 September 2020; Published: 14 September 2020 Abstract: An armed antibody (antibody–drug conjugate or ADC) is a vectorized chemotherapy, which results from the grafting of a cytotoxic agent onto a monoclonal antibody via a judiciously constructed spacer arm. ADCs have made considerable progress in 10 years. While in 2009 only gemtuzumab ozogamicin (Mylotarg®) was used clinically, in 2020, 9 Food and Drug Administration (FDA)-approved ADCs are available, and more than 80 others are in active clinical studies. This review will focus on FDA-approved and late-stage ADCs, their limitations including their toxicity and associated resistance mechanisms, as well as new emerging strategies to address these issues and attempt to widen their therapeutic window. Finally, we will discuss their combination with conventional chemotherapy or checkpoint inhibitors, and their design for applications beyond oncology, to make ADCs the magic bullet that Paul Ehrlich dreamed of. Keywords: antibody–drug conjugate; ADC; bioconjugation; linker; payload; cancer; resistance; combination therapies 1.
    [Show full text]